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Abstract  

Variability in the relationship of tau-based neurofibrillary tangles (T) and degree of 

neurodegeneration (N) in Alzheimer’s Disease (AD) is likely attributable to the non-specific 

nature of N, which is also modulated by such factors as other co-pathologies, age-related 

changes, and developmental differences. We studied this variability by partitioning patients 

within the Alzheimer’s continuum into data-driven groups based on their regional T-N 

dissociation, which reflects the residuals after the effect of tau pathology is “removed”. We found 

six groups displaying distinct spatial T-N mismatch and thickness patterns despite similar tau 

burden. Their T-N patterns resembled the neurodegeneration patterns of non-AD groups 

partitioned on the basis of z-scores of cortical thickness alone and were similarly associated 

with surrogates of non-AD factors. In an additional sample of individuals with antemortem 

imaging and autopsy, T-N mismatch was associated with TDP-43 co-pathology. Finally, T-N 

mismatch training was then applied to a separate cohort to determine the ability to classify 

individual patients within these groups. These findings suggest that T-N mismatch may provide 

a personalized approach for determining non-AD factors associated with resilience/vulnerability 

to Alzheimer’s disease.  
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Introduction  
 

Alzheimer’s disease (AD) is heterogenous in the age of onset, course, cognitive and behavioral 

phenotype, and the presence of underlying co-pathology1–4. In particular, concomitant 

pathologies are present in the vast majority of individuals with AD, such as cerebrovascular 

disease and/or other degenerative pathologies, including TAR DNA-binding protein 43 (TDP-43) 

and alpha-synuclein proteinopathies 2,3,5,6. Alzheimer’s also occurs in the context of the aging 

brain for which there is variability in age-related changes that also may influence AD clinical 

presentation and rate of decline.  Resilience factors also appear to influence outcomes and 

degree of pathology associated with clinical status7–10.  This heterogeneity, as well as a lack of 

well-validated markers of these non-AD influences, is a substantial challenge in the 

development and application of AD targeting therapeutics. As we appear to be entering a new 

age of disease-modifying therapies, there remains debate about who might benefit most from 

these interventions relative to their associated risk and to what extent specifically targeting AD-

related pathology can be expected to slow decline in the context of common co-pathologies. 

Precision medicine approaches that categorize individuals with regard to both AD and non-AD 

contributions of cognitive impairment are essential as we move therapies into practice, as well 

as for stratification in intervention studies to advance these therapeutics.   

The accumulation of amyloid plaques (Aβ) and tau neurofibrillary tangles (NFT) are the two 

hallmark pathological features of AD. A long history of postmortem studies11–13 and, more 

recently, work with PET imaging have supported the hypothesis that NFTs are more tightly 

linked to downstream neurodegeneration than amyloid plaques14–18. Thus, expected 

neurodegeneration due to AD may be largely explained by the local presence and amount of tau 

pathology to a first approximation.  As such, measures of tau-based NFTs may provide a metric 

of the degree to which AD is contributing to neurodegeneration relative to other factors in any 

individual patient. 

This idea is implicit in the National Institute on Aging and Alzheimer’s Association (NIA-AA) 

recently proposed AT(N) research framework19, which assigns individuals based on the 

dichotomous presence or absence of amyloid plaques (A), aggregated tau (T) and 

neurodegeneration (N). Given assumptions about the orderly evolution of AD from A→T→N, N 

in the absence of T pathology is assumed to represent non-AD pathophysiology regardless of 
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the presence of amyloid.  However, the AT(N) framework does not account for either continuous 

or spatially varied T-N relationships. Indeed, neurodegeneration is not specific to tau as other 

pathologies also contribute to neurodegeneration5,20. Brain resilience due to protective factors 

may also influence the relationship of T to N7–10. Thus, a measure of spatial and continuous 

variation of the T-N relationship may be a valuable complement to the AT(N) framework.  

In the current work, we exploited the non-specific nature of neurodegeneration to account for 

non-AD processes by quantifying the degree and spatial pattern of deviation from the expected 

level of N for a given level of T, assuming a linear relationship. In essence, we are “regressing 

out” the effects of AD on brain structure which should result in patterns of relative atrophy 

associated with these non-AD factors.  In other words, regional patterns of T-N discordance 

may reveal groups associated with specific potential co-pathologies (e.g. greater medial 

temporal atrophy with concomitant TDP-43) or types of resilience. To capture these patterns, we 

employed data-driven clustering based on regional T-N mismatch. We hypothesized that 

“vulnerable” groups with more N than expected for T would likely be associated with non-tau 

pathologies. Resilient groups on the other hand may be associated with protective factors, 

including greater brain reserve, such that they have less N than expected for T.  

The current analysis builds on our prior results21 for development of a scalar T-N mismatch 

metric in a set of amyloid positive (A+) participants using tau PET for measuring T and gray 

matter thickness from MRI for measuring N (Das et al., 2021), which we also explored using 18F-

fluorodeoxyglucose PET as the N measure22. We previously found meaningful associations 

between a T-N mismatch metric and a number of factors, including age, white matter 

hyperintensity burden and cognition. However, specific drivers of regional T-N mismatch are still 

yet to be determined and requires additional studies to more closely link with specific non-AD 

processes. The current paper takes further steps enumerated below to understand T-N 

mismatch and explore its underlying factors through both in vivo and ex vivo analyses.  

(1) Our hypothesis is that regional T-N mismatch identifies vulnerability and resilience driven by 

non-AD factors that are common in AD and non-AD patients. We therefore compared the 

groups of T-N mismatch to amyloid negative (A-) symptomatic patients partitioned into data-

driven groups on the basis of relative cortical thickness, using control referenced z-scores (NZ 

groups). As T-N mismatch can be conceptualized as reflecting non-AD neurodegeneration after 

removing the effect of AD, we predicted that we would find spatially corresponding NZ groups. (2) 

We further predicted that associations with surrogates of non-AD factors (e.g. white matter 

hyperintensities, advanced or slowed brain aging, TDP-43 pathology) would be associated with 
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T-N groups and that similar patterns of associations would be found in corresponding NZ groups. 

