1 Title: A third vaccine dose equalizes the levels of effectiveness and immunogenicity of

- 2 heterologous or homologous COVID-19 vaccine regimens
- 3
- 4 Authors: Nicolas Guibert¹, Kylian Trepat^{2,3}, Bruno Pozzetto^{2,4}, Laurence Josset^{2,5,6}, Jean-
- 5 Baptiste Fassier¹, Omran Allatif², Kahina Saker³ Karen Brengel-Pesce³, Thierry Walzer²*,
- 6 Philippe Vanhems^{2,7}*, Sophie Trouillet-Assant^{2,3}* on behalf of Lyon-COVID study group^{\$}
- 7

8 Affiliations

- ¹Occupational Health and Medicine Department, Hospices Civils de Lyon, Université Claude Bernard
 Lyon1, Ifsttar, UMRESTTE, UMR T_9405, Lyon University, Avenue Rockefeller, Lyon, France.
- 11 ²CIRI Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude
- 12 Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-
- 13 Etienne, Lyon, France.
- ³Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital,
- 15 Pierre-Bénite, 69310, France
- ⁴Laboratoire des Agents infectieux et d'Hygiène, University Hospital of Saint-Etienne, Saint-Etienne,
 42055, France.
- 18 ⁵Virology laboratory, Institut des Agents Infectieux, Laboratoire associé au Centre National de
- 19 Référence des virus des infections respiratoires, Hospices Civils de Lyon, F-69004, Lyon, France.
- ⁶GenEPII sequencing platform, Institut des Agents Infectieux, Hospices Civils de Lyon, F-69004, Lyon,
- 21 France
- ⁷Service D'Hygiène, Épidémiologie, Infectiovigilance et Prévention, Hôpital Édouard Herriot, Hospices
- 23 Civils de Lyon, Lyon, France
- 24 *Senior authors equally contributed
- 25 ^{\$}Study group members are listed in the Acknowledgment section of the paper
- 26
- 27 **Correspondence**: Correspondence and requests for materials should be addressed to
- 28 <u>sophie.assant@chu-lyon.fr</u>
- 29
- 30 **Keywords:** SARS-CoV-2; vaccination; heterologous vaccine regimens; breakthrough infection;
- 31 healthcare workers; antibodies; neutralization

32 Abstract text:

33

Backgroung : To cope with the persistence of the Covid-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially, and the

- 37 heterologous ChadOx1-S/BNT162b2 regimen had shown better efficacy and immunogenicity
- than the homologous BNT162b2/BNT162b2 regimen.
- 39 **Aim :** We wanted to determine if this benefit was retained after the third dose.
- 40 **Methods:** We combined an observational study of SARS-COV-2 infections among vaccinated
- 41 healthcare workers at the University-Hospital of Lyon, France, with an analysis of
- 42 immunological parameters before and after the third mRNA vaccine dose.
- 43 **Results:** Following the second vaccine dose, heterologous vaccination regimens were more
- 44 protective against infection than homologous regimens, but this was no longer the case after
- 45 the third dose. RBD-specific IgG levels and serum neutralization capacity against different
- 46 SARS-CoV-2 variants were higher after the third dose than after the second dose in the
- 47 homologous regimen group, but not in the heterologous group.
- 48 **Conclusion:** The advantage conferred by heterologous vaccination is lost after the third dose
- 49 both in terms of protection and immunogenicity. Immunological measurements suggest that
- 50 heterologous vaccination induces maximal immunity after the second dose, whereas the
- 51 third dose is required to reach the same level in individuals with a homologous regimen.

