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Abstract 

Background: Short-term forecasts of all-cause mortality are used retrospectively to 

estimate the baseline mortality and to obtain excess death after mortality shocks, such 

as heatwaves and pandemics, have occurred. In this study we propose a flexible method 

to forecast all-cause mortality in real-time and to rapidly identify short-term changes 

in all-cause mortality seasonal patterns within an epidemiological year. 

Methods: We use all-cause monthly death counts and ratios of death counts between 

adjacent months as inputs. The ratio between one month (earlier month) and the 

consecutive month (later month) is called later/earlier ratio. We forecast the deaths 

one-month-ahead based on their proportion to the previous month, defined by the 

average later/earlier ratio over the preceding years. We provide forecasting intervals 

by way of a bootstrapping procedure. 

Results: The method is applied to monthly mortality data for Denmark, France, 

Spain, and Sweden from 2012 through 2022. Over the epidemiological years before 

COVID-19, the method captures the variations in winter and summer mortality peaks. 

The results reflect the synchrony of COVID-19 waves and the corresponding mortality 

burdens in the four analyzed countries. The forecasts show a higher level of accuracy 

compared to traditional models for short-term forecasting, i.e., 5-year-average method 

and Serfling model. 

Conclusion: The method proposed is attractive for health researchers and 

governmental offices to aid public health responses, because it uses minimal input 

data, i.e., monthly all-cause mortality data, which are timely available and comparable 

across countries.  
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Keymessages 

• What is already known on this topic: There is a lack of methods to forecast all-

cause mortality in the short-term in a timely or near real-time manner. 

• What this study adds: The method that we propose forecasts all-cause mortality 

one month ahead assuming a seasonal mortality structure and adjusting it to 

the level of mortality of the epidemic year. These aspects make the method 

suitable for forecasting in a timely manner also during mortality shocks, such as 

the current COVID-19 pandemic. 

• How this study might affect research, practice or policy: The forecasts obtained 

with the proposed method detects changes in all-cause mortality patterns in a 

timely manner and can be used to aid public health responses. 

Keywords 

short-term mortality forecasting; all-cause mortality; seasonality; public health 

surveillance data; mortality shocks. 
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Introduction 

In temperate countries in the Northern Hemisphere, all-cause mortality exhibits a 

marked seasonality, with a winter peak driven by influenza-related mortality among 

the older population [1]. Variations occur from year to year in the magnitude and 

timing of the seasonal pattern as a result of the severity of the influenza type, waves of 

extreme temperature in the summer, or mortality shocks, such as pandemics caused 

by infectious diseases. These variations make the annual impact of mortality difficult 

to predict at the beginning of each season. Accurate and timely mortality forecasts are 

needed, to aid public health responses by informing key preparation and mitigation 

efforts.  

Various types of short-term mortality forecasts, i.e., of some weeks or months, are 

established in the literature. All-cause mortality is usually used as the outcome variable 

because it is readily available in most countries, and the occurrence of influenza 

epidemics is known to be associated with excess mortality for all causes [2]. The 

simplest way to forecast mortality is the average number of deaths or the average 

mortality rates over preceding years – for instance five years. Modelling is commonly 

preferred because it controls for time-varying population size and age structures, and 

it directly extrapolates a secular trend and estimates seasonal variations. The 

traditional Serfling model [3] predicts the expected weekly deaths by means of a 

cyclical regression. Several extensions have been developed, e.g., modelling monthly 

mortality rates [4], or performing a Serfling-Poisson regression [5]. More recent 

approaches use Poisson regressions, e.g., the EuroMOMO model for monitoring excess 

mortality [6], or time-series methods, e.g., the ARIMA or seasonal ARIMA (SARIMA) 

model [2, 7]. 
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These methods are designed to predict mortality due to seasonal epidemics in the 

absence of mortality shocks. In the case of a shock, these forecasts are used 

retrospectively, to assess whether mortality exceeded the expected level. The forecasts 

are interpreted as baseline mortality (i.e., counterfactual forecasts), and excess 

mortality is obtained by subtracting the forecasted baseline from the observed 

mortality. Excess mortality has long been analyzed to quantify the severity of an 

influenza season [8-11], the mortality burden of heatwaves [12-13] and previous 

pandemics, such as the 1918-19 Pandemic (H1N1 virus) [4]. Excess mortality became 

of major interest during the COVID-19 pandemic and was diffused by media outlets 

and in the scientific literature [14-16], to compare countries across time [17-20] and to 

evaluate the effect of policy interventions [21]. 