(3) Given comorbidities may synergistically interact with AD and contribute to cognitive 

impairment, we predicted that T-N groups would also differ in longitudinal cognitive decline. (4) 

Finally, to evaluate the potential application of this approach on individual classification in the 

spirit of “precision medicine”, we determined group membership of individuals in a second 

cohort.  

 

Results 
 

T-N groups were distinct despite similar AD severity  

Based on T-N residuals in 104 gray matter regions, we grouped 184 A+ symptomatic 

(MCI/dementia) participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) using 

hierarchical clustering23. Six T-N groups were determined to be optimal using the elbow 

method24 and dendrogram structure. The clinical characteristics of T-N groups are described in 

Table I. These groups differed in age, proportion with mild cognitive impairment (MCI) versus 

AD dementia diagnosis, and degree of cognitive impairment. The groups did not differ in inferior 

temporal (IT) mean 18F-flortaucipir uptake (P=0.329), a surrogate for AD severity25,26. Average 

maps of T-N linear regression residuals across brain regions of interest (ROIs) are represented 

visually for the six groups in Figure 1. The group with the largest number of participants (n=94) 

displayed low overall residuals; as such, we labeled this group “canonical”. Two groups with 

greater neurodegeneration than expected given their level of tau (N>T, negative residuals) were 

labeled “vulnerable.” One of these groups had N>T mostly in temporal/limbic regions, which we 

labeled as “limbic vulnerable” (n=25); the other group (n=18) displayed widespread N>T 

throughout the cortex encompassing both limbic and neocortical regions and was labeled 

“diffuse vulnerable”. In addition, there were two T-N groups with less neurodegeneration than 

expected given the level of tau (N<T, positive residuals) and we labeled them as “resilient.” One 

(n=16) displayed N<T in the temporal regions with extension to temporal-occipital cortex was 

denoted as posterior-temporal occipital (PTO) resilient. We labeled the other group (n=26) 

showing distinct N<T in lateral and medial temporal cortex and parts of prefrontal cortex as 

anterior-temporal (AT) resilient. A final small group (n=5) with N<T especially along the motor 

cortex, but N>T in temporal/limbic region, was labeled “mixed.”  
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To determine in a more granular manner whether the T-N groups differed in tau burden, we 

assessed regional tau SUVR in representative limbic and cortical regions. Figure S1 further 

demonstrates that the groups did not differ in 18F-flortaucipir uptake across limbic/cortical 

regions (P’s>0.05). However, the between-group thickness covaried with regional tau, age, and 

sex differed in the same representative regions, supporting the contention of their “mismatch” 

status (Figure S1). 

 

 

 

 

 

 

 

 

 

Table I. Characteristics of distinct groups via T-N mismatch clustering for 184 A+ symptomatic 
patients. Overall group effects are tested using the Kruskal-Wallis test for categorical variables 
(sex, MCI/Dementia) and linear regression for continuous variables (age, years of education, 
MMSE, CDRSB and inferior temporal (IT) tau SUVR). The baseline cognitive scores (Mini-
Mental State Exam (MMSE)27, Clinical Dementia Rating Sum of boxes (CDRSB)28) and IT Tau 
SUVR was compared with age, sex and years of education as covariates. The mean (SD) is 
shown for age, years of education, MMSE, CDRSB and IT tau SUVR. Pairwise comparisons of 
these variables between T-N groups were obtained. Only significant pairwise comparisons 
between T-N groups the Group1 (canonical) were marked in the table. P-values were adjusted 
by Bonferroni multiple comparison correction (*P<0.05, **P<0.01, ***P<0.001).  

Group 
(n) 

Description Age Sex 
(F/M) 

Diagnosis 
(MCI/Dem) 

Educ 
(SD) 

MMSE 
(SD) 

CDRSB 
(SD) 

IT Tau 
SUVR 
(SD) 

Group1 
(94) 

Canonical 76.4 
(7.3) 

44/50 59/35 15.6 
(2.5) 

25.8 
(3.3) 

2.97 
(2.1) 

1.48 
(0.41) 

Group2 
(25) 

Limbic 
Vulnerable 

80.2 
(6.8) 

11/14 8/17 16.6 
(2.5) 

  23.1** 
(3.9) 

   6.21*** 
(4.4) 

1.48 
(0.35) 

Group3 
(18) 

Diffuse 
Vulnerable 

79.4 
(9.2) 

3/15 5/13 15.5 
(3.1) 

 23.4* 
(5.2) 

4.62 
(3.2) 

1.42 
(0.44) 

Group4 
(16) 

Posterior-
Temporal 
Occipital  
Resilient 

 70.1* 
(7.9) 

12/4 12/4 15.9 
(2.7) 

 26.4 
(3.9) 

3.50 
(3.5) 

1.54 
(0.43) 
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Group5 
(26) 

Anterior-
Temporal 
Resilient 

73.1 
(7.8) 

9/17 22/4 16.4 
(2.7) 

26.4 
(3.8) 

1.70 
(1.5) 

1.39 
(0.3) 

Group6 
(5) 

Mixed 73.7 
(6.6) 

2/3 2/3 15.0 
(3.0) 

25.0 
(4.6) 

2.10 
(1.7) 

1.66 
(0.39) 

Group 
Diff. 

-- P<0.001 P=0.024 P<0.001 P=0.435 P<0.001 P<0.001 P=0.329 

 

 

 

Figure 1. Average ROI-wise residual maps representing spatial T-N relationships for identified
T-N groups among A+ symptomatic patients from ADNI via T-N mismatch: canonical (close to 0
residuals, N~T), vulnerable (negative residuals, N>T), resilient (positive residuals, N<T).  

 

 

Clustering A- symptomatic patients based on patterns of neurodegeneration alone

reveals groups similar to those from T-N mismatch. 