52 Introduction

In response to the coronavirus disease pandemic, several vaccines were rapidly designed 53 and administered to the population, inducing a protective immunity composed of both 54 55 neutralizing antibodies and virus-specific T lymphocytes. As multiple vaccines were available, 56 different heterologous combinations of prime/boost doses have been used in patients. This mixing of vaccines was motivated first by the necessary adaptation to limited vaccine supply, 57 58 but also by the rare observation of vaccine-induced severe adverse reactions with some 59 vaccines. Most studies have reported similar or higher immunogenicity following heterologous primary vaccination involving the Vaxzevria (ChAdOx1nCoV-19, AstraZeneca, 60 61 Cambridge, United Kingdom) and mRNA vaccines Comirnaty (BNT162b2, BioNTechPfizer, 62 Mainz, Germany/New York, United States) and Spikevax (mRNA-1273, Moderna, Cambridge, 63 United States) compared to homologous vaccination [1-4]. For example, binding and 64 neutralizing antibody titers were similar or greater in the heterologous boosted group compared to the homologous group [5,6]. In addition, we and others reported that the 65 66 enhanced immunogenicity of the heterologous vaccination regimen was associated with a 67 better protection against SARS-CoV-2 infection[2,7]. However, numerous studies have shown that the level of antibodies, and in particular those neutralizing the virus, gradually 68 decreased following vaccination. This phenomenon, combined with the emergence of viral 69 70 variants having acquired mutations in the spike viral protein making them less sensitive to vaccine antibodies, led health authorities to recommend the injection of a third booster 71 72 dose. This booster dose was particularly important in immunosuppressed patients for whom vaccine efficacy was lower. Heterologous vaccine schedules of ChAdOx1-S priming and 73 mRNA booster doses as both second and third doses were not associated with increased risk 74 75 of serious adverse events compared with homologous mRNA vaccine schedules [8]. Recent

reports demonstrated that most COVID-19 vaccines delivered as a third dose booster 76 significantly enhanced both humoral and cellular anti-SARS-CoV-2 immunity [9]. 77 Observational studies also suggest that a third dose significantly improves protection from 78 79 symptomatic infection compared to two doses. A recent meta-analysis reported that 80 heterologous and homologous three-dose regimens work comparably well in preventing covid-19 infections, even against different variants [10]. Nevertheless, a recent report has 81 82 documented some differences in immunogenicity and protection according to vaccine 83 schedule before third dose [11], suggesting that initial vaccination regimens could imprint spike-specific immunity in the long term, regardless of the booster dose. 84

To address this question, we compared spike-specific immunity and protection against infection conferred by second and third dose of mRNA vaccine in healthcare workers (HCWs) primed with either adenovirus-based ChAdOx1-S or COVID-19 mRNA vaccine.

88

89 Methods:

90 Prevalence of SARS-CoV-2 VOC

91 SARS-CoV-2 testing of HCWs was performed using routine diagnostic procedures in the Virology laboratory of the Hospices Civils de Lyon, and included: TMA (Aptima™ SARS-CoV-2 92 93 Assay (Hologic), LAMP (SARS-CoV-2 ID NOW[™] (Abbott), and RT-qPCR with different kits 94 (Cobas[®] 6800 SARS-CoV-2 assay (Roche), Panther Fusion SARS-CoV-2 assay (Hologic). To determine the prevalence of SARS-CoV-2 VOC in HCW, available positive samples with Ct<28 95 were sequenced using COVIDSeq (Illumina) as previously described [12]. Libraries were 96 97 sequenced to 1 M paired-end reads (2x100 bp) and data were analyzed using the in-house 98 seqmet bioinformatic pipeline (available at https://github.com/genepii/seqmet). Clades and

99 lineages were determined on samples with genome coverage >90% using Nextclade and
100 PangoLEARN, respectively.

101

102 Ethical statement and cohort description

103 **Population of HCW from the hospital database included in the epidemiological investigation**

104 We extracted data from the occupational medicine database of the University Hospital of 105 Lyon (Hospices Civils de Lyon), France. A total of 13489 HCWs working at Hospices civils de Lyon throughout the study period $(12/15/21 \quad 03/21/22)$ were included. Only subjects who 106 107 (i) had never contracted COVID-19, (ii) were primed with ChAdOx1-S-nCoV-19 or an mRNA vaccine and (iii) received the second or third dose of an RNA vaccine were included in the 108 epidemiological analysis (Supplementary Figure 1). Breakthrough infections, documented by 109 positive RT-PCR or antigenic tests and that occurred after the 15th of December 2021 and at 110 least 7 days after vaccine injection were took into account to evaluate infection risk in 111 112 different groups of subjects. Due to the mandatory SARS-CoV-2 vaccination for HCWs in 113 France, we have no missing data regarding this variable. Moreover, the declaration of SARS-CoV-2 infection is compulsory for all staff to obtain daily allowances without loss of salary 114 during the imposed guarantine. 115

The use and analysis of data from the occupational health medical file were authorized after a regulatory declaration to the National Commission for Information Technology and Civil Liberties according to the reference methodology (declaration MR004 number 20-121 of April 30th 2020).

120 **Population included in the immune response investigations**

Eighty-eight naive HCWs for COVID-19 and vaccinated with BNT and/or ChAd and/or mRNA-1273 vaccines were included in a prospective longitudinal cohort study conducted at the Hospices Civils de Lyon. Blood sampling was performed before vaccination, before and 42 weeks after the second and the third dose of vaccine. The absence of previous SARS-CoV-2 infection was confirmed using the Abbott SARS-CoV-2 anti-N Ab total assay in all samples (Abbott Diagnostics, Abbott Park, Illinois, United States). Demographic characteristics and delays between doses are depicted in **Supplementary Table 1**.

128 Measurement of IgG titers

Serum specimens were immediately stored at -802°C after blood sampling. RBD-specific IgG antibodies were measured using bioMérieux Vidas SARS-CoV-2 IgG diagnosis kits, according to the manufacturers' recommendations. For standardization of these assays to the first World Health Organization international standard, the concentrations were transformed into binding antibody units per ml (BAU2ml⁻¹) using the conversion factors provided by the manufacturers.

135 Live-virus neutralization experiments

136 A plaque reduction neutralization test (PRNT) was used for the detection and titration of neutralizing antibodies as previously described [13]. Neutralization was recorded if more 137 than 50% of the cells present in the well were preserved. The neutralizing titer was 138 expressed as the inverse of the higher serum dilution that exhibited neutralizing activity; a 139 140 threshold of 20 was used (PRNT₅₀ titer[®]≥[®]20). All experiments were performed with a subset 141 of sera specimens collected longitudinally from 15 subjects in each group. The different viral 142 strains that used sequenced deposited were were and at GISAID (https://www.gisaid.org/) (accession numbers EPI ISL 1707038 19A (B.38 lineage); EPI 143 144 ISL 1904989 Delta (B.1.617.2 lineage); and EPI ISL 7608613 Omicron (B.1.1.529 lineage)).

145

146 Statistical analysis

The descriptive statistics generated appropriate figures and parameters according to type of 147 variable (i.e. continuous or categorical). The comparisons between groups were done using 148 149 the Chi-square test for categorical variables and non-parametric test or student T test 150 according to the distribution for continuous variables. The cumulative probability of COVID-151 19 was based on the Kaplan-Meier survival analysis and survival distributions were compared using the LogRank test. A univariate and multivariate Cox proportional hazard 152 153 model was performed to identify the determinants independently associated with onset of 154 COVID-19 according to their hazard ratio (HR) and their 95% confidence interval (95% Cl). All P-values were two-tailed. P2<20.05 was considered as statistically significant. For the 155 156 immunological part, we used a multiple linear regression model, with adjustment variables 157 (age or age groups, sex, delay, vaccination scheme).

158

159 Results

160 Vaccine effectiveness in HCWs

161 To compare the risk of SARS-CoV-2 infection following a second or third dose of COVID-19 162 mRNA vaccine (the Pfizer-BioNTech mRNA vaccine, BNT162b2, or the Moderna mRNA 163 vaccine, mRNA-1273) in subjects who received a priming dose of ChAdOx1-S or BNT162b2 164 vaccine, we extracted data from the occupational medicine database of the University 165 Hospital of Lyon (Hospices Civils de Lyon, HCL), France. We focused on individuals not previously infected with SARS-CoV-2 (PCR diagnosis) before vaccination to avoid any bias 166 linked to hybrid immunity (Figure 1). Infection rates were monitored in HCWs after the 167 second or the third booster dose in each group. We extracted SARS-CoV-2 infection incident 168 events documented by positive antigenic or RT-PCR tests that occurred between December 169 15th 2021 and 21st March 2022. This period corresponds to the Omicron (lineage BA.1, Clade 170

171 21K) wave, succeeding to Delta (lineage B.1.1.529, Clades 21I and 21J), and preceding the Omicron sub-lineage BA.2 (Clade 21L) appearance and increase (Figure 2A-B). The 172 proportion of SARS-CoV-2 variants of concern (VOC) determined by whole genome 173 174 sequences in samples collected in HCWs working at Hospices Civils de Lyon during this period was: 70/834 (8.4%) 21J (Delta), 708/834 (84.9%) 21K (Omicron BA.1), and 56/834 175 (6.7%) 21L (Omicron BA.2). Figure 2C-D shows the cumulative incidence of breakthrough 176 177 infections in each group. Following the second vaccine dose, heterologous vaccination 178 regimens were more protective against infection compared to the homologous regimen group (Figure 2C). Indeed, after adjustment on age, sex and delay between last vaccination 179 180 and the start of the study, individuals vaccinated with mRNA vaccines were twice as likely to be infected than those vaccinated with ChAdOx1-S followed by mRNA vaccine (adjusted 181 182 hazard ratio of 1.88 [1.18- 3.00], p-value =0.008, Figure 2E). After the third dose, the number 183 of infections was lower than after the second dose in both vaccination groups, showing the benefit of the boost. Moreover, in the homologous group, the third dose achieved at least 184 185 the same level of protection as in the heterologous group as demonstrated by the inversion 186 of the infection incidence curves (adjusted hazard ratio of 0.86 [0.72 - 1.02], p-value = 0.082, Figure 2F). We also conducted an analysis of the infection risk according to the parameters 187 188 of vaccination, sex or age class. This analysis confirmed the importance of the vaccination 189 schedule after the second dose but not after the third (Figure 2G-H). It also shows that in this cohort of vaccinated HCWs, middle-aged females had a higher risk of infection. 190

191

192 Analysis of immune response after heterologous and homologous vaccination

193 We then sought to compare the immunogenicity of the third dose in heterologous vs 194 homologous vaccination groups. For this, we took advantage of the *Covid-Ser* cohort that we

- 195 previously described and which includes a subset of voluntary healthcare workers in whom
- anti-SARS-CoV-2 immunity is measured longitudinally over time (Figure 3)[2]. We formed
- 197 groups who had received a homologous or heterologous vaccination regimen and who had
- 198 received a third dose of mRNA vaccine (**Table 1**).
- 199

	HCWs primed with BNT	HCWs primed with	p.adj
	(homologous)	ChadOx (heterologous)	
	n=58	n=30	
Male sex. n	11	6	>0.9999
Age. Year. Median [IQR]	50.50 [41.00-59.00]	38.00 [30.50-41.00]	<0.0001
Body Mass Index *. n	55	29	
Median [IQR]	24.22 [22.12-29.72]	20.94 [20.06-23.88]	0.0077
Delay between first and	28 [28-30]	85 [84-85]	<0.0001
second dose. Day. Median			
[IQR]			
Delay between second	266 [245-284]	206 [195-213]	<0.0001
and third dose. Day.			
Median [IQR]			
Third dose Moderna. n	5	3	>0.9999
Presence of comorbidity. n	29	10	0.5828
Description of			
comorbidities			
Hypertension. n	2	0	>0.9999
Diabetes. n	2	0	>0.9999
Cancer. n	1	0	>0.9999
Hypothyroidy. n	4	1	>0.9999
Rheumatic diseases. n	1	0	>0.9999
Chronic respiratory	4	0	0.7200
problems. n			
Others. n	5	0	0.5480
Currently smoker. n	14	6	>0.9999
Alcohol consumption. n	8	6	>0.9999
*Missing data			

200 Table 1: Clinical characteristics of patients in the Covid-Ser study (immunological analysis)

201 For alcohol consumption, this was defined as consumption at least once a week. Wilcoxon-Mann–Whitney two-

202 sided tests were used for quantitative variables and Chi-square or Fisher were used for qualitative variables

203 when appropriate. Adjusted P values were calculated using the Benjamini–Hochberg method.

205 Subsequently, we measured the increase in anti-RBD lgG antibody levels four weeks after 206 the third dose in both groups. No significant difference was observed (p=0.14) (Figure 4A). 207 We then evaluated the neutralization capacity of serum antibodies against SARS-CoV-2 208 variants 19A, Delta and Omicron four weeks after the third dose. No significant difference in 209 neutralization was observed between the homologous and heterologous schedules (19A: median [IQR] 960 [320-1920] vs. 640 [320-1920]; Delta: 240 [120-480] vs. 320 [160-960]; 210 Omicron: 160 [60-640] vs. 160 [80-480], respectively) (Figure 4B). Moreover the anti-RBD 211 212 IgG level is not different in the two groups after the third dose (p=0.18) (Figure 4C).

213 Data in Figure 2 show that the heterologous ChAdOx1-S/COVID-19 mRNA vaccine 214 combination confers better protection against SARS-COV-2 infection than the homologous 215 COVID-19 mRNA vaccines combination, but that the third dose equalizes the efficacy of both 216 vaccine regimens. To understand why the advantage of heterologous vaccination is no 217 longer observed after the third dose, we compared humoral immunity four weeks after the 218 second and after the third dose in each group. In subjects vaccinated according to the 219 homologous regimen, the anti-RBD IgG level measured 4 weeks post second dose was 220 significantly lower (p<0.0001) than that measured post third dose (1490 [969-2994] BAU/mL, 221 3336 [1795-4491] BAU/mL respectively) (Figure 4D) whereas in subjects vaccinated 222 according to a heterologous scheme, no difference was observed (2277 [1520-3400] BAU/mL 223 vs 2242 [1321-3602] BAU/mL respectively) (Figure 4E). In addition, for the homologous vaccine group, the antibody neutralizing capacity 4 weeks post third dose was at least 3 224 225 times higher than that observed 4 weeks post second dose (at least p<0.01). In contrast, in 226 heterologous vaccinated individuals, no benefit in neutralizing capacity against 19A and 227 Delta at 4 weeks post third dose was observed. Only the neutralizing capacity of the total 228 antibodies 4 weeks post third dose against Omicron increased 2-fold compared to that 4

weeks post second dose (p<0.01) (Figure 4F-G). Of note, there is no difference of anti-SARS-
CoV-2 lgG level 4 weeks post third dose between HCWs boosted with BNT162b2 (n=80) or
mRNA-1273 (n=8) vaccine (p=0.30).

232

233 Discussion

We previously showed that the heterologous ChAdOx1-S/BNT162b2 combination confers 234 235 better protection against SARS-CoV-2 infection than the homologous BNT162b2/BNT162b2 236 combination in a real-world observational study conducted in HCWs [2]. Both combinations induced strong anti-spike antibody responses but serum specimens from heterologous 237 238 vaccinated individuals displayed a stronger neutralizing activity, regardless of the SARS-CoV-239 2 variant [14]. Here, we asked whether the advantage conferred by the heterologous 240 regimen is conserved after a booster dose of mRNA-based COVID-19 vaccine. Our results 241 show that (i) the third dose with an mRNA vaccine equalizes the levels of effectiveness of 242 heterologous or homologous COVID-19 vaccine regimens and (ii) that serum neutralization 243 capacity against different SARS-CoV-2 variants is comparable four weeks after the boost in 244 both groups. Indeed, the third vaccine dose does not increase antibody levels and neutralization capacity beyond those observed one month after the second dose in the 245 246 heterologous group, which suggests that a maximal immunity level one month post 247 vaccination is already reached after the second dose in this group and that it cannot be boosted further, at least with an mRNA-based vaccine. While we cannot exclude that a 248 shorter delay between the second and third doses would have a different impact in 249 250 heterologous vs homologous groups, our results are in line with those of Accorsi et al. who 251 showed that a single booster dose of an mRNA Covid-19 vaccine in individuals who received 252 primary vaccination with a single-dose of adenovirus-based vaccine Ad26.COV2.S, provided

protection close to that of the three-dose mRNA vaccine regimen [15]. In addition, Behrens et al. reported that inferior SARS-CoV-2 specific immune responses following homologous ChAdOx1-S / ChAdOx1-S vaccination compared to ChAdOx1-S /BNT162b2 can be compensated by heterologous BNT vaccination as third dose [16]. In our study, only the neutralization of the Omicron variant was slightly better one month after the third dose in the heterologous regimen compared to the second dose. The significance of this result is not clear since the neutralization of the other variants was not changed.

260 More largely, our results address the question of the number of vaccine boosts that are needed to reach the maximal immunity level against SARS-CoV-2, including its numerous 261 262 variants. We confirm that, using the heterologous combination performed in our study, a 263 single boost is enough to reach this plateau. By contrast, the homologous scheme using an 264 mRNA vaccine needs two boosts for reaching the same level of protection. Of course, this 265 maximum immunity is temporary and decreases with time, which makes the third dose 266 necessary in the heterologous group as well. The recent study of Regev-Yochay et al. that 267 evaluated the benefit of a third boost in an homologous mRNA immunization scheme 268 suggests that a maximum immunity is reached after the third dose with homologous mRNA vaccination. The fourth mRNA vaccine dose seems to be able to restore the level of 269 270 immunity, but does not quantitatively and qualitatively improve the humoral immunity 271 conferred by the first 3 doses [17].

Surprisingly, our data highlighted a higher risk of infection in women between 30 and 50 years compared to older HCW. This group of individuals mainly corresponds to active nursing staff with higher exposure to pathogens. Indeed, in the Lyon University hospital, the pattern of contacts (frequency and duration) between nurses and patients and within nurses is superior than for other professionals [18], and this pattern could result in a higher exposure

to pathogens, as previously reported in a study of nosocomial influenza spreading at the
hospital [19]. Obviously, this higher exposure of middle-aged women is specific to the HCW
community and may not apply to the general population.

280 Some limitations of the present study should be acknowledged. First, these results were 281 obtained from observational data and not from a randomized clinical trial. As a result there were some inherent differences between the compared groups. For example subjects 282 283 vaccinated with a heterologous schedule were on average younger than those vaccinated 284 with a homologous schedule. This difference is explained by the recommendations for 285 vaccination according to which individuals under 55 years of age who received a first dose of 286 ChAdOx1-S should receive a boost of COVID-19 mRNA vaccine. Yet, our statistical analysis 287 did not show a significant impact of age in infection risk or vaccine-induced immune 288 parameters. Second, the HCWs might slightly differ from the general population since they 289 exhibit repeated exposures to SARS-CoV-2, together with close monitoring regarding vaccine 290 coverage and COVID-19 incidence. Third, in our study, the advantage of the heterologous 291 regimen observed after the second dose may be impacted by the delay between the first 292 and second dose which was only of 4 weeks between the first two doses in the homologous scheme. A study by Payne et al. reported that an extended delay of 10 weeks between the 293 294 first two doses of BNT162b2 allowed the development of better humoral immunity [20]. 295 Fourth, the present study was limited to HCWs having no history of SARS-CoV-2 infection 296 prior to vaccination. The benefit of booster dose of mRNA vaccine in patients primed with ChAdOx1-S or mRNA vaccine would need further investigations in people previously infected 297 by different variants. Finally, even if HCWs were heavily tested during the monitoring period 298 299 of our study, asymptomatic infections may have remained unnoticed.

300	Taken together, our data provide evidence to understand the number of vaccine boosts that
301	are needed to reach the maximal immunity level against SARS-CoV-2 in heterologous or
302	homologous vaccine scheme. More studies will be needed to determine if another vaccine
303	type should be given to boost even further SARS-CoV-2 immunity.
304	
305	Ethical statements_
306	For the Covid-Ser study, clinical data were recorded by a trained clinical research associate
307	using Clinsight software (v.Csonline 7.5.720.1). Written informed consent was obtained from
307 308	using Clinsight software (v.Csonline 7.5.720.1). Written informed consent was obtained from all participants. Ethics approval was obtained from the national review board for biomedical
307 308 309	using Clinsight software (v.Csonline 7.5.720.1). Written informed consent was obtained from all participants. Ethics approval was obtained from the national review board for biomedical research in April2020 (Comité de Protection des Personnes Sud Méditerranée I, Marseille,
307 308 309 310	using Clinsight software (v.Csonline 7.5.720.1). Written informed consent was obtained from all participants. Ethics approval was obtained from the national review board for biomedical research in April22020 (Comité de Protection des Personnes Sud Méditerranée I, Marseille, France; ID RCB 2020-A00932-37), and the study was registered at ClinicalTrials.gov

312 References

- Schmidt T, Klemis V, Schub D, Mihm J, Hielscher F, Marx S, et al. Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat Med, 2021; 27(9):153025.
- Pozzetto B, Legros V, Djebali S, Barateau V, Guibert N, Villard M, et al. Immunogenicity
 and efficacy of heterologous ChAdOx1–BNT162b2 vaccination. Nature , 2021;
 600(7890):70126.
- Liu X, Shaw RH, Stuart ASV, Greenland M, Aley PK, Andrews NJ, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. The Lancet, 2021; 398(10303):856 269.
- Klemis V, Schmidt T, Schub D, Mihm J, Marx S, Abu-Omar A, et al. Comparative
 immunogenicity and reactogenicity of heterologous ChAdOx1-nCoV-19-priming and
 BNT162b2 or mRNA-1273-boosting with homologous COVID-19 vaccine regimens. Nat
 Commun. 2022; 13(1):4710.
- Hillus D, Schwarz T, Tober-Lau P, Vanshylla K, Hastor H, Thibeault C, et al. Safety,
 reactogenicity, and immunogenicity of homologous and heterologous prime-boost
 immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. Lancet
 Respir Med. 2021; 9(11):1255265.
- Niyomnaitham S, Quan Toh Z, Wongprompitak P, Jansarikit L, Srisutthisamphan K,
 Sapsutthipas S, et al. Immunogenicity and reactogenicity against the SARS-CoV-2 variants
 following heterologous primary series involving CoronaVac, ChAdox1 nCov-19 and
 BNT162b2 plus BNT162b2 booster vaccination: An open-label randomized study in
- healthy Thai adults. Human Vaccines & Immunotherapeutics. 2022; 2091865.
- 336 7. Mayr FB, Talisa VB, Shaikh O, Yende S, Butt AA. Effectiveness of Homologous or
 337 Heterologous Covid-19 Boosters in Veterans. N Engl J Med. 2022; 386(14):1375 27.
- Andersson NW, Thiesson EM, Laursen MV, Mogensen SH, Kjær J, Hviid A. Safety of
 heterologous primary and booster schedules with ChAdOx1-S and BNT162b2 or mRNA 1273 vaccines: nationwide cohort study. BMJ. 2022; 378:e070483.
- Lustig Y, Gonen T, Meltzer L, Gilboa M, Indenbaum V, Cohen C, et al. Superior
 immunogenicity and effectiveness of the third compared to the second BNT162b2
 vaccine dose. Nat Immunol. 2022; 23(6):94026.
- Au WY, Cheung PPH. Effectiveness of heterologous and homologous covid-19 vaccine
 regimens: living systematic review with network meta-analysis. BMJ. 2022; 377:e069989.
- Liu X, Munro APS, Feng S, Janani L, Aley PK, Babbage G, et al. Persistence of
 immunogenicity after seven COVID-19 vaccines given as third dose boosters following
 two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the
 COV-BOOST trial. J Infect. 2022; 795 2813.

- 12. Detection and prevalence of SARS-CoV-2 co-infections during the Omicron variant
- 351 circulation, France, December 2021 February 2022 | medRxiv. DOI:
- 352 10.1101/2022.03.24.22272871v1
- 13. Saade C, Gonzalez C, Bal A, Valette M, Saker K, Lina B, et al. Live virus neutralization
 testing in convalescent patients and subjects vaccinated against 19A, 20B, 20I/501Y.V1
 and 20H/501Y.V2 isolates of SARS-CoV-2. Emerg Microbes Infect. 2021; 10(1):14992502.
- 14. Lee HK, Go J, Sung H, Kim SW, Walter M, Knabl L, et al. Heterologous ChAdOx1 BNT162b2 vaccination in Korean cohort induces robust immune and antibody responses
 that includes Omicron. iScience. 2022; 25(6):104473.
- 15. Accorsi EK, Britton A, Shang N, Fleming-Dutra KE, Link-Gelles R, Smith ZR, et al.
 Effectiveness of Homologous and Heterologous Covid-19 Boosters against Omicron. New
 England Journal of Medicine. 2022; 386(25):243325.
- 362 16. Behrens GMN, Barros-Martins J, Cossmann A, Ramos GM, Stankov MV, Odak I, et al.
 363 BNT162b2-boosted immune responses six months after heterologous or homologous
 364 ChAdOx1nCoV-19/BNT162b2 vaccination against COVID-19. Nat Commun. 2022;
 365 13(1):4872.
- 366 17. Regev-Yochay G, Gonen T, Gilboa M, Mandelboim M, Indenbaum V, Amit S, et al. Efficacy
 367 of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. N Engl J Med. 2022;
 368 386(14):1377 280.
- 369 18. Vanhems P, Barrat A, Cattuto C, Pinton JF, Khanafer N, Régis C, et al. Estimating Potential
 370 Infection Transmission Routes in Hospital Wards Using Wearable Proximity Sensors.
 371 Viboud C, éditeur. PLoS ONE. 2013; 8(9):e73970.
- 19. Voirin N, Payet C, Barrat A, Cattuto C, Khanafer N, Régis C, et al. Combining highresolution contact data with virological data to investigate influenza transmission in a
 tertiary care hospital. Infect Control Hosp Epidemiol. 2015; 36(3):254260.
- 20. Payne RP, Longet S, Austin JA, Skelly DT, Dejnirattisai W, Adele S, et al. Immunogenicity
 of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell. 2021;
 184(23):5699-5714.e11.
- 378

379 Figure legends

Figure 1: Flow chart of the epidemiological study.

The flow chart indicates how individuals with two (left) or three vaccination doses (right) were selected from the total HCW population according to the indicated criteria of exclusion.

384

Figure 2: The superior efficacy of heterologous vaccination is lost after the third vaccine dose 385 (A) Weekly SARS-CoV-2 testing (n = 2,113 positive samples / 7,863 negative samples) and (B) 386 Variant of concern (VOC) circulation (B) among HCW (n=834 samples with whole genome 387 sequence (WGS) between Dec 15th, 2021 and March 21st, 2022 at Lyon University Hospitals. 388 (C-D) Graphs show the cumulative probability of COVID-19 infection within 100 days after a 389 2^{nd} (C) or a 3^{rd} (D) mRNA vaccine dose in health care workers at Lyon university hospital 390 primed with BNT162b2 (blue line, homologous vaccination, 3074 and 6436 HCWs 391 respectively) or ChAdOx1-S vaccine (brown line, heterologous vaccination, 328 and 1160 392 HCWs respectively). P-value was calculated using Logrank test. (E-F) Forest Plots depict 393 multivariate Cox proportional hazard ratio (IC95%) for COVID-19 infection after a 2nd (E) or a 394 3rd (F) mRNA vaccine dose in health care workers. Hazard Ratio (HRs) were calculated with 395 396 the HR of 1.0 of the reference stratum, references were indicated for all comparisons. All 397 SARS-CoV-2 infection events documented by positive SARS-CoV-2 RT-PCR or antigenic test 398 were recorded by the service of occupational medicine, Hospices Civils de Lyon.

399

400 **Figure 3**: Design of the "Covid-Ser" study

401

402 Figure 4: The booster dose equalizes the levels of immunogenicity of heterologous or
403 homologous vaccine regimens

Sera from naïve HCWs vaccinated primed with the BNT162b2 (n=58) or ChadOx1-S vaccine, n=30) and who received an mRNA vaccine for 2nd and 3rd dose were selected. (A) RBDspecific IgG levels were quantified just before and four weeks post booster (third) dose. Concentrations are expressed in binding antibody units per ml (BAU/ml), and data show the difference in RBD-specific IgG levels between the two time-points (missing value for prevaccination time point for 11 and 4 patients vaccinated with homologous and heterologous regimen respectively). (B) A subset of 15 sera from both groups four weeks after the third

dose were assayed in duplicate for their capacity to neutralize infection of Vero E6 cells by 411 different SARS-CoV-2 strains, as indicated. (C) Comparison of serum RBD-specific IgG levels 4 412 weeks after the 3rd dose between homologous and heterologous vaccine recipients (D-E) 413 Serum RBD-specific IgG levels were measured 4 weeks after the 2nd or after the 3rd dose in 414 the homologous (D) or heterologous (E) vaccine recipients. (F-G) Comparison of the 415 neutralizing capacity of total antibodies collected 4 weeks after the 2nd or after the 3rd dose 416 in the homologous (F) or in the heterologous (G) vaccine group (n=15 for each group). The 417 dashed lines represent the limit of detection (20 in $PRNT_{50}$). In all graphs, data are 418 represented as box-and-whiskers plots using the Tukey method which show median 419 420 (horizontal line inside the box), interquartile (25%-75% - upper and lower horizontal lines of the box), and each dot corresponds to one subject. Statistics were calculated using a 421 multiple linear regression model with adjustment variables (age and sex, and when 422 423 appropriate delay between second and third dose).

Figure_3

Naïve vaccinated subjects

Serological investigation IgG anti-RBD

Adenoviral vaccine (ChAdOx1-S)

mRNA vaccine (BNT162b2 or mRNA-1273)

2nd dose 3rd dose

E. Heterologous