Another type of short-term mortality forecast is the realistic forecast, used to study the 

progression of infectious disease epidemics, for instance influenza outbreaks. The aim 

is to anticipate the evolution of the disease and be informative to the preparation and 

prevention of illnesses, hospitalizations, and deaths. Traditional mathematical models 

for these studies are compartmental models [22-24], e.g., the susceptible-infectious-

recovered (SIR) and susceptible-exposed-infectious-recovered (SEIR) models. Other 

approaches use statistical methods, e.g., statistical regressions [25] and time-series 

models [26-27], or machine learning techniques [28]. These methods usually focus on 

several outcomes other than all-cause mortality, such as mortality and hospitalization 

from pneumonia, influenza, or respiratory diseases. In the context of the COVID-19 

pandemic, they were used to model COVID-19 cases and deaths [29-33].  

Short-term mortality forecasting focuses, therefore, either on all-cause mortality in 

absence of a shock (to compute excess mortality) or on cause-specific mortality related 

to the outbreak of infectious diseases. To our knowledge, at time of writing, no method 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.07.23285581doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.07.23285581
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

exists to predict all-cause mortality in real time – both in regular epidemic years, where 

the bulk of mortality occurs in the winter – and during mortality shocks, when usual 

patterns are disrupted, and mortality increases unexpectedly. In this study, we 

combine the two aspects. The aim of the analysis is twofold: (1) to propose a simple 

and flexible method for forecasting all-cause monthly one month ahead; and (2) to 

investigate the validity of the forecasting method during both regular epidemic years 

and mortality shocks. The method estimates the deaths to be expected one month 

ahead, based on recent past seasonality and at current mortality levels. We show an 

application on historical forecasts in the last decade, including both non-COVID and 

COVID years, in Denmark, France, Spain, and Sweden. 

Methods 

Data 

Since the beginning of the COVID-19 pandemic, national statistical offices started 

publishing timely all-cause weekly and monthly mortality data series (see 

Supplementary Materials, Supplementary data). We focused on Denmark, France, 

Spain, and Sweden because of the availability and the high quality of the data. 

Moreover, different population sizes allow for a robustness check of the method. We 

retrieved data on monthly deaths for the total population. We chose 2007 as the 

starting point because it is the first available year for Denmark.  

The death counts were adjusted to be comparable across months of different lengths, 

and across leap years and non-leap years, following Nepomuceno et al. [34]. We 

assumed the average number of days in a month in both leap and non-leap years to be 

30.44 days (365.25/12). The monthly death counts were multiplied by the ratio 

between 30.44 and the actual number of days in each month. To adjust for any 
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difference in the annual total number of deaths after rescaling, we distributed the 

difference accordingly to the annual relative frequencies of the rescaled death counts. 

The relative frequencies were computed within the epidemic year, to account for the 

influenza season. 

The later/earlier method 

An epidemic year (epi-year) is defined from July through June, covering part of two 

adjacent calendar years. The influenza season usually starts in October and ends in 

May, with a seasonal mortality peak between December and March. Winter seasonality 

and low summer mortality mean that deaths of adjacent months are highly positive 

correlated (see Supplementary Materials, Supplementary descriptive analyses) 

because an increase/decrease in one month is associated with an increase/decrease in 

the following month. For example, the correlation between the deaths in October and 

November ranges between 0.75 and 0.85 in the countries analyzed. January, February, 

and March exhibit a lower correlation because of the variability in the timing and the 

shape of the winter peak. For example, the correlation between deaths in January and 

February ranges between 0.55 and 0.64. 

By extrapolating the relation between the current month (earlier month) and next 

month (later month), one can predict the death counts in the next month at any 

moment in the epi-year. This reasoning is based on the later/earlier method introduced 

by Rizzi and Vaupel to make counterfactual forecasts after a major shock, e.g., the first 

COVID-19 wave [35-36]. The real-time forecasting method that we propose uses two 

adjacent months, instead of two parts of the epi-year. The ratio of deaths between 

adjacent months is the later/earlier ratio. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.07.23285581doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.07.23285581
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

Formally, if 𝐷𝑖,𝑗 is the number of deaths in the 𝑖 − 𝑡ℎ month during the 𝑗 − 𝑡ℎ epi-year, 

the later/earlier ratio between the 𝑖 − 𝑡ℎ month and the (𝑖 + 1) − 𝑡ℎ month in the 𝑗 −

𝑡ℎ epi-year, denoted by 𝜐𝑖,𝑗 , is given by  

If the later/earlier ratio one month ahead is not known, one can assume that it equals 

the average later/earlier ratio of the previous years. The average later/earlier ratio �̅�𝒊 

for the 𝑖 − 𝑡ℎ month in the epi-years preceding the 𝑗 − 𝑡ℎ epi-year is 

 

This assumption provides a short-term forecast of the expected deaths one month 

ahead. The values 𝜐𝑖,𝑗, with 𝑗 = 1, … , 𝑛 − 1, can be checked for stationarity over 

previous years. If the series shows no trend, the deaths in the 𝑖 + 1 − 𝑡ℎ month can be 

forecasted based on the deaths in the 𝑖 − 𝑡ℎ month and on the average ratio �̅�𝒊 for the 

𝑖 − 𝑡ℎ month, according to the formula 

 

Let us suppose that we want to forecast the death counts one month ahead. Figure 1 

shows, for illustrative purposes, the quantities used to forecast the death counts in epi-

year 2013/14 (𝑗 = 𝑛 = 6) in Spain. When there is an increase in the death counts, the 

corresponding later/earlier ratio is greater than 1; when there is a decrease, the 

later/earlier ratio is lower than 1. The average ratios of the previous five epi-years (𝑗 =

1, … , 𝑛 − 1 = 1, … ,5) are greater than 1 from October through January, and lower than 

 𝜐𝑖,𝑗 =
𝐷𝑖+1,𝑗

𝐷𝑖;𝑗
,       𝑤𝑖𝑡ℎ 𝑖 = 1, … 12, 𝑗 = 1, … , 𝑛. (1)  

 𝝊𝒊 = 𝐸(𝝊𝑖,𝑗), 𝑤𝑖𝑡ℎ 𝑖 = 1, … 12, 𝑗 = 1, … , 𝑛 − 1. (2) 

 𝐷𝑖+1,�̂� ≈ 𝝊𝒊 𝐷𝑖,𝑗. (3) 
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1 in the remaining months. We multiply the death counts by the average later/earlier 

ratios to obtain the expected number of deaths in the next month.  

 

Fig. 1 Illustration of the input data: Monthly death counts (black circles) and average 

later/earlier ratios (purple squares) compared to monthly ratios (orange triangles); 

and output: Forecast of the monthly death counts (blue diamonds) of the method. 

Source: Own elaboration. 

Prediction intervals 

We computed the prediction intervals for the forecasts considering the two sources of 

variability. The first source comes from the uncertainty in the later/earlier ratios, i.e., 

from the assumption that the ratios equal the average ratios in the previous years. We 

drew 10,000 simulated ratios from the series of ratios through a bootstrapping 

procedure and used them in Equation 2 to compute 10,000 expected deaths one month 

ahead. The second source comes from the observed deaths. We drew 10,000 death 

counts from a Poisson distribution with the mean equal to expected deaths one month 
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ahead. Empirical 95% prediction intervals were computed as the 2.5th and 97.5th 

percentiles of the Poisson distribution. 

Results 

Series of monthly death ratios 

The later/earlier method assumes that the later/earlier ratios do not show any trend in 

the short term. The series of later/earlier ratios for Denmark, France, Spain, and 

Sweden revealed a considerable regularity, i.e., constant means and small standard 

deviations (see Supplementary Materials, Supplementary results). The constant 

averages and small coefficients of variation – lower than 9% – indicate a discrete 

correlation between the deaths in two adjacent months. The series are stationary via 

the Ljung-Box and the Kwiatkowski-Phillips-Schmidt-Shin tests [37]. A sensitivity 

analysis excluding COVID-19 epi-years (see Supplementary Materials, Supplementary 

sensitivity analysis) showed little effect on the average later/earlier ratios.  

Monthly forecasts with the later/earlier method 

The later/earlier method produces realistic one-month-ahead forecasts. We applied it 

to forecast monthly mortality from July 2012 through December 2021 (July 2022 for 

France). The average later/earlier ratios were computed on the previous five epi-years, 

starting from 2007/08. Figure 2 illustrates the results for the four countries analyzed. 