6 

 

ed 
 0 

ne 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 15, 2023. ; https://doi.org/10.1101/2023.02.12.23285594doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.12.23285594


7 

 

We also performed data-driven clustering of 159 MCI/dementia ADNI participants who were A- 

using regional z-scores of cortical thickness relative to A- cognitively normal adults, referred to 

as ‘NZ clustering’.  The same ROIs were used as for the analogous T-N mismatch-based 

clustering. We determined that five NZ groups were optimal in this case. Notably, the NZ group 

patterns of average z-score thickness resembled the residual patterns of the vulnerable T-N 

groups (Figure 2A). In particular, we found a group (n=10) that had more negative z-scores in 

limbic regions, a pattern that resembled the T-N limbic vulnerable group, and we therefore 

labeled it as “limbic atrophy”. Two of the groups displayed relatively diffuse low z-scores that 

corresponded to the T-N diffuse vulnerable group and were combined (“diffuse atrophy”, n=27; 

see Figure 2A) for additional analyses given their similar patterns (see Figure S2 for display of 

thickness map for these two groups separately). The largest group (n=98) displayed minimal 

evidence of atrophy based on the control-referenced z-scores, which we labeled it as “no-

atrophy”. Finally, a group (n=24) with more positive z-scores of cortical thickness in posterior 

temporal and occipital regions had a very similar pattern to the residual map of the T-N PTO 

resilient group, and was labeled as “posterior-temporal occipital (PTO) increased thickness”.  

Overall, the general overlap of spatial patterns between the residuals in the T-N mismatch 

groups in A+ and the cortical thickness in the NZ groups in A- (Figure 2A) is consistent with the 

notion that T-N residuals reflect non-AD related phenomenology which may be present 

irrespective of amyloid status. It is not surprising that the NZ group had less representation of 

“resilient” groups, as in symptomatic individuals without AD, there is no defined dominant 

neuropathology against which resilience can be measured. Aligning with the T-N groups, NZ 

groups also varied in clinical characteristics in a similar fashion. For example, the PTO 

increased thickness group was younger than the no-atrophy group, and the limbic atrophy group 

showed poorer baseline cognition (Table S1). The NZ groups did not differ in inferior temporal 

mean 18F-flortaucipir uptake values, which were generally at a level below a typical threshold for 

“positive” T26. 

Next, we performed voxel-wise comparison of cortical thickness of each group from both the T-

N and NZ clustering results with 137 A- cognitively normal participants from ADNI. We predicted 

that patterns of cortical thinning would reflect, to a large extent, regional aspects of T-N 

mismatch patterns overlaid on typical AD effects in the T-N groups. Figure 2B shows voxels with 

significant differences in thickness (PFWER < 0.05), controlling for age and sex, from cognitively 

normal individuals for both T-N and NZ groups. As expected, the T-N canonical group displayed 

atrophy in the medial temporal lobe and posterior neocortical regions, corresponding to a 
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“typical” pattern of AD pathology. As expected given how it was derived, the NZ no-atrophy 

group did not differ from normal controls in cortical thickness. Alternatively, cortical thinning 

relative to controls was strikingly similar between T-N vulnerable and NZ atrophy groups, 

although somewhat more extensive in the former likely stemming from the concomitant 

presence of AD-related neurodegeneration. The T-N limbic vulnerable and NZ limbic atrophy 

groups both displayed prominent atrophy in temporal/limbic regions, while the T-N diffuse 

vulnerable and NZ diffuse atrophy groups displayed more widespread atrophy throughout the 

temporal, parietal/occipital and frontal lobes. The T-N mixed group was excluded for voxel-wise 

comparison due to its small size. The T-N resilient groups and NZ  PTO increased thickness 

group did not display thickness differences with cognitively normal controls. 

We also directly compared cortical thickness between groups with the respective canonical or 

no-atrophy groups in both T-N and A- NZ groups respectively (Figure S3). T-N vulnerable and NZ 

atrophy groups displayed significant reduction in cortical thickness relative to the respective T-N 

canonical or NZ no-atrophy group whereas the T-N resilient and NZ PTO increased thickness 

groups displayed regions of increased cortical thickness. No significant voxel-wise differences 

were observed for any of these groups in the opposite direction (vulnerable/atrophy > 

canonical/no atrophy, resilient/increased thickness < canonical/no-atrophy).  

 

T-N groups were modulated by specific non-AD factors 

We sought to explore factors that may influence the degree of neurodegeneration beyond AD 

and, thus, may drive patterns seen in the resilient versus vulnerable groups. We compared 

these possible modulators in both T-N groups and NZ groups, reasoning that if these groups 

represent the presence of concomitant non-AD pathologies, they should show a similar 

association with measures suggestive of these pathologies (e.g white matter hyperintensities 

associated with cerebrovascular disease).   

In our prior work21, we demonstrated that relative mismatch of T and N was linked to age, as 

age is associated with atrophy in the absence of AD pathology. However, brain aging varies 

across individuals, and there are some that exhibit accelerated brain age changes for their 

chronological age and those that have younger appearing brains29,30. We reasoned that 

accelerated or deaccelerated brain age may be a source of vulnerability or resilience beyond 

chronological age and would have a similar influence of T-N and NZ groups.   
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To assess this, we used a recently published machine learning based algorithm31 that uses MRI 

scans to infer a measure of brain age that is specifically formulated to be orthogonal to AD-

related brain changes. We calculated “brain age gap,” which is the difference between the MRI-

based brain age prediction and chronological age. Figure 2C plots the “brain age gap”, defined 

as the difference between the MRI-based brain age prediction and chronological age, for the T-

N and NZ groups. In the T-N groups, both vulnerable subgroups were associated with 

significantly greater brain age gap (brain age > chronological age) than the canonical subgroup 

(p<0.001 for limbic vulnerable, p<0.01 for diffuse vulnerable), while the PTO resilient group 

tended to have lower brain age gap than the canonical group, although the effect did not survive 

multiple comparisons correction. Brain age gap in both NZ atrophy groups similarly 

demonstrated a significantly greater brain age gap compared to the non-atrophy group 

(p<0.001). The similarity of these patterns between the T-N and NZ groups supports the idea 

that accelerated or decelerated brain aging is a factor that drives T-N mismatch which could 

also be present in non-AD symptomatic cases.   

Another potential modulator of N outside of T is the presence of cerebrovascular disease. To 

determine whether our T-N groups were associated with more or less vascular disease relative 

to the T-N canonical group, we assessed the volume of white matter hyperintensities (WMH), a 

surrogate for cerebrovascular disease32 with age included as a covariate (Figure 2D), as well as 

number of vascular risk factors32 (Figure 2E). We found that the T-N diffuse vulnerable group 

had significantly higher WMH volume compared to the T-N canonical group (P<0.001), and was 

also associated with greater number of vascular risk factors (P<0.01) than the canonical group 

(Figure 2D, E). Conversely, the T-N AT resilient group tended to have lower WMH volume 

compared to the T-N canonical group (P=0.062). Likewise, among NZ groups, the diffuse 

atrophy group displayed significantly higher WMH (p<0.001) and greater number of vascular 

risk factors (p<0.05) compared to the no-atrophy group. 
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Figure 2. T-N groups resembled NZ groups and were associated with non-AD modulators in 
ADNI cohort. (A) The T-N residual patterns for T-N groups were similar to regional thickness z-
score patterns for identified groups among A- patients from ADNI by clustering on standardized 
thickness using 137 normal individuals: No atrophy (close to 0 z-score), atrophy (negative z-
score), increased thickness (positive z-score). (B) Voxel-wise analyses reveal significantly less 
thickness of T-N groups (left) and NZ groups compared with cognitively unimpaired control (NC, 
N=137) controlling for age and sex (PFWER < 0.05). The colored areas represent significant 
difference with the cognitively unimpaired control for each group. (C) The between-group brain 
age gap (brain age – chronological age) pair-wise comparison for T-N groups (left) and NZ  

groups (right) after covarying by age. (D) The between-group white matter hyperintensities 
volume comparison with age as covariates among T-N groups (left) and NZ (right) groups. (E) 
The pair-wise comparisons of vascular risk factors for T-N groups (left) and NZ groups (right). 
The count of vascular risk factors is the sum of participant risk factors, assayed categorically, for 
hypertension, hyperlipidemia, type II diabetes, arrhythmia, cerebrovascular disease, 
endovascular management of head/neck vessels, coronary artery disease, coronary 
interventions, heart failure, structural heart defects/repair, peripheral artery disease, and 
smoking. The mixed group was excluded in the analyses of T-N groups comparison due to its 
small size. For C-E, pairwise comparisons between groups were performed. Only significant 
comparisons with the typical groups (canonical for T-N groups, no atrophy group for NZ groups) 
respectively were marked in the figures. Significant levels corrected by Bonferroni multiple 
comparison are denoted as *P<0.05, **P<0.01, ***P<0.001.  

 

Postmortem T-N groups were associated with co-pathologies   

We next attempted to determine a potential link between histological evidence of concomitant 

proteinopathies, TDP-43 and alpha-synuclein, with T-N mismatch groups. In particular, we 

hypothesized that the T-N limbic vulnerable group would display evidence of concomitant TDP-

43 pathology, such as that observed in limbic-predominant age-related TDP-43 encephalopathy 

(LATE)33, given the link between LATE and greater MTL involvement in AD34. We used data 

from the Brain Bank of the University of Pennsylvania Center for Neurodegenerative Disease 

Research (CNDR) and antemortem MRI. Cortical thickness from antemortem MRI was again 

used as a measure of N, and regional semi-quantitative tau pathology ratings from postmortem 

histology served as a measure of T. We included 112 A+ autopsies defined by a Consortium to 

Establish a Registry for Alzheimer’s Disease (CERAD) score of >= 2 given that this reflects a 

typical threshold for detection of amyloid positivity with PET35. Using six cortical regions in which 

we had both tau pathology ratings and corresponding MRI ROIs, we defined T-N mismatch in 

each of these regions. We obtained five groups through the same clustering approach as for the 

in vivo data and compared thickness across the entire brain to the canonical group (Figure 3A). 

We observed similar patterns of thickness differences to what were described in the preceding 

in vivo analyses (Figure S3). We therefore denoted these groups as limbic vulnerable, diffuse 
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vulnerable, PTO resilient and diffuse resilient, in addition to a canonical group. Demographics 

are presented in Table S2.  

We analyzed TDP-43 pathology in regions associated with early stages of LATE neuropathic 

change (LATE-NC) across the different T-N mismatch groups (Figure 3B). Consistent with our 

hypothesis, we found the limbic vulnerable group was the only group with significantly higher 

TDP-43 severity than the canonical group in the medial temporal lobe region (MTL, P=0.015) as 

well as in a composite limbic region (P<0.01). Moreover, it was associated with higher TDP-43 

level in regions of early TDP-43 deposition including amygdala (Amyg, P=0.01), entorhinal 

cortex (EC, P=0.057), dentate gyrus (DG, P=0.023) and anterior cingulate gyrus (ACgG, P<0.01) 

compared to the canonical group (Figure 3B). Note that these differences did not survive 

correction for multiple comparisons, but were consistent with a strong a priori hypothesis.  

Interestingly, the PTO resilient group displayed the least amount of TDP-43 in MTL and limbic 

regions which was significantly lower than limbic vulnerable group (P<0.01), but its difference in 

TDP-43 was not significant in comparison to the canonical group (P>0.05). We also examined 

alpha-synuclein levels between groups specifically at amygdala, MTL and limbic composite 

region given early involvement in those structures. We did not find groups differences (P=0.86 

for Amyg, P=0.79 for MTL, P=0.38 for limbic composite ROI).  
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Figure 3. Postmortem assessment of TDP-43 on T-N groups of CNDR autopsies (A) Voxel-wise
significant differences of antemortem thickness between vulnerable/resilient groups and the
canonical group with PFWER < 0.05 for CNDR autopsies. The colored areas represent significant
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difference with the canonical for each group. (B) The between-group comparison of ex-vivo 
TDP-43 burden of CNDR cohort in medial temporal lobe, la limbic composite ROI as well as 
semi-quantitative TDP-43 severities across representative regions of early TDP-43 deposition 
including amygdala (Amyg), entorhinal cortex (EC), dentate gyrus (DG) and anterior cingulate 
gyrus (ACgG). The comparisons were not corrected by multiple comparisons given that we 
specifically predicted that the limbic vulnerable group would be associated with TDP-43 
pathology in this case rather than performing exploratory analysis. Significant levels are denoted 
as *P<0.05, **P<0.01, ***P<0.001.    

 

T-N mismatch predicts longitudinal cognitive changes 

In light of the potential role for the presence or absence of co-pathologies on longitudinal 

trajectory of decline, we examined differences in CDR-SB change, a measure that incorporates 

cognitive and functional data, among the different T-N mismatch groups from ADNI. We 

predicted that T-N vulnerable groups would display faster cognitive decline over time due to the 

possibility of comorbid pathologies while resilient groups would be expected to have slower 

decline. Figure 4 Left displays longitudinal CDR-SB performance for different T-N groups. The 

T-N vulnerable groups displayed steeper CDR-SB increases than canonical (P<0.001 for limbic 

vulnerable group, P<0.05 for diffuse vulnerable group). Alternatively, the AT resilient group 

tended to progress slower although not significantly so relative to the canonical group after 

multiple comparisons correction.  

We also examined longitudinal cognitive changes in the NZ groups (Figure 4 Right).  We 

predicted similar relative decline between analogous groups to the T-N analysis, but slower 

rates of decline due to absence of concomitant AD. Indeed, the NZ atrophy groups displayed a 

faster rate of decline than the no atrophy group (P<0.001 for limbic atrophy, P<0.001 for diffuse 

atrophy), consistent with the expectation that non-AD pathologies would be driving decline. 

Moreover, the average annualized rate of change for T-N limbic vulnerable (2.48 points/year) 

and T-N diffuse vulnerable (2.43 points/year) groups were both greater than the rates for NZ 

limbic atrophy (1.17 points/year) and diffuse atrophy (0.92 points/year) groups.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 15, 2023. ; https://doi.org/10.1101/2023.02.12.23285594doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.12.23285594


15

 

Figure 4. Longitudinal CDR-SB changes for all T-N groups (left) and NZ groups (right) of ADNI
cohort covaried with age, sex, years of education and baseline CDR-SB score. The shadow
represents 95% confidence intervals. The mixed group was excluded in the analysis of T-N
group comparison due to small sample size. Only significant comparisons with the typical group
(canonical for T-N groups, no atrophy group for NZ groups) were marked. Significant levels
corrected by Bonferroni multiple comparison are denoted as *P<0.05, **P<0.01, ***P<0.001.  

 

Application of T-N mismatch to individual patients  

To assess the transferability of T-N mismatch and its potential clinical utility on classification of

individuals, we applied the T-N mismatch framework to an independent testing cohort, referred

to as ‘AVID’, using existing T-N residual models and then inferred their T-N group identity. The

testing cohort contained 71 symptomatic A+ patients, including 29 with dementia and 42 with

MCI. The regional T-N residuals of each patient was obtained by projecting their T-N

relationships on the existing regional T-N regressions models in the ADNI cohort. Group

assignment for each individual patient was then identified by finding the ADNI T-N group with

the lowest distance based on these imputed residuals (see Methods for details). We then

grouped the patients based on inferred T-N group identity and visualized their average T-N

residual maps (Figure S4). All six groups were recapitulated on the AVID dataset (Figure S4).

Likewise, they were associated with clinical differences similar to that of ADNI (Table S3),

including the limbic vulnerable group displaying the poorest MMSE and Alzheimer’s disease

assessment scale cognitive subscale-11 (ADAS-Cog11) scores among all groups and the

resilient groups generally performing better than the other groups. Despite the regression model
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coming from the ADNI dataset, the groups also did not differ in IT Tau SUVR, as with the ADNI 

analysis.  

 

Discussion 
 

In the current study, we defined cognitively impaired individuals in the AD continuum based on 

the relationship of T pathology to N to explore the implications of variability particularly with 

respect to the potential role of non-AD pathologies (e.g. TDP43, vascular disease) and 

accelerated aging on these differences. We identified six in vivo data-driven groups associated 

with different spatial patterns of T-N relationships. The largest group was defined as “canonical”, 

in which the relationship between T and N was largely close to the regression line in all regions 

(i.e., N~T). A limbic vulnerable group displayed greater neurodegeneration than tau (N>T) in 

limbic regions while a diffuse vulnerable group displayed N>T throughout the cortex. On the 

other hand, there were groups with relatively less neurodegeneration given tau (N<T) that we 

classified as posterior-temporal occipital resilient or anterior-temporal resilient based on the 

spatial pattern of these relationships. Finally, we also obtained a mixed group presenting both 

vulnerable and resilient features. Since the mean tau burden, as measured by tau PET, was 

similar across these phenotypic groups, these T-N residual groups do not appear to be simply 

reflective of AD severity per se, but we propose are driven by non-AD factors. Notably, many of 

the residual patterns of these T-N groups also appeared in A- symptomatic individuals 

partitioned based on regional gray matter thickness. As these individuals would be expected to 

have non-AD drivers of their symptomatic state and patterns of atrophy, similarities between 

these A- NZ groups and the T-N groups were expected and support the hypothesis that the T-N 

residuals reflect the non-AD factors that contribute to neurodegeneration concomitant with AD 

pathology.  

The vulnerability and resilience we observed in the T-N groups may be attributable to a variety 

of potential drivers. One potential contributor is “normal” age-related brain changes. Age itself is 

associated with structural changes to regional thickness and volume of grey matter which is at 

least partially dissociable from structural changes associated with typical AD31,36. As such, we 

previously predicted and found that age was associated with a more global measure of T-N 

mismatch21.  In the current analysis, vulnerable groups do tend to be older than resilient ones, 

with the canonical group around the mean age of the overall cohort. However, brain age also 
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varies across individuals, with some exhibiting more accelerated brain age for their 

chronological age and vice versa. Indeed, these differences may be one potential source of 

brain resilience and vulnerability in the context of AD and other neurodegenerative conditions. 

We examined this brain age gap in the T-N groups using a measure of brain age which was 

specifically designed to dissociate from brain changes associated with AD31. Using this 

approach, we found that both vulnerable groups have older brain age relative to chronological 

age compared to the canonical group. Additionally, the resilient groups tended to have relatively 

younger brain age than their chronological age. While this result supports the potential role of 

brain age beyond chronological age as a driver of vulnerability and resilience, it is worth noting 

that the brain age measure was not independent from non-AD pathologies which are also likely 

to contribute to these different groups.  

Indeed, non-AD co-pathologies are very common in individuals with AD pathology and are likely 

important contributors to the heterogeneity of AD1–3,5,6. One of the vulnerable groups was 

referred to as “limbic” because of the greater temporal lobe, including temporal pole, and orbital 

frontal cortex neurodegeneration relative to tau pathology. This group also displayed generally 

greater cortical thinning in these regions when directly compared to the canonical group, 

controlling for age and sex, despite similar inferior temporal tau burden. While there are a 

number of non-AD related pathologies that may overlap with this region (e.g. argyrophilic grain 

disease), a particularly important pathology associated with limbic involvement is TDP-43, 

especially in the form of LATE, which is a common co-pathology with AD. LATE has previously 

been shown to accelerate cognitive progression and hippocampal atrophy when co-occurring 

with AD relative to AD alone6,37 although can also occur independently33.  The pattern observed 

in the limbic vulnerable group is consistent with expected regional distribution of pathology and 

atrophy observed in TDP-43 proteinopathy 20,33,38. This group demonstrated a more rapid rate of 

cognitive decline relative to the canonical group, also consistent with prior work33,37,39 studying 

this co-pathology in the setting of AD.  Moreover, the limbic vulnerable group was recapitulated 

in the postmortem analysis demonstrating an atrophy pattern remarkably similar to that in the in 

vivo group. Most importantly, this T-N group demonstrated higher levels of TDP-43 deposition in 

medial temporal lobe and limbic regions compared to other T-N groups, including the canonical 

group, supporting the hypothesis that TDP-43 proteinopathy drives limbic T-N mismatch.    

We also found that a T-N group that we labeled posterior-temporal resilient tended to contain 

the least amount of TDP-43 in medial temporal lobe based on the postmortem analysis. It is 

possible that this group reflects individuals particularly resistant to TDP-43 pathology. Aligning 
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with this idea, it has been argued that resilience to AD may partly depend on resistance to TDP-

43, or other pathologies40. Given that even the canonical group in the post-mortem analysis had 

some degree of TDP-43 pathology and that comorbidity is much more common in AD than its 

absence (Figure 3B), perhaps the canonical group is actually a mixed group, and that it is those 

groups that were named ‘resilient’ that don’t have co-pathology. The canonical group, rather 

than being “pure” AD, may contain a medium level of co-pathologies; the PTO resilient and 

limbic vulnerable groups then may be associated with the least and the most TDP-43 severities, 

respectively.  

The diffuse vulnerable group was found to be associated with greater WMH volume and number 

of vascular risk factors41 compared to the canonical group when controlling for age, suggesting 

that cerebrovascular pathology may be a contributor to the apparent “vulnerability” in this group. 

Alternatively, the AT resilient group had significantly lower WMH volumes than the canonical 

group. While we would expect cerebrovascular pathology to have a more diffuse, or perhaps 

frontal, effect on cortical thinning, it is unclear why the AT resilient group largely displayed less 

thinning in temporal regions. There is at least some data3,42 suggesting that TDP-43 is more 

common in the setting of cerebrovascular factors such that its absence may allow for AT 

resilience to TDP-43.  Further, aligning with TDP-43 findings above, the canonical group had 

evidence of an intermediate degree of vascular disease between AT resilient and diffuse 

vulnerable. The AT resilient, canonical and diffuse vulnerable groups may be on a continuum of 

cerebrovascular pathology (AT resilient < canonical < diffuse vulnerable). This again suggests 

that the degree of co-pathology may modulate relative resilience or vulnerability, but that “typical” 

AD is marked by modest degree of other pathologies, consistent with autopsy data.   

Clustering based on A- thickness also produced a more diffuse atrophy group with high levels of 

WMHs and vascular risk factors while those with less atrophy had less evidence of small vessel 

disease. The fact that similar patterns were again observed in the Nz groups again supports the 

hypothesis that T-N mismatch is teasing out similar non-AD modulators of resilience and 

vulnerability. 

Importantly, we found that T-N mismatch classification had implications for not only cross-

sectional measures of cognition, but also longitudinal outcomes consistent with our prior work in 

a smaller cohort A+ individuals21. Vulnerable groups declined significantly faster than the 

canonical groups, likely attributable to the presence of the non-AD pathologies suggested above. 

In the setting of AD, tau and other pathologies may synergistically interact to accelerate 

cognitive impairment6,37,39. These findings are consistent with other work demonstrating that 
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comorbid pathologies contribute to dementia phenotype and course6,43,44. Moreover, the AT 

resilient group demonstrated relatively little evidence of progression although not statistically 

different from the canonical group which had a modest rate of decline. Thus, T-N mismatch 

appears to have important implications for prognosis and potential stratification in intervention 

studies. Interestingly, the parallel NZ groups displayed similar, but generally less steep decline 

as measured by the CDR-SB.  This result is consistent with the expectation that AD plus other 

comorbidities result in faster decline than isolated non-AD drivers of decline6,37,39,43.   

As further support for the robustness and potential clinical utility of this approach, we were able 

to make portable and straightforward inference of  T-N group for individual patients from a 

second cohort based on an existing T-N residual model. Inferred phenotypic groups also shared 

clinical characteristics with the training cohort. This indicates that T-N mismatch modeling is 

generalizable and therefore may have clinical utility and hold promise for personalized medicine.  

These T-N groups were also largely reproducible in the post-mortem cohort despite the limited 

regions of interest available and semiquantitative measurements of tau  among other key 

differences with the in vivo data. Finally, similar, although not completely, overlapping 

phenotypes were also found using an alternative marker of neurodegeneration, 18F-

fluorodeoxyglucose PET, in our prior work22.  

Our study has some limitations. First, while we established T-N mismatch by modeling linear 

relationships between regional tau SUVR and thickness, the T-N relationship is likely to be, to 

some extent, non-linear even in pure AD cases. Non-linear approaches to measuring T-N 

mismatch using image to image translation may better model T-N relationships and capture 

additional spatial information. Second, our ex vivo validation on T-N mismatch utilized only six 

anatomical regions of interest due to specimen availability. We therefore missed information on 

the deviation of other regions when clustering. The semi-quantitative measures of tau histology 

further limit the sensitivity for assessment of deviations. Nonetheless, it is remarkable how 

similar the groups from this post-mortem dataset were to those in our in vivo analysis. An 

additional limitation to the histology is that PHF-1 is not specific to tau neurofibrillary tangles, so 

this may conflate other non-AD tauopathy contributions. Lastly, it is also worth noting that the 

cohorts used here were relatively modest in size and may not be generalizable to other cohorts, 

including those with greater numbers of co-morbidities and race/ethnicities that are not well 

represented in ADNI. 

In summary, our findings demonstrated T-N mismatch depicts vulnerability and resilience likely 

attributable to specific non-AD pathologies or resilience factors. This approach may therefore 
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provide important characterization of phenotypic heterogeneity in clinical populations, with 

implications for therapeutic trials and management.  

Methods 
 

Participants: 

ADNI Dataset 

We included 343 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset (http://adni.loni.usc.edu) who were classified with a diagnosis of mild cognitive 

impairment (MCI) or dementia. All participants had to have both a Tau PET scan and T1-

weighted MRI scan. The closest MRI to tau PET scans were selected. The average time 

between tau scan and MRI scan was 14.4 (± 10) (SD) months. There were 184 amyloid positive 

(A+) and 159 amyloid negative (A-) patients included in this study. Most of the A+ patients were 

also in our prior study21. The summarized clinical characteristics of the cohort are reported in 

Table S4. In addition, we included 137 A- cognitively unimpaired adults from ADNI as controls in 

the voxel-wise thickness comparison analysis (Table S4).  

AVID Dataset 

We included 71 A+ symptomatic patients (36 female and 35 male) with a pair of Tau PET scan 

and T1-weighted MRI scans from the Avid Radiopharmaceuticals studies (A05) with inclusion 

criteria for age >=50 and MMSE > 1045. Participants provided written informed consent and both 

informed consent and the protocol were approved by the relevant Institutional Review Boards45. 

The Tau PET scan and T1-weighted MRI scan for each patient was obtained from the same 

visit. All participants were symptomatic, including 29 with dementia-level impairment and 42 with 

MCI. Average age was 73.6 ± 9.8, and average MMSE was 24.7 ± 4.3. The summarized clinical 

characteristics of this cohort was displayed in Table S5.  

CNDR Dataset 

We included 112 autopsies (age 72.0 ± 10 years at MRI scan and age 75.3 ± 11 years at death) 

from the University of Pennsylvania Center for Neurodegenerative Disease Research (CNDR).  

All individuals had an antemortem research-quality T1-weighted (T1w) MRI scan.  For those 

with multiple scans, the closest to death was chosen. Semi-quantitative regional tau severity 

was determined by histology. The average time interval between MRI scan date and autopsy 
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date was 46.0 (± 31) months. All procedures during life were performed with prior informed 

consent in accordance with Penn Institutional Review Board guidelines.  

Image acquisition and processing 

Image acquisition  

For both ADNI and AVID cohorts, we processed both T1-weighted MRI and tau PET (18F-

flortaucipir) scans to obtain cortical thickness and tau SUVR for 104 bilateral gray matter 

regions of interest. The detailed image acquisition and processing methods have been 

previously described21. In brief, the T1w MRI scan of resolution 1.0x1.0x1.0 mm3 were acquired 

by ADNI, while PET images were of variable resolution, but reprocessed to a similar 0.8 cm full-

width at half maximum resolution. FLAIR MRI was acquired in the same session as T1w MRI 

with variable spatial resolution as prescribed in the ADNI protocol. For the CNDR dataset, 

antemortem T1 structural MRI scan for all subjects were obtained with resolution ranging from 

0.5x0.5x1mm3 to 1.25x1.25x1.20mm3. For AVID dataset, the MRI Scans have resolution 

1.0x1.0x1.2 mm3. 

 

T1-MRI processing 

The image processing methods have been described in our prior work21. Briefly, the T1-

weighted MRI was processed with the ANTs cortical thickness pipeline46 which includes steps 

for intensity inhomogeneity correction and tissue segmentation. The MRI scans were 

parcellated into cerebellar, cortical, and subcortical ROIs using a multi-atlas segmentation 

method47. The volumetric thickness map for each subject was estimated via DiReCT cortical 

thickness estimation method48 to generate volumetric thickness maps. ROI-based thickness 

was calculated by averaging the thickness maps across voxels within the gray matter ROIs. The 

same processing for T1-weighted MRI was applied to ADNI, AVID and CNDR cohorts.  

PET processing 

ADNI provides post-processed PET images that are generated by averaging co-registered 

individual frames. Post-processed PET images were registered to participants’ T1-weighted 

structural MRI using ANTs49. The following ANTs parameters was used. Metric: Mattes mutual 

information (weight=1, number of bins=32), Transformation model: Rigid (gradient step = 0.2), 

Smoothing levels = 4x2x0, Shrink factor = 4x2x1. MRI parcellated ROIs were transferred to PET 

space. Mean PET tracer uptake in cerebellar gray matter (18F-Flortaucipir) or cerebellar gray 
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and white matter (18F-Florbetapir or 18F-Florbetaben) was used as a reference region to 

generate a standardized uptake value ratio (SUVR) map for each participation. 

We additionally processed amyloid PET scans (18F-florbetaben or 18F-florbetapir tracer) for 

determining amyloid status. Amyloid status was determined by using a composite ROI measure 

of 18F-florbetaben or 18F-florbetapir tracer uptake50. As previously published21, we used an 

SUVR ≥ 1.1141 for 18F-Florbetapir and ≥ 1.08 for 18F-Florbetaben to define a positive amyloid 

scan (A+).   

We processed 18F-Flortaucipir PET for AVID dataset. Attenuation-corrected image frames were 

first motion-corrected by MCFLIRT51 with 6 degree of freedom correction and averaged. The 

post-processed PET images were then processed following the same method as ADNI cohort to 

get regional SUVR.  

White matter hyperintensities processing 

The white matter hyperintensities (WMH) were segmented from FLAIR images using a deep 

learning-based method52 that was a top performer in a WMH segmentation challenge.  

Postmortem neuropathology measurement 

All autopsies at the Penn CNDR were conducted with detailed procedures described 

elsewhere53, including routine examination of up to sixteen regions53 and uniform 

immunohistochemistry analyses. Briefly, the tissue was embedded in paraffin block, cut into 6 

μm sections, and immunostained for a variety of proteins in specific regions. Antibody NAB228 

was used to target amyloid deposits, PHF-1 to measure phosphorylated tau deposits and 

pS409/410 to detect phosphorylated TDP-43 deposits. The neuropathology burden of each 

region was then evaluated by pathologists by assigning a semi-quantitative score of none (0), 

rare (0.5), mild (1), moderate (2), or severe (3).  Amyloid status was determined by histology 

amyloid score (C Score) with threshold at 2 based on prior work suggesting this threshold for 

the sensitivity of amyloid PET scans35.   

Modeling Tau (T) and Neurodegeneration (N) mismatch and clustering  

A+ ADNI T-N mismatch clustering 

The Tau (T) and neurodegeneration (N) relationship was modeled by robust linear regression 

between regional tau SUVR and cortical thickness, respectively. The bi-square weighting 

function was used to mitigate the effect of outliers. A natural log transformation was applied on 
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tau SUVR as the independent variable to mitigate the effects of potentially skewed SUVR 

distribution. The regression residuals were discretized into a two-element binary vector based 

on whether they were more than 1.5 standard deviations away from the regression line. We 

used 1.5 standard deviation as the threshold “outliers”. In our prior work21, this threshold 

resulted in highly overlapping clusters compared to other thresholds or no threshold at all. 

These binarized vectors obtained from 104 bilateral regions of interest were entered into Ward’s 

D2 hierarchical clustering23 to generate data-driven grouping of subjects. The number of groups 

was determined by the elbow24 method which optimizes the within-group similarity and 

dendrogram structure. The three-dimensional regional mean residual map was visualized using 

MRIcroGL54.   

A- ADNI thickness z-score clustering 

The thickness of A- patients was standardized into z-score referenced to 137 cognitively normal 

individuals for all 104 cortical regions. Each regional z-score thickness was binarized based on 

1.5 standard deviations. These binarized vectors obtained from 104 bilateral regions of interest 

were entered into Ward’s D2 hierarchical clustering23 to obtain NZ groups in the same manner 

as above. 

A+ AVID T-N mismatch testing 

The regional T-N residuals of the AVID cohort were obtained from the regional T-N regression 

models built from the ADNI A+ cohort. Regional residuals were binarized based on the 1.5 

standard deviation of residuals from the training set regression (ADNI). The Euclidean distance 

between each testing patient’s binarized vector and averaged binarized residual vector of T-N 

groups from ADNI cohort was obtained and compared. The group identity of each test patient 

was determined by finding the shortest Euclidean distance among all six A+ T-N groups 

obtained from ADNI.  

Ex vivo T-N mismatch clustering 

To validate T-N mismatch on ex vivo autopsies, we used cortical thickness measured from 

antemortem MRI and regional tau burden measured from histological staining for modeling T-N 

mismatch. Among all sixteen regions, only six cortical regions of interest without missing tau 

measurement were available from the postmortem samples: anterior cingulate gyrus, entorhinal 

cortex, angular gyrus plus middle occipital gyrus, middle frontal gyrus, superior temporal gyrus 

and amygdala. The T-N relationships were modeled following a procedure similar to the in vivo 
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analysis, except that we additionally included the time between MRI scan date and autopsy date 

as covariate for modeling. The independent variable of tau burden was treated as a continuous 

variable rather than as a factor here since it resulted in lower Akaike information criterion (AIC)55, 

indicating better model fit, for all six regions. The same clustering procedure as used for the in 

vivo data was then performed on obtained residuals to partition subjects.  

ADNI comorbidities evaluation 

Vascular risk factors data were obtained from the ADNI INITHEALTH table. Factors counted as 

vascular risk factors include hypertension, hyperlipidemia, type II diabetes, arrhythmia, 

cerebrovascular disease, endovascular management of head/neck vessels, coronary artery 

disease, coronary interventions, heart failure, structural heart defects/repair, peripheral artery 

disease, and smoking. The number of vascular risk factor for each patient was counted. 

Brain age was obtained by the machine-learning based Spatial Pattern of Atrophy for 

Recognition of Alzheimer’s Disease (SPARE) models31. The brain age gap was calculated by 

the difference between predicted brain age and the actual chronological age.   

 

Statistical analysis 

Statistical analyses were performed in R (v4.5) or SPSS (v28). The between group comparison 

of continuous variables (e.g. regional tau SUVR) were analyzed by linear regression with 

covariates age and gender. Bonferroni correction was applied on all between-group 

comparisons. Comparison of ordinal or semi-quantitative variables (e.g., histology-measured 

TDP-43 severity levels) was conducted using Kruskal-Wallis tests56 corrected by multiple 

comparison or using Mann-Whitney test57 if only comparing between two groups. The voxel-

wise thickness comparison was analyzed by using the threshold-free cluster enhancement 

method58 with age and gender as covariates. The global measures of  and Clinical Dementia 

Rating Sum of boxes (CDRSB)28 were used to evaluate longitudinal cognitive changes. 

Longitudinal trajectories of cognitive scores were assessed with linear mixed-effects models59 

using cognitive scores as the dependent variable. Fixed effects include time, group, and 

time*group interaction as predictors, and covariates (age, gender and years of education). A 

random intercept was included in the mixed-effects model to account for correlations among 

repeated measures of cognitive scores. The follow up time ranged from 1 to 4 years and 

maximum of 4 time points for each participant. Significant differences in rate of change between 
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groups was determined by comparing the slope of time*group interaction. All statistical tests 

were two-sided.  
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