1	Relationships between improvement in	physical function, pain interference, and mental
2	health in mu	sculoskeletal patients
3		
4	Wei Zhang, PhD ¹	(WeiZ@wustl.edu)
5	Som P Singh, BA ²	(Singh.Som@wustl.edu)
6	Amdiel Clement, BA ³	(A.Clement@wustl.edu)
7	Ryan P Calfee, MD, MSc ⁴	(CalfeeR@wustl.edu)
8	Janine D Bijsterbosch, PhD ¹	(Janine.Bijsterbosch@wustl.edu)
9	Abby L Cheng, MD, MPHS ⁵	(ChengAL@wustl.edu)
10		
11	¹ Mallinckrodt Institute of Radiology, Washi	ngton University School of Medicine, St. Louis, MO
12	63110, USA	
13	² University of Missouri – Kansas City Scho	ol of Medicine, Kansas City, MO 64108, USA
14	³ Washington University School of Medicine	e, St. Louis, MO 63110, USA
15	⁴ Division of Hand and Wrist, Department of	f Orthopaedic Surgery, Washington University
16	School of Medicine, St. Louis, MO 63110,	USA
17	⁵ Division of Physical Medicine and Rehabil	itation, Department of Orthopaedic Surgery,
18	Washington University School of Medicine	, St. Louis, MO 63110, USA
19		
20	Corresponding author:	
21	Abby L Cheng, MD, MPHS	
22	Washington University School of Medicine	
23	Campus Box 8233	

- 24 660 South Euclid Avenue
- 25 St. Louis, MO 63110, USA
- 26 ChengAL@wustl.edu
- 27 Ph: 812-483-8108

28

29 Word count: 2,659

30	Relationships between improvement in physical function, pain interference, and mental
31	health in patients seeking musculoskeletal care
32	
33	Key Points
34	Question
35	Among patients seeking musculoskeletal care, are improvements in physical function and
36	pain interference associated with meaningful changes in symptoms of anxiety and depression?
37	Findings
38	In this large cohort study, improvement by ≥ 2.3 population-level standard deviations
39	(SD) on PROMIS Physical Function or ≥ 1.2 SD on PROMIS Pain Interference were required for
40	any association with meaningful improvement in anxiety symptoms. Improvements in physical
41	function and pain interference were not associated with meaningfully improved depression
42	symptoms.
43	Meaning
44	Musculoskeletal clinicians and patients cannot assume that exclusively addressing the
45	physical aspect of a musculoskeletal condition will improve symptoms of depression or
46	potentially even anxiety.

1	1
4	٠

47	Abstract
----	----------

48 Importance

49	Among patients seeking care for musculoskeletal conditions, there is mixed evidence
50	regarding whether traditional, structure-based care is associated with improvement in patients'
51	mental health.
52	
53	Objective
54	To determine whether improvements in physical function and pain interference are
55	associated with meaningful improvements in anxiety and depression symptoms among patients
56	seeking musculoskeletal care.
57	
58	Design
59	Retrospective cohort study from June 22, 2015 to February 9, 2022.
60	
61	Setting
62	Orthopedic department of a tertiary care US academic medical center.
63	
64	Participants
65	Consecutive sample of adult patients who presented to the musculoskeletal clinic 4 to 6
66	times during the study period and completed Patient-Reported Outcomes Measurement
67	Information System (PROMIS) measures as standard care at each visit.
68	
69	Exposure

70	PROMIS Physical Function and Pain Interference scores.
71	
72	Main Outcomes and Measures
73	Linear mixed effects models were used to determine whether: 1) PROMIS Anxiety and
74	2) PROMIS Depression scores improved as a function of improved PROMIS Physical Function
75	or Pain Interference scores, after controlling for age, gender, race, and PROMIS Depression (for
76	the Anxiety model) and PROMIS Anxiety (for the Depression model). Clinically meaningful
77	improvement was defined as \geq 3.0 points for PROMIS Anxiety and \geq 3.2 points for PROMIS
78	Depression.
79	
80	Results
81	Among 11,236 patients (mean [SD] age 57 [16] years), 9,706 (86%) were White, and
82	7,218 (64%) were women. Improvements in physical function (β =-0.14 [95% CI -0.15– -0.13],
83	p<0.001) and pain interference (β =0.26 [0.25-0.26], p<0.001) were each associated with
84	improved anxiety symptoms. To reach a clinically meaningful improvement in anxiety
85	symptoms, an improvement of \geq 21 [20-23] PROMIS points on Physical Function or \geq 12 [12-12]
86	points on Pain Interference would be required. Improvements in physical function (β =-0.05 [-
87	$0.060.04$], p< 0.001) and pain interference ($\beta=0.04$ [$0.04-0.05$], p< 0.001) were not associated
88	with meaningfully improved depression symptoms.
89	
90	Conclusions and Relevance
91	In this cohort study, substantial improvements in physical function and pain interference
92	were required for association with any clinically meaningful improvement in anxiety symptoms

- and were not associated with any meaningful improvement in depression symptoms. Among
- 94 patients seeking musculoskeletal care, musculoskeletal clinicians and patients cannot assume that
- addressing physical health will result in improved symptoms of depression or potentially even
- 96 sufficiently improved symptoms of anxiety.

7

97 Introduction

Physical and mental health have a complex bidirectional relationship, and there is a high 98 prevalence of comorbid physical limitations, pain interference (i.e., "consequences of pain on 99 100 relevant aspects of a person's life...including hindered engagement with social, cognitive, emotional, physical, and recreational activities"), and symptoms of anxiety and depression.¹⁻⁷ 101 Clinicians and patients often focus on the treatment of physical concerns, with the hope that 102 mental health related symptoms will naturally improve as physical health improves.^{8,9} This 103 104 practice may in part be related to unique barriers to accessing mental health care, such as societal stigma regarding mental illness, a lack of financial accessibility to mental health care, and a 105 global shortage of mental health professionals.¹⁰⁻¹² Furthermore, the structure of medical training 106 is such that clinicians who subspecialize in treating physical impairments do not routinely 107 108 receive training in addressing the mental health related contributors to and sequelae of physicaland pain-related impairments.^{9,13} 109

110

111 Among patients seeking care for musculoskeletal conditions, there is mixed evidence regarding whether treatment of physical conditions is associated with spontaneous improvement 112 in mental health symptoms.¹⁴⁻¹⁶ Musculoskeletal clinicians also have discrepant opinions 113 regarding whether addressing patients' mental health falls within their professional role.^{9,13,17} 114 Some musculoskeletal clinicians are interested in additional resources to better address mental 115 health within the musculoskeletal care setting,¹⁸ but acquisition of these resources has remained 116 challenging without widespread agreement regarding the need for this investment.^{13,17,19} A better 117 understanding of the relationship between physical health and mental health changes can guide 118 119 musculoskeletal clinicians in: 1) the importance they place on addressing mental health related

120	symptoms as a component of their patient care, and 2) how they counsel patients regarding
121	expectations of their symptom trajectory as their physical impairment is addressed.
122	
123	The goal of this study was to determine whether, among patients seeking musculoskeletal
124	care, self-reported improvements in physical function and pain interference are each associated
125	with meaningful improvements in self-reported symptoms of anxiety and depression. We
126	hypothesized that clinically meaningful improvement in physical function and pain interference
127	would each be associated with meaningfully improved symptoms of anxiety and depression.
128	
129	Methods
130	This retrospective cohort study included patients who presented to a tertiary academic
131	medical center between June 22, 2015 and February 9, 2022. All study data were extracted from
132	the electronic medical record. Institutional review board approval was granted with a waiver of
133	informed consent.
134	
135	Participants
136	All study participants were adults \geq 18 years of age who sought evaluation and
137	management of one or more musculoskeletal conditions at an outpatient clinic of the study
138	institution's orthopedic department. Prior to each clinic evaluation, as standard clinical care, all
139	patients completed Patient-Reported Outcomes Measurement Information System (PROMIS)
140	Computer Adaptive Test (CAT) Anxiety v1.0, Depression v1.0, Physical Function v1.2, and Pain
141	Interference v1.1 measures. Patient visits were excluded from consideration if they were missing
142	scores for any of these measures. To capture time-varying relationships between these PROMIS

9

variables of interest while also maximizing statistical power, our primary cohort included a
consecutive sample of patients who had between four and six eligible clinic visits during the
study period.

146

147 *Exposure and outcome measures*

Our exposures of interest were patients' level of physical function and pain interference over time, which were quantified using their PROMIS CAT Physical Function v1.2 and PROMIS CAT Pain Interference v1.1 scores from each clinic visit, respectively.^{7,20-22} Our outcomes of interest were patients' symptoms of anxiety and depression, which were quantified using their PROMIS CAT Anxiety v1.0 and Depression v1.0 scores from each clinic visit, respectively.^{23,24}

154

PROMIS is a set of self-reported measures that was developed by the National Institutes 155 of Health to measure multiple domains of health, irrespective of a person's underlying medical 156 conditions.²⁵ Scores for each PROMIS measure are normalized to a representative sample of the 157 158 general US population, with a mean score of 50 and standard deviation of 10. A higher score represents "more" of the domain being assessed, such that a high score on PROMIS Physical 159 Function is favorable, whereas a low score on PROMIS Pain Interference, Anxiety, and 160 Depression is favorable. Clinically meaningful effect sizes for symptom improvement were 161 defined as at least 3.0 points for PROMIS Anxiety and 3.2 points for PROMIS Depression, 162 which, based on the literature, are the minimum clinically important differences among patients 163 with musculoskeletal pain that also exceed the standard error of measurement for each PROMIS 164 CAT at the study institution.^{26,27} 165

10

166

167 *Confounding variables*

Patients' age, self-reported gender, and self-reported race were also available in the medical record and were included in all statistical models to account for potential confounding effects.

171

172 *Generalizability analyses*

To assess the generalizability of our findings to patients who may have less chronic and/or less severe musculoskeletal conditions, a second cohort was also analyzed which consisted of a consecutive sample of patients who had only three clinic visits during the six-year study period (as compared to our primary cohort which had four to six visits). These patients were not included in our primary cohort because our goal was to optimally capture time-varying relationships between the measures of interest, so our primary cohort included patients who had more than three visits during the study period.

180

181 Statistical Analysis

Linear mixed effects models were used for all analyses and accounted for both fixed and random effects, which therefore controlled for individual variability in relationships between exposure and outcome measures. Separate models analyzed PROMIS Anxiety and PROMIS Depression. First, we tested for a main effect of PROMIS Physical Function on PROMIS Anxiety and PROMIS Depression, with adjustment for potential confounding effects from age, gender, and race (categorized as White versus non-White because the sample was predominantly White). Because anxiety and depression symptoms are frequently comorbid and highly

11

correlated,²⁸ we also adjusted for PROMIS Depression and PROMIS Anxiety scores as 189 190 covariates in the respective models in order to account for shared variance and to test for effects of physical function specific to either disorder (i.e., specific main effects models). For all 191 192 models, we included a random intercept for each patient to account for individual-level variance (e.g., irregular time interval between visits) and a random intercept for each clinic visit to 193 account for variability in the number of visits. If a model failed to converge even after 194 195 maximizing the number of iterations (i.e., data did not support the model specifications), the random intercept for each clinic visit was dropped. All resulting statistical models converged. 196 Calculated β coefficients of less than 0.06 were considered to indicate negligible relationships 197 because they would represent changes in PROMIS Anxiety or Depression scores that would not 198 reach our predefined minimum clinically meaningful thresholds, even if the greatest possible 199 200 score change in PROMIS Physical Function or Pain Interference was achieved.

201

Next, to focus on patients who, according to our hypothesis, would be most likely to 202 203 achieve clinically meaningful improvement in symptoms of anxiety and depression, we repeated all analyses on the subgroup of patients whose physical function meaningfully improved (i.e., 204 five-point score increase in PROMIS Physical Function) between their first and last clinic visit 205 206 during the study period (Figure S1). While the precise threshold for "meaningful improvement" 207 varies based on the patient population and is not universally agreed upon, five points was chosen as the cutoff value for this study because it corresponds to a moderate effect size change (i.e., 0.5 208 209 standard deviations) and has repeatedly been found to represent a clinically important difference across various orthopedic patient populations.^{26,29,30} 210

12

212	We then repeated all statistical procedures using PROMIS Pain Interference as the
213	exposure measure (i.e., predictor), rather than PROMIS Physical Function. Meaningfully
214	improved pain interference was defined as a five-point decrease in PROMIS Pain
215	Interference. ^{26,31,32} Of note, shared variance between PROMIS Physical Function and Pain
216	Interference was not accounted for in any of the models because identifying the unique
217	contribution from each of these domains was not the purpose of this study.

218

All statistical procedures were also repeated in follow-up tests using the generalizability 219 cohort of patients who only had three clinic visits during the study period (as compared to our 220 primary cohort which had four to six visits). These tests were conducted to examine whether 221 findings from our primary cohort were biased due to specific characteristics of the cohort (e.g., 222 223 potentially more chronic musculoskeletal conditions). The sample size of each cohort was 224 determined by the availability of eligible patients. Given the large available sample size, the relatively small proportion of patients with missing PROMIS scores were excluded from analysis 225 226 based on the study eligibility criteria. P-values were derived from F-tests using Satterthwaite's methods.³³ To account for multiple comparisons, false discovery rate (FDR) corrections were 227 228 applied to all the models. All statistical analyses were conducted using R v4.10 (Vienna, Austria). Linear mixed effects models were conducted using the lmerTest package,³⁴ and FDR 229 corrections were applied using the "p.adjust" function and implementing Benjamini and 230 Hochberg's approach.³⁵ 231

232

233 **Results**

234 Demographics

235	Of 87,490 patients who were evaluated at the study institution during the study period,
236	11,236 were eligible for inclusion in the primary cohort (51,569 total visits) (Figure 1). This
237	cohort had a mean [SD] age 58 [16] years, 9,706 (86%) were White, and 7,218 (64%) were
238	women (Table 1). Demographic characteristics were similar among the subgroup of patients who
239	achieved meaningfully improved physical function and/or pain interference during the study
240	period.
241	
242	Effects on anxiety
243	For the primary cohort after adjusting for age, gender, race, and depression symptoms,
244	improvements in physical function (β =-0.14 [95% CI -0.15 to -0.13], p _{fdr} <0.001) and pain
245	interference (β =0.26 [0.25 to 0.26], p _{fdr} <0.001) were each associated with statistically and
246	meaningfully improved anxiety symptoms (Figure 2, Table 2). To reach a clinically meaningful
247	improvement in anxiety symptoms of at least 3.0 PROMIS Anxiety points, an improvement of
248	\geq 21 [20 to 23] PROMIS points on Physical Function or \geq 12 [12 to 12] points on Pain
249	Interference would be required (calculated as $3.0/\beta$).
250	
251	Among the subgroup of patients who achieved meaningfully improved physical function
252	or pain interference during the study period (of at least five PROMIS points), these relationships
253	were similar (physical function β =-0.11 [-0.13 to -0.09], p _{fdr} <0.001; pain interference β =0.22
254	[0.19 to 0.24], p _{fdr} <0.001) (Table S1). For this subgroup to reach a clinically meaningful
255	improvement in anxiety symptoms, a somewhat greater improvement of \geq 27 [23 to 33] PROMIS
256	points on Physical Function or ≥ 14 [13 to 16] points on Pain Interference would be required.
257	

14

258 Effects on depression

259	For the primary cohort after adjusting for age, gender, race, and anxiety symptoms,
260	improvements in physical function (β =-0.05 [-0.06 to -0.04], p _{fdr} <0.001) and pain interference
261	$(\beta=0.04 \text{ [0.04 to 0.05]}, p_{fdr} < 0.001)$ were each associated with statistically but not meaningfully
262	improved depression symptoms (Figure 2, Table 3). That is, to reach a clinically meaningful
263	improvement in depression symptoms of at least 3.2 PROMIS Depression points, an
264	improvement of ≥ 64 [53 to 80] PROMIS points on Physical Function or ≥ 64 [64 to 80] points on
265	Pain Interference would be required (calculated as $3.2/\beta$), which is not possible based on the
266	actual score ranges of these PROMIS measures.
267	
268	Among the subgroup of patients who achieved meaningfully improved physical function
269	or pain interference during the study period (of at least five PROMIS points), these relationships
270	were unchanged (physical function β =-0.03 [95% CI -0.05 to -0.02], p _{fdr} <0.001; pain interference
271	β =0.04 [0.02 to 0.06], p _{fdr} <0.001) (Table S2). Specifically, the models for this subgroup still
272	suggest that it would not be possible to reach a clinically meaningful improvement in depression
273	symptoms of 3.2 PROMIS points due only to improvements in physical function or pain
274	interference.
275	
276	Generalizability analysis

Compared to our primary cohort of patients who had at least four clinic visits during the
study period, no meaningful differences in baseline characteristics (Table S3) or physical/mental
health relationships (Table S4 and Table S5) were observed in our generalizability cohort of
patients who only had three visits during the six-year study period.

15

281

282 Discussion

Our findings suggest that on a departmental level, improvements in physical function and 283 284 pain interference independently contribute to improvements in anxiety symptoms. Nevertheless, to be associated with clinically meaningful improvements in anxiety symptoms, substantial 285 changes of at least 2.1 physical function standard deviations (of the U.S. population) or at least 286 287 1.2 pain interference standard deviations are required. Furthermore, even drastic improvements 288 in physical function or pain interference are not independently associated with meaningful improvements in depression symptoms. These study findings were consistent, even when 289 considering 1) all patients versus only patients who achieved meaningfully improved physical 290 function or pain interference during the study period, and 2) patients with 4-6 clinic visits versus 291 292 only 3 visits during the study period.

293

There is consistent evidence for the negative impact of *preexisting* anxiety and depression 294 symptoms on physical health related outcomes after musculoskeletal treatment.³⁶⁻³⁹ In contrast, 295 296 this study adds to the emerging literature that elucidates the association between improved physical health and subsequent symptoms of anxiety and depression.¹⁴⁻¹⁶ So far, this emerging 297 298 literature has been mixed. For example, use of mental health related medications and psychotherapy was found to decrease in a cohort of young adults after undergoing hip surgery.¹⁵ 299 whereas symptoms of depression did not meaningfully change after a different cohort of patients 300 underwent surgical or non-surgical treatment for a variety of orthopedic hand conditions.¹⁶ It is 301 possible that some musculoskeletal treatments may improve symptoms of anxiety and depression 302 303 in the short-term for patients who, for instance, may have situational/state (rather than trait)

16

anxiety or depression.⁴⁰ This could especially be true for elective orthopedic procedures which
have a high success rate and are typically only performed on people who are generally healthy at
baseline.

307

However, in contrast to these previous studies, this study was not designed to assess the 308 effectiveness of a *specific* musculoskeletal treatment for a *specific* patient population. Rather, 309 310 this study was designed to identify broad associations between physical and mental health 311 trajectories over a long time period, regardless of a patient's precise musculoskeletal condition(s) or structure-based treatment (e.g., surgery, injection, physical therapy, etc). Our findings suggest 312 that over the long-term, musculoskeletal clinicians should be aware that improvements in 313 physical function and/or pain interference are not necessarily associated with meaningful and 314 315 sustained improvements in symptoms of anxiety or especially depression. Furthermore, because 316 preexisting symptoms of anxiety and depression are associated with worse orthopedic outcomes, we advocate for musculoskeletal clinicians to be equipped with the training and referral 317 318 resources to address mental health as part of patient counseling and the musculoskeletal treatment plan.¹³ 319

320

321 Limitations

Although this study had key strengths including the large sample size and relatively long follow-up duration of over six years, there were also several limitations. First, this was an observational study, which limits the causality we can attribute to the relationships between physical and mental health that we identified. Second, the patient cohort had limited racial diversity. Third, additional sociodemographic and clinical variables were not available to be

327	included as possible confounders (e.g., financial considerations, social support, and medical
328	comorbidities). Based on our generalizability analysis and previous work, ¹⁴ it is unlikely that our
329	findings are specific to patients with more severe, more chronic, more refractory, and/or multiple
330	musculoskeletal conditions (i.e., patients who had at least four clinic visits during the study
331	period). However, it is possible that other patient, diagnosis, and treatment characteristics could
332	influence the relationships we identified (e.g. traumatic versus degenerative conditions, spine
333	versus peripheral joint conditions, definitive versus palliative treatment intent, etc).
334	
335	Conclusion
336	This large cohort study suggests that over the course of several years, improvements in
337	physical function and pain interference may be associated with improvements in symptoms of
338	anxiety but not of depression. Furthermore, substantial improvements in physical function and
339	pain interference are required in order to reach clinically meaningful associations with
340	improvement in anxiety symptoms. Therefore, musculoskeletal clinicians and patients cannot
341	assume that exclusively structure-based treatment of a musculoskeletal condition will necessarily
342	result in improved symptoms of depression or potentially even anxiety. We advocate for
343	clinicians to thoughtfully and intentionally address the mental health related contributors to, and
344	sequelae of, musculoskeletal conditions when counseling patients and creating person-centered
345	treatment plans. Further investigation is needed to identify methods of addressing mental health
346	in the context of musculoskeletal care that are both feasible and effective.

18

347 Acknowledgment

- 348 <u>Author Contributions</u>:
- 349 Dr. Cheng had full access to all the data in the study and takes responsibility for the integrity of
- the data and the accuracy of the data analysis.
- 351 *Concept and design:* Cheng, Calfee, Zhang.
- 352 *Acquisition and analysis:* Cheng, Zhang.
- 353 *Interpretation of data:* All authors.
- 354 *Drafting of the manuscript:* Zhang, Singh, Clements, Cheng.
- 355 *Critical revision of the manuscript for important intellectual content:* All authors.
- 356 *Obtained funding:* Cheng.
- 357 Administrative, technical, or material support: Cheng.
- 358 *Supervision:* Cheng.
- 359
- 360 <u>Conflicts of Interest Disclosures</u>:
- 361 The authors report no conflicts of interest to disclose.
- 362
- 363 <u>Funding/Support</u>:
- This study was funded by the National Institutes of Health (grants K23AR074520 and
- P50MH122351) and the Doris Duke Charitable Foundation.
- 366
- 367 <u>Role of the Funders/Sponsors</u>:

- 368 The funders had no role in the design or conduct of the study; collection, management, analysis,
- 369 or interpretation of the data; preparation, review, or approval of the manuscript; or the decision
- to submit the manuscript for publication.
- 371
- 372 <u>Previous Presentation of Information</u>:
- 373 The findings described in this manuscript have not previously been presented.
- 374
- 375 <u>Additional Contributions</u>:
- 376 (Not applicable.)

20

377 **References**

- 1. Choi KW, Chen CY, Stein MB, et al. Assessment of Bidirectional Relationships Between
- 379 Physical Activity and Depression Among Adults: A 2-Sample Mendelian Randomization
- 380 Study. *JAMA psychiatry*. Apr 1 2019;76(4):399-408.
- doi:10.1001/jamapsychiatry.2018.4175
- 382 2. Hannerz H, Holtermann A, Madsen IEH. Musculoskeletal pain as a predictor for
- depression in the general working population of Denmark. *Scand J Public Health*. Aug
- 384 2021;49(6):589-597. doi:10.1177/1403494819875337
- 385 3. Guglielmo D, Hootman JM, Boring MA, et al. Symptoms of Anxiety and Depression
- Among Adults with Arthritis United States, 2015-2017. *MMWR Morb Mortal Wkly*

387 *Rep.* Oct 5 2018;67(39):1081-1087. doi:10.15585/mmwr.mm6739a2

- 4. Murphy LB, Sacks JJ, Brady TJ, Hootman JM, Chapman DP. Anxiety and depression
- among US adults with arthritis: prevalence and correlates. *Arthritis Care Res (Hoboken)*.
- 390 Jul 2012;64(7):968-76. doi:10.1002/acr.21685
- 5. Demyttenaere K, Bruffaerts R, Lee S, et al. Mental disorders among persons with chronic
- back or neck pain: results from the World Mental Health Surveys. *Pain*. Jun
- 393 2007;129(3):332-342. doi:10.1016/j.pain.2007.01.022
- 394 6. DeVeaugh-Geiss AM, West SL, Miller WC, Sleath B, Gaynes BN, Kroenke K. The
- adverse effects of comorbid pain on depression outcomes in primary care patients: results
- from the ARTIST trial. *Pain medicine (Malden, Mass)*. 2010;11(5):732-741.
- doi:10.1111/j.1526-4637.2010.00830.x
- 398 7. Amtmann D, Cook KF, Jensen MP, et al. Development of a PROMIS item bank to
- measure pain interference. *Pain*. Jul 2010;150(1):173-82. doi:10.1016/j.pain.2010.04.025

400	8.	Borges G, Aguilar-Gaxiola S, Andrade L, et al. Twelve-month mental health service use

- 401 in six countries of the Americas: A regional report from the World Mental Health
- 402 Surveys. *Epidemiology and psychiatric sciences*. Aug 27 2019;29:e53.
- 403 doi:10.1017/s2045796019000477
- 404 9. Vranceanu AM, Beks RB, Guitton TG, Janssen SJ, Ring D. How do Orthopaedic
- 405 Surgeons Address Psychological Aspects of Illness? *The archives of bone and joint*
- 406 *surgery*. 2017;5(1):2-9.
- 10. Weil TP. Insufficient dollars and qualified personnel to meet United States mental health
- 408 needs. *The Journal of nervous and mental disease*. 2015;203(4):233-240.
- 409 doi:10.1097/NMD.00000000000271
- 410 11. Mojtabai R, Olfson M, Sampson NA, et al. Barriers to mental health treatment: results
- from the National Comorbidity Survey Replication. *Psychol Med.* Aug 2011;41(8):1751-
- 412 61. doi:10.1017/s0033291710002291
- 413 12. Appelbaum PS, Parks J. Holding Insurers Accountable for Parity in Coverage of Mental
- 414 Health Treatment. *Psychiatr Serv*. Feb 1 2020;71(2):202-204.
- doi:10.1176/appi.ps.201900513
- 416 13. Cheng AL, Leo AJ, Calfee RP, Dy CJ, Armbrecht MA, Abraham J. What Are
- 417 Orthopaedic Patients' and Clinical Team Members' Perspectives Regarding Whether and
- How to Address Mental Health in the Orthopaedic Care Setting? A Qualitative
- 419 Investigation of Patients With Neck or Back Pain. *Clin Orthop Relat Res.* Dec 8
- 420 2022;doi:10.1097/corr.00000000002513
- 421 14. Beleckas CM, Guattery J, Chamberlain AM, Khan T, Kelly MP, Calfee RP. Using
- 422 Patient-reported Outcomes Measurement Information System Measures to Understand

423		the Relationship Between Improvement in Physical Function and Depressive Symptoms.
424		J Am Acad Orthop Surg. Dec 15 2018;26(24):e511-e518. doi:10.5435/jaaos-d-17-00039
425	15.	Zacharias AJ, Lemaster NG, Hawk GS, et al. Psychological Healthcare Burden Lessens
426		After Hip Arthroscopy for Those With Comorbid Depression or Anxiety. Arthroscopy,
427		sports medicine, and rehabilitation. Aug 2021;3(4):e1171-e1175.
428		doi:10.1016/j.asmr.2021.05.005
429	16.	Crijns TJ, Bernstein DN, Gonzalez R, Wilbur D, Ring D, Hammert WC. Operative
430		Treatment is Not Associated with More Relief of Depression Symptoms than
431		Nonoperative Treatment in Patients with Common Hand Illness. Clin Orthop Relat Res.
432		Jun 2020;478(6):1319-1329. doi:10.1097/corr.0000000000001170
433	17.	Reichman M, Bakhshaie J, Grunberg VA, Doorley JD, Vranceanu AM. What Are
434		Orthopaedic Healthcare Professionals' Attitudes Toward Addressing Patient Psychosocial
435		Factors? A Mixed-Methods Investigation. Clin Orthop Relat Res. Feb 1 2022;480(2):248-
436		262. doi:10.1097/corr.000000000002043
437	18.	Vranceanu AM, Bakhshaie J, Reichman M, Ring D. A Call for Interdisciplinary
438		Collaboration to Promote Musculoskeletal Health: The Creation of the International
439		Musculoskeletal Mental and Social Health Consortium (I-MESH). J Clin Psychol Med
440		Settings. Oct 4 2021;doi:10.1007/s10880-021-09827-8
441	19.	Ring D. Priorities for Advancing Mental and Social Health Among People Presenting for
442		Care of Musculoskeletal Symptoms : International Consortium for Mental and Social
443		Health in Musculoskeletal Care. J Clin Psychol Med Settings. Mar 22
444		2022;doi:10.1007/s10880-022-09865-w

445	20.	Rose M, Bjorner JB, Becker J, Fries JF, Ware JE. Evaluation of a preliminary physical
446		function item bank supported the expected advantages of the Patient-Reported Outcomes
447		Measurement Information System (PROMIS). J Clin Epidemiol. 2008;61(1):17-33.
448		doi:10.1016/j.jclinepi.2006.06.025
449	21.	Hung M, Clegg DO, Greene T, Saltzman CL. Evaluation of the PROMIS physical
450		function item bank in orthopaedic patients. J Orthop Res. Jun 2011;29(6):947-53.
451		doi:10.1002/jor.21308
452	22.	Crins MHP, Terwee CB, Ogreden O, et al. Differential item functioning of the PROMIS
453		physical function, pain interference, and pain behavior item banks across patients with
454		different musculoskeletal disorders and persons from the general population. Qual Life
455		<i>Res.</i> Jan 2 2019;doi:10.1007/s11136-018-2087-x
456	23.	Pilkonis PA, Choi SW, Reise SP, Stover AM, Riley WT, Cella D. Item banks for
457		measuring emotional distress from the Patient-Reported Outcomes Measurement
458		Information System (PROMIS(R)): depression, anxiety, and anger. Assessment. Sep
459		2011;18(3):263-83. doi:10.1177/1073191111411667
460	24.	Schalet BD, Pilkonis PA, Yu L, et al. Clinical validity of PROMIS Depression, Anxiety,
461		and Anger across diverse clinical samples. J Clin Epidemiol. Feb 27
462		2016;doi:10.1016/j.jclinepi.2015.08.036
463	25.	Cella D, Yount S, Rothrock N, et al. The Patient-Reported Outcomes Measurement
464		Information System (PROMIS): progress of an NIH Roadmap cooperative group during
465		its first two years. Med Care. 2007;45(5 Suppl 1):S3-S11.
466		doi:10.1097/01.mlr.0000258615.42478.55

467	26.	Lee AC, Driban JB, Price LL, Harvey WF, Rodday AM, Wang C. Responsiveness and
468		Minimally Important Differences for 4 Patient-Reported Outcomes Measurement
469		Information System Short Forms: Physical Function, Pain Interference, Depression, and
470		Anxiety in Knee Osteoarthritis. J Pain. Sep 2017;18(9):1096-1110.
471		doi:10.1016/j.jpain.2017.05.001
472	27.	Kroenke K, Yu Z, Wu J, Kean J, Monahan PO. Operating characteristics of PROMIS
473		four-item depression and anxiety scales in primary care patients with chronic pain. Pain
474		Med. Nov 2014;15(11):1892-901. doi:10.1111/pme.12537
475	28.	Haug TT, Mykletun A, Dahl AA. The association between anxiety, depression, and
476		somatic symptoms in a large population: the HUNT-II study. Psychosom Med. Nov-Dec
477		2004;66(6):845-851. doi:10.1097/01.psy.0000145823.85658.0c
478	29.	Lee DJ, Calfee RP. The Minimal Clinically Important Difference for PROMIS Physical
479		Function in Patients With Thumb Carpometacarpal Arthritis. Hand (New York, NY). Oct
480		18 2019:1558944719880025. doi:10.1177/1558944719880025
481	30.	Sandvall B, Okoroafor UC, Gerull W, Guattery J, Calfee RP. Minimal Clinically
482		Important Difference for PROMIS Physical Function in Patients With Distal Radius
483		Fractures. J Hand Surg Am. Jun 2019;44(6):454-459.e1. doi:10.1016/j.jhsa.2019.02.015
484	31.	Chen CX, Kroenke K, Stump TE, et al. Estimating minimally important differences for
485		the PROMIS pain interference scales: results from 3 randomized clinical trials. Pain. Apr
486		2018;159(4):775-782. doi:10.1097/j.pain.000000000001121
487	32.	Amtmann D, Kim J, Chung H, Askew RL, Park R, Cook KF. Minimally important
488		differences for Patient Reported Outcomes Measurement Information System pain

- interference for individuals with back pain. *J Pain Res.* 2016;9:251-5.
- 490 doi:10.2147/jpr.s93391
- 491 33. Satterthwaite FE. An Approximate Distribution of Estimates of Variance Components.
- 492 *Biometrics Bulletin*. 1946;2(6):110-114. doi:10.2307/3002019
- 493 34. Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear
- 494 Mixed Effects Models. *Journal of Statistical Software*. 12/06 2017;82(13):1 26.
- 495 doi:10.18637/jss.v082.i13
- 496 35. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and
- 497 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B*
- 498 (*Methodological*). 1995;57(1):289-300. doi:https://doi.org/10.1111/j.2517-
- 499 6161.1995.tb02031.x
- 500 36. Cheng AL, Schwabe M, Doering MM, Colditz GA, Prather H. The Effect of
- 501 Psychological Impairment on Outcomes in Patients With Prearthritic Hip Disorders: A
- 502 Systematic Review and Meta-analysis. *The American journal of sports medicine*.
- 503 2019:363546519883246-363546519883246. doi:10.1177/0363546519883246
- 504 37. Browne JA, Sandberg BF, D'Apuzzo MR, Novicoff WM. Depression is associated with
- early postoperative outcomes following total joint arthroplasty: a nationwide database
- 506 study. *J Arthroplasty*. Mar 2014;29(3):481-3. doi:10.1016/j.arth.2013.08.025
- 507 38. Rasouli MR, Menendez ME, Sayadipour A, Purtill JJ, Parvizi J. Direct Cost and
- 508 Complications Associated With Total Joint Arthroplasty in Patients With Preoperative
- Anxiety and Depression. *J Arthroplasty*. Feb 2016;31(2):533-6.
- 510 doi:10.1016/j.arth.2015.09.015

- 511 39. Harris AB, Marrache M, Puvanesarajah V, et al. Are preoperative depression and anxiety
- associated with patient-reported outcomes, health care payments, and opioid use after
- anterior discectomy and fusion? *Spine J.* Aug 2020;20(8):1167-1175.
- 514 doi:10.1016/j.spinee.2020.03.004
- 515 40. Forrest SJ, Siegert RJ, Krägeloh CU, Landon J, Medvedev ON. Generalizability theory
- 516 distinguishes between state and trait anxiety. *Psychol Assess*. Nov 2021;33(11):1080-
- 517 1088. doi:10.1037/pas0001060

518 Figure Legends

519

520 **Figure 1:** Inclusion flowsheet.

521

522 Abbreviation: PROMIS (Patient-Reported Outcomes Measurement Information System.

- 523 **Figure 2:** Predicted PROMIS mental health scores as a function of PROMIS physical health
- scores.
- 525
- 526 Predicted PROMIS Anxiety (A and B) and Depression (C and D) scores as a function of
- 527 PROMIS Physical Function (A and C) and Pain Interference (B and D) scores across all
- 528 treatment visits, after adjusting for age, gender, race, and shared variance between PROMIS
- 529 Depression and Anxiety. Dashed lines indicate 95% confidence intervals. Note the different Y-
- 530 axis scales in each panel.

29

531 **Table 1:** Patient characteristics.

532

	Primary cohort (N=11,236)	Physical Function Improved ^a (N=1,672)	Pain Interference Improved ^a (N=1,391)
Age, Mean (SD)	58 (16)	57 (16)	58 (15)
Women, N (%)	7,218 (64)	1,067 (64)	928 (67)
Race, N (%)			
White	9,706 (86)	1,455 (87)	1,203 (87)
Black or African American	1,288 (12)	190 (11)	161 (12)
Asian	120 (1)	15 (< 1)	15 (1)
American Indian or Alaska Native	26 (< 1)	1 (< 1)	2 (< 1)
Other Pacific Islander	15 (< 1)	2 (< 1)	1 (< 1)
Multi-racial	39 (< 1)	5 (< 1)	1 (< 1)
Unable to answer	1 (< 1)	0 (0)	1 (< 1)
Declined	41 (< 1)	4 (< 1)	7 (< 1)

^a"Improved" was defined as a five-point favorable change in patients' Patient-Reported

534 Outcomes Measurement Information System (PROMIS) scores from the first to last clinic visit

during the study period (i.e., five-point score increase in PROMIS Physical Function, five-point

score decrease in PROMIS Pain Interference).

30

537 **Table 2:** Models testing for an effect of PROMIS Physical Function and Pain Interference on

538 PROMIS Anxiety.

539

	PROMIS	S Physical Funct	ion	PROMIS Pain Interference		
Predictor	Estimate (β)	95% CI	р	Estimate (β)	95% CI	р
(Intercept)	29.83	29.24 to 30.42	< 0.001	10.45	9.89 to 11.01	< 0.001
PROMIS Physical Function	-0.14	-0.15 to -0.13	< 0.001	NI	NI	NI
PROMIS Pain Interference	NI	NI	NI	0.26	0.25 to 0.26	< 0.001
PROMIS Depression	0.58	0.58 to 0.59	< 0.001	0.54	0.54 to 0.55	< 0.001
Age (per year)	-0.02	-0.02 to -0.01	< 0.001	-0.01	-0.02 to -0.01	< 0.001
Gender (Man)	-0.03	-0.20 to 0.13	0.70	-0.12	-0.28 to 0.03	0.13
Race (White)	-2.23	-2.46 to -2.00	< 0.001	-1.79	-2.01 to -1.57	< 0.001
Visit 2	2.44	2.32 to 2.57	< 0.001	2.29	2.16 to 2.41	< 0.001
Visit 3	3.92	3.79 to 4.05	< 0.001	3.65	3.53 to 3.78	< 0.001
Visit 4	5.68	5.55 to 5.81	< 0.001	5.28	5.15 to 5.41	< 0.001
Visit 5	6.50	6.33 to 6.67	< 0.001	6.05	5.88 to 6.22	< 0.001
Visit 6	7.59	7.32 to 7.85	< 0.001	7.01	6.75 to 7.27	< 0.001
Random Effects						
σ^2	22.95	-	-	21.46	-	-
τ _{00,id}	12.76	-	-	12.15	-	-
ICC	0.36	-	-	0.36	-	-
N _{id}	11,236	-	-	11,236	-	-
Observations	51,569	-	-	51,569	-	-
Marginal R ² / Conditional R ²	0.561 / 0.718	-	-	0.585 / 0.735	-	-

540 Abbreviations: PROMIS (Patient-Reported Outcomes Measurement Information System), NI

541 (Not included in the model), σ^2 (random effect variance), $\tau_{00,id}$ (random intercept for each

542 individual patient), ICC (Intra-Class-Correlation coefficient), N_{id} (number of patients),

543 Observations (number of datapoints for all included patients across all visits).

31

544 **Table 3:** Models testing for an effect of PROMIS Physical Function and Pain Interference on

545 PROMIS Depression.

546

	PROM	IS Physical Func	tion	PROMIS Pain Interference			
Predictor	Estimate (β)	95% CI	р	Estimate (β)	95% CI	р	
(Intercept)	17.34	16.71 to 17.96	< 0.001	12.65	12.08 to 13.22	< 0.001	
PROMIS Physical Function	-0.05	-0.06 to -0.04	< 0.001	NI	NI	NI	
PROMIS Pain Interference	NI	NI	NI	0.04	0.04 to 0.05	< 0.001	
PROMIS Anxiety	0.64	0.64 to 0.65	< 0.001	0.64	0.63 to 0.65	< 0.001	
Age (per year)	-0.01	-0.02 to -0.01	< 0.001	-0.01	-0.01 to -0.01	< 0.001	
Gender (Man)	-0.17	-0.32 to -0.01	0.032	-0.21	-0.36 to -0.06	0.006	
Race (White)	0.61	0.30 to 0.73	< 0.001	0.66	0.48 to 0.88	< 0.001	
Visit 2	-0.20	-0.33 to -0.06	0.005	-0.18	-0.32 to -0.04	0.01	
Visit 3	-0.29	-0.43 to -0.15	< 0.001	-0.27	-0.41 to -0.13	< 0.001	
Visit 4	-0.46	-0.61 to -0.31	< 0.001	-0.44	-0.59 to -0.29	< 0.001	
Visit 5	-0.45	-0.64 to 0.26	< 0.001	-0.42	-0.61 to -0.23	< 0.001	
Visit 6	-0.26	-0.55 to -0.03	0.079	-0.24	-0.53 to -0.06	0.11	
Random Effects							
σ^2	26.39	-	-	26.40	-	-	
$\tau_{00,id}$	9.38	-	-	9.51	-	-	
ICC	0.26	-	-	0.26	-	-	
N _{id}	11,236	-	-	11,236	-	-	
Observations	51,569	-	-	51,569	-	-	
Marginal R ² / Conditional R ²	0.514 / 0.641	-	-	0.511 / 0.641	-	-	

547 Abbreviations: PROMIS (Patient-Reported Outcomes Measurement Information System), NI

548 (Not included in the model), σ^2 (random effect variance), $\tau_{00,id}$ (random intercept for each

549 individual patient), ICC (Intra-Class-Correlation coefficient), N_{id} (number of patients),

550 Observations (number of datapoints for all included patients across all visits).

32

551 **Table S1:** Effect of PROMIS Physical Function and Pain Interference on PROMIS Anxiety,

among patients with clinically improved physical function or pain interference.

553

	PROMI	S Physical Funct	tion	PROMIS Pain Interference			
Predictor	Estimate (β)	95% CI	р	Estimate (β)	95% CI	р	
(Intercept)	25.82	24.32 to 27.32	< 0.001	9.11	6.04 to 12.18	< 0.001	
PROMIS Physical Function	-0.11	-0.13 to -0.09	< 0.001	NI	NI	NI	
PROMIS Pain Interference	NI	NI	NI	0.22	0.19 to 0.24	< 0.001	
PROMIS Depression	0.65	0.63 to 0.66	< 0.001	0.63	0.61 to 0.65	< 0.001	
Age (per year)	-0.02	-0.03 to -0.01	< 0.005	-0.02	-0.03 to 0.001	0.008	
Gender = Man	0.17	-0.26 to 0.61	0.432	-0.20	-0.66 to 0.26	0.39	
Race = White	-2.38	-3.00 to -1.76	< 0.001	-1.50	-2.13 to -0.86	< 0.001	
Visit 2	2.68	2.32 to 3.04	< 0.001	2.30	-1.25 to 5.84	0.20	
Visit 3	3.58	3.22 to 3.94	< 0.001	2.91	-0.63 to 6.46	0.11	
Visit 4	5.14	4.76 to 5.52	< 0.001	4.60	1.05 to 8.14	0.011	
Visit 5	6.12	5.62 to 6.62	< 0.001	5.59	2.02 to 9.15	0.002	
Visit 6	7.34	6.57 to 8.12	< 0.001	6.44	2.82 to 10.06	< 0.001	
Random Effects							
σ^2	25.80	-	-	25.62	-	-	
$\tau_{00,id}$	12.93	-	-	11.06	-	-	
τ _{00,visit}	NI	-	-	1.61			
ICC	0.33	-	-	0.33	-	-	
N _{id}	1,672	-	-	1,391	-	-	
N _{visit}	NI	-	-	6			
Observations	7,652	-	-	6,366	-	-	
Marginal R ² / Conditional R ²	0.532 / 0.688	-	-	0.524 / 0.681	-	-	

⁵⁵⁴ "Clinically improved" physical function or pain interference was defined as a five-point

555 favorable change in patients' Patient-Reported Outcomes Measurement Information System

556 (PROMIS) scores from the first to last clinic visit during the study period (i.e., five-point score

557 increase in PROMIS Physical Function, five-point score decrease in PROMIS Pain Interference).

558

559 Abbreviations: PROMIS (Patient-Reported Outcomes Measurement Information System), NI

560 (Not included in the model), σ^2 (random effect variance), $\tau_{00,id}$ (random intercept for each

- individual patient), $\tau_{00,visit}$ (random intercept for each clinic visit), ICC (Intra-Class-Correlation
- coefficient), N_{id} (number of patients), N_{visit} (number of clinic visits), Observations (number of
- 563 datapoints for all included patients across all visits).

33

564 **Table S2:** Effect of PROMIS Physical Function and Pain Interference on PROMIS Depression,

among patients with clinically improved physical function or pain interference.

566

	PROM	S Physical Func	tion	PROMIS Pain Interference			
Predictor	Estimate (β)	95% CI	р	Estimate (β)	95% CI	р	
(Intercept)	16.13	14.60 to 17.65	< 0.001	13.10	9.71 to 16.49	< 0.001	
PROMIS Physical Function	-0.03	-0.05 to -0.02	< 0.001	NI	NI	NI	
PROMIS Pain Interference	NI	NI	NI	0.04	0.02 to 0.06	< 0.001	
PROMIS Anxiety	0.65	0.63 to 0.67	< 0.001	0.64	0.62 to 0.66	< 0.001	
Age (per year)	0.00	-0.01 to 0.01	0.70	-0.01	-0.02 to 0.01	0.34	
Gender (Man)	-0.56	-0.97 to -0.16	0.005	-0.04	-0.49 to 0.42	0.80	
Race (White)	0.26	-0.32 to 0.84	0.53	0.29	-0.35 to 0.93	0.51	
Visit 2	-0.18	-0.55 to 0.18	0.33	-0.09	-4.18 to 4.01	0.97	
Visit 3	-0.07	-0.45 to 0.30	0.70	-0.08	-4.17 to 4.01	0.97	
Visit 4	-0.19	-0.60 to 0.21	0.35	-0.10	-4.19 to 4.00	0.96	
Visit 5	-0.43	-0.95 to 0.09	0.11	-0.44	-4.55 to 3.67	0.83	
Visit 6	-0.82	-1.62 to -0.02	0.045	-0.38	-4.54 to 3.78	0.86	
Random Effects							
σ^2	26.63	-	-	26.14	-	-	
τ _{00,id}	10.42	-	-	10.92	-	-	
τ _{00,visit}	NI	-	-	2.16			
ICC	0.28	-	-	0.33	-	-	
N _{id}	1,672	-	-	1,391	-	-	
N _{visit}	NI	-	-	6			
Observations	7,625	-	-	6,366	-	-	
Marginal R^2 / Conditional R^2	0.502 / 0.642	-	-	0.468 / 0.646	-	-	

⁵⁶⁷ "Clinically improved" physical function or pain interference was defined as a five-point

568 favorable change in patients' Patient-Reported Outcomes Measurement Information System

569 (PROMIS) scores from the first to last clinic visit during the study period (i.e., five-point score

570 increase in PROMIS Physical Function, five-point score decrease in PROMIS Pain Interference).

571

572 Abbreviations: PROMIS (Patient-Reported Outcomes Measurement Information System), NI

573 (Not included in the model), σ^2 (random effect variance), $\tau_{00,id}$ (random intercept for each

individual patient), $\tau_{00,visit}$ (random intercept for each clinic visit), ICC (Intra-Class-Correlation

575 coefficient), N_{id} (number of patients), N_{visit} (number of clinic visits), Observations (number of

576 datapoints for all included patients across all visits).

34

577 **Table S3:** Patient characteristics of the generalizability cohort who had three clinic visits during

578 the study period.

579

	Generalizability cohort
	(N=11,501)
Age, Mean (SD)	56 (16)
Women, N (%)	6,966 (61)
Race, N (%)	
White	9,864 (86)
Black or African American	1,342 (12)
Asian	171 (2)
American Indian or Alaska Native	18 (< 1)
Other Pacific Islander	12 (< 1)
Multi-racial	47 (< 1)
Unable to answer	5 (< 1)
Declined	42 (< 1)

35

581 **Table S4:** Effect of PROMIS Physical Function and Pain Interference on PROMIS Anxiety in

the generalizability cohort.

583

	PROMIS Physical Function			PROMIS Pain Interference		
Predictor	Estimate (β)	95% CI	р	Estimate (β)	95% CI	р
(Intercept)	31.43	23.86 to 39.0	< 0.001	10.20	3.14 to 17.27	< 0.001
PROMIS Physical Function	-0.16	-0.16 to -0.15	< 0.001	NI	NI	NI
PROMIS Pain Interference	NI	NI	NI	0.27	0.26 to 0.28	< 0.001
PROMIS Depression	0.58	0.58 to 0.59	< 0.001	0.55	0.54 to 0.56	< 0.001
Age (per year)	-0.02	-0.03 to -0.02	< 0.001	-0.02	-0.02 to -0.01	< 0.001
Gender (Man)	-0.38	-0.55 to -0.20	< 0.001	-0.52	-0.68 to -0.35	0.017
Race (White)	-2.16	-2.40 to -1.92	< 0.001	-1.72	-1.95 to -1.48	< 0.001
Visit 2	2.90	-7.76 to 13.56	0.59	2.66	-7.29 to 16.21	0.60
Visit 3	5.57	-5.09 to 16.23	0.31	5.09	-4.86 to 15.05	0.32
Random Effects						
σ^2	22.58	-	-	21.27	-	-
τ _{00,id}	13.82	-	-	12.86	-	-
τ _{00,visit}	14.78			12.89		
ICC	0.56	-	-	0.55	-	-
N _{id}	11,501	-	-	11,501	-	-
N _{visit}	3	-	-	3	-	-
Observations	34,503	-	-	34,503	-	-
Marginal R^2 / Conditional R^2	0.487 / 0.774	-	-	0.518/0.782	-	-

Abbreviations: PROMIS (Patient-Reported Outcomes Measurement Information System), NI

(Not included in the model), σ^2 (random effect variance), $\tau_{00,id}$ (random intercept for each

individual patient), $\tau_{00,visit}$ (random intercept for each clinic visit), ICC (Intra-Class-Correlation

587 coefficient), N_{id} (number of patients), N_{visit} (number of clinic visits), Observations (number of

588 datapoints for all included patients across all visits).

589

590 In patients who only had three visits during the study period, after adjusting for age,

gender, race, and depression symptoms, improvements in physical function (β =-0.16 [95% CI -

592 0.16 to -0.15], $p_{fdr} < 0.001$) and pain interference ($\beta = 0.27$ [0.26 to 0.28], $p_{fdr} < 0.001$) were each

associated with statistically and meaningfully improved anxiety symptoms (Table S4). To reach

a clinically meaningful improvement in anxiety symptoms of at least 3.0 PROMIS Anxiety

points, an improvement of \geq 19 [19 to 20] PROMIS points on Physical Function or \geq 11 [11 to 12]

points on Pain Interference would be required (calculated as $3.0/\beta$).

37

597 **Table S5:** Effect of PROMIS Physical Function and Pain Interference on PROMIS Depression

598 in the generalizability cohort.

599

	PROMIS	S Physical Functi	on	PROMIS Pain Interference			
Predictor	Estimate (β)	95% CI	р	Estimate (β)	95% CI	р	
(Intercept)	14.53	12.73 to 16.33	0.007	11.13	9.83 to 12.43	< 0.001	
PROMIS Physical Function	-0.04	-0.05 to -0.03	< 0.001	NI	NI	NI	
PROMIS Pain Interference	NI	NI	NI	0.03	0.02 to 0.04	< 0.001	
PROMIS Anxiety	0.67	0.66 to 0.68	< 0.001	0.67	0.66 to 0.68	< 0.001	
Age (per year)	0.00	-0.01 to 0.00	0.29	0.00	-0.01 to 0.00	0.86	
Gender (Man)	-0.03	-0.20 to 0.14	0.74	-0.07	-0.24 to 0.10	0.41	
Race (White)	0.49	0.25 to 0.72	< 0.001	0.51	0.27 to 0.75	< 0.001	
Visit 2	-0.16	-2.48 to 2.16	0.89	-0.16	-1.74 to 1.42	0.84	
Visit 3	-0.66	-2.98 to 1.66	0.58	-0.67	-2.25 to 0.92	0.41	
Random Effects							
σ^2	27.55	-	-	27.57	-	-	
τ _{00,id}	10.82	-	-	10.88	-	-	
$\tau_{00,visit}$	0.70			0.32			
ICC	0.29	-	-	0.29	-	-	
N _{id}	11,501	-	-	11,501	-	-	
N _{visit}	3	-	-	3			
Observations	34,503	-	-	34,503	-	-	
Marginal R^2 / Conditional R^2	0.514 / 0.657	-	-	0.515 / 0.655	-	-	

600 Abbreviations: PROMIS (Patient-Reported Outcomes Measurement Information System), NI

601 (Not included in the model), σ^2 (random effect variance), $\tau_{00 id}$ (random intercept for each

602 individual patient), $\tau_{00,visit}$ (random intercept for each clinic visit), ICC (Intra-Class-Correlation

603 coefficient), N_{id} (number of patients), N_{visit} (number of clinic visits), Observations (number of

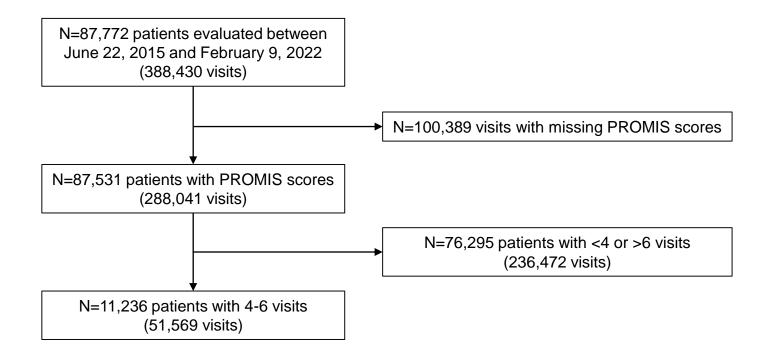
604 datapoints for all included patients across all visits).

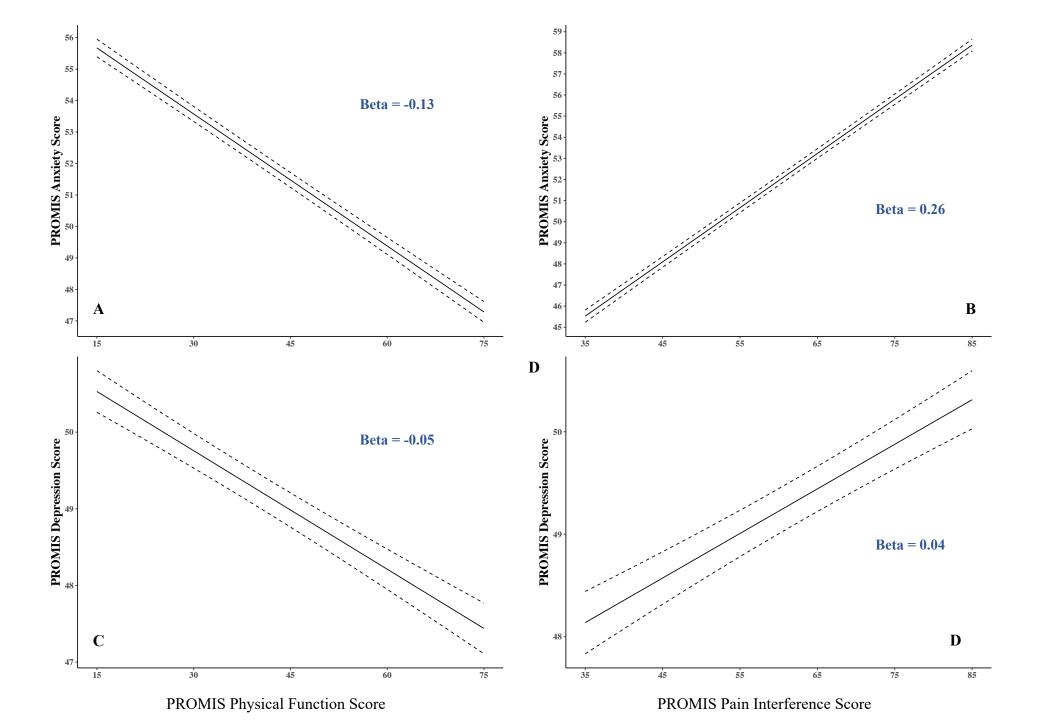
605

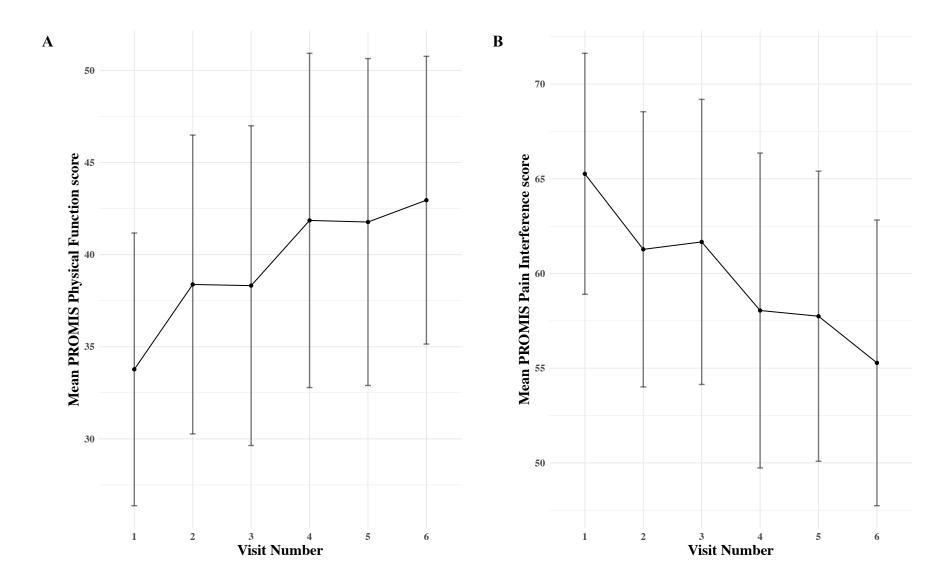
After adjusting for age, gender, race, and anxiety symptoms, improvements in physical

607 function (β=-0.04 [-0.05 to -0.03], p_{fdr} <0.001) and pain interference (β=0.03 [0.02 to 0.04],

 $p_{fdr} < 0.001$) were associated with statistically but not meaningfully improved depression


symptoms (Table S5). That is, to reach a clinically meaningful improvement in depression


symptoms of at least 3.2 PROMIS Depression points, an improvement of \geq 80 [64 to 107]


611 PROMIS points on Physical Function or ≥ 107 [80 to 160] points on Pain Interference would be

- required (calculated as $3.2/\beta$), which is not possible based on the actual score ranges of these
- 613 PROMIS measures.

- **Figure S1.** PROMIS physical health score changes among patients who achieved meaningful
- 615 improvement.
- 616
- 617 Mean PROMIS (A) Physical Function (N=1,672) and (B) Pain Interference (N=1,391) scores
- over time among patients who achieved meaningfully improved physical function or pain
- 619 interference (of at least five PROMIS points) between their first and last clinic visit during the
- 620 study period. Error bars represent one standard deviation.
- 621 Abbreviation: PROMIS (Patient-Reported Outcomes Measurement Information System).