The method is reactive to changes in mortality within and across epi-years because: a) 

it assumes a seasonal mortality structure in the epi-year given by the average 

later/earlier ratios (υ̅i with i = 1, … 12 in Equation 2) and b) at the same time it adjusts 

the level of mortality within an epi-year using the actual observed deaths of the 

previous month (Di,j with i = 1, … 12, j = 1, … ,5 in Equation 2).  
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Fig. 2 One-month-ahead forecasts (solid blue line with overlaid blue diamonds) with 

the later/earlier method starting from epi-year 2012/13 through epi-year 2021/22 in 

Denmark, France, Spain, and Sweden vs. observed death counts (dashed black line 

with overlaid black dots), and 95% prediction intervals via bootstrapping procedure 

(gray shaded area). Source: Own elaboration. 

For example, the method captures the higher level of winter mortality in 2012/13 and 

the lower winter level in 2013/14 in Denmark, due to different types of viruses and 

transmission modes. The season 2012/13 witnessed a long period of high influenza 

activity dominated by A(H3N2), while influenza activity and mortality were low in the 

A(H1N1) dominated 2013/14 season [11]. A season with predominant influenza 

A(H3N2) has higher mortality impact than a season with predominant influenza 

A(H1N1) or a season with low influenza A transmission. As a second example, the 
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method forecasts the higher seasonality peaks in the winters 2014/15 and 2016/17 in 

France and Spain. These seasons were characterized by a high influenza activity of 

A(H3N2) viruses, the circulation of variants of the virus and a reduction in the 

effectiveness of the flu vaccine [9].  

Our forecasts reflect the synchrony of the three main COVID-19 waves through 2020 

and 2021 [38] and the different mortality burdens in the four analyzed countries. A 

consistent excess mortality –large in Sweden and Spain, medium in France [17-20, 39-

41]– was reported for the first wave (mid-February 2020 through end of May 2020). 

In the second wave (autumn 2020 through March 2021) and third wave (from the latter 

half of 2021 and on-going by the end of 2021), France experienced a similar toll to that 

of the first wave, whereas Spain and Sweden experienced lower tolls but lasting for 

many weeks [39].  

The monthly prediction intervals are not equally affected by the overall seasonality. 

They are wider in correspondence of the winter peak, where variability in the observed 

deaths is higher. They are also wider for Denmark and Sweden, which have smaller 

populations and fewer deaths. Prediction intervals reflect mortality changes in 

preceding years. For instance, the uncertainty in the estimates for the months from 

March to June 2021 in France is greater because of the COVID-19 wave in 2020. 

Comparison with alternative methods  

To assess the accuracy of the forecasts, the later/earlier method was compared with 

the 5-year-average method and the quasi-Poisson Serfling model (see Supplementary 

Materials, Supplementary methods). We chose these well-established methods for 

short-term mortality forecasting because they allow the same input data as the 

later/earlier method, i.e., a rolling window of 5 epi-years of all-cause mortality data. 
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Figure 3 illustrates the respective monthly forecasts when each of the three methods 

are applied. 

 

Fig.3 Observed death counts (black dots and dashed line); Forecasts with the 

later/earlier method (blue diamonds and solid line), 5-year-average method (red 

diamonds and solid line), and Serfling model (green diamonds and solid line) starting 

from epi-year 2012/13 through epi-year 2021/22 in Denmark, France, Spain, and 

Sweden. Source: Own elaboration. 

The later/earlier method captures better the seasonality than do the other two 

methods. For example, the lower level of mortality in Denmark in the winter of 2014 is 

forecasted by the later/earlier method, while the 5-year-average and the quasi-Poisson 

Serfling predict a considerably higher level. In France and Spain in 2014/15 and 

2016/17, the seasonality is also not captured by the 5-year-average and the quasi-
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Poisson Serfling. The later/earlier method turned out to be the only method that 

forecasted the mortality shock in March and April 2020, albeit with one month of delay 

due to the sudden sharp mortality increase. The delay could be avoided by using a time 

window finer than a month. After the first COVID-19 wave, the later/earlier method 

provides better predictions than the 5-year-average and the quasi-Poisson Serfling 

because it is more flexible in relation to the higher winter mortality in 2020/21 in the 

four countries, and in Denmark in 2021/22. 

To evaluate the goodness of the forecasts, we computed the root mean squared error 

(RMSE) and the mean absolute percentage error (MAPE) of the forecasts of the three 

methods. The later/earlier method proved to be more accurate and less biased, 

followed by the 5-year-average and the quasi-Poisson Serfling. The RMSE, displayed 

in Table 1, is lower for the later/earlier method in 60.42% of the cases, followed by the 

5-year-average (31.25%) and the quasi-Poisson Serfling (8.33%). The MAPE (Table 2) 

is lower for the later/earlier methods in 47.92% of the cases, followed by the 5-year-

average (27.08%) and the quasi-Poisson Serfling (25%). 

 January February March 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 173 315 360 380 360 458 343 438 545 

France 4029 6153 6474 5710 5766 6037 6142 5249 5986 

Spain 3655 5364 6979 4669 4932 6129 8998 7723 9987 

Sweden 374 665 778 746 516 695 419 616 854 

 April May June 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 357 193 213 234 117 187 78 164 147 

France 4723 7041 7193 6003 2244 2114 1411 1619 2288 

Spain 3573 9990 11279 8692 1219 2290 1176 1132 3046 

Sweden 1085 1108 1407 506 618 761 347 278 395 

 July August September 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 186 204 222 118 247 246 136 204 182 

France 951 1788 1536 1517 2273 815 689 2267 1181 

Spain 1876 1954 2541 2303 2138 1982 1204 1921 1957 

Sweden 390 225 295 210 128 237 201 150 214 
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 October November December 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 164 282 243 114 278 270 208 374 371 

France 1820 3384 3146 3495 6299 6218 4044 4930 3706 

Spain 1045 2673 2721 762 3189 2788 2853 2541 2737 

Sweden 176 156 244 430 351 507 470 748 859 

 

Table 1: Comparison of the accuracy measure root mean square errors (RMSE) with 

the later/earlier ratio method (L/E), 5-year-average method (5-y-a), and the quasi-

Poisson Serfling model (QPS) of the forecasts from epi-year 2012/13 through epi-year 

2020/2021, by country. Bold numbers indicate the lowest and therefore best RMSE 

value between the three methods compared by country and month.  

 January February March 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 2.33 5.26 4.68 6.41 7.09 6.79 6.71 8.5 8.26 

France 6.96 9.09 7.34 8.14 10.41 7.72 10.93 9.03 9.2 

Spain 6.06 10.44 11.31 8.56 9.16 9.34 13.91 11.81 14.2 

Sweden 3.87 6.18 5.99 7.69 6.33 6.81 4.61 6.96 7.95 

 April May June 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 7.9 3.59 3.04 4.46 2.39 3.2 1.83 3.46 2.51 

France 7.72 8.43 6.82 7.01 4.94 3.71 2.61 3.79 3.86 

Spain 5.7 11.01 12.15 11.49 3.72 5.67 2.9 3.59 7.01 

Sweden 7.68 7.56 7.36 5.7 4.98 5.54 3.22 2.79 3.84 

 July August September 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 4.02 4.13 3.52 2.75 4.9 3.48 3.12 4.25 2.73 

France 2.14 4.1 2.8 3.09 5.45 1.37 1.44 5.19 1.9 

Spain 5.49 4.83 5.12 7.4 5.78 4.77 3.18 4.86 5.09 

Sweden 5.27 3.03 3.23 2.88 1.53 2.54 2.9 1.97 2.18 

 October November December 

Country L/E 5-y-a QPS L/E 5-y-a QPS L/E 5-y-a QPS 

Denmark 3.72 5.72 3.36 2.27 5.55 4.1 4.07 5.98 5.38 

France 3.27 5.42 4.03 4.87 7.67 6.91 5.94 6.86 5.66 

Spain 2.53 5.58 6.11 2.44 5.6 5.82 6.32 6.23 5.89 

Sweden 2.33 2.07 2.81 4.15 3.77 5.24 4.4 5.27 5.07 
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Table 2: Comparison of the accuracy measure mean absolute percentage error 

(MAPE) with the later/earlier ratio method (L/E), 5-year-average method (5-y-a), 

and the quasi-Poisson Serfling model (QPS) of the forecasts from epi-year 2012/13 

through epi-year 2020/2021, by country. Bold numbers indicate the lowest and 

therefore best MAPE value between the three methods compared by country and 

month.

Discussion 

The years 2020-22 will long be remembered as the years of the greatest pandemic to 

hit the world since the Spanish Flu of 1918-1920. For epidemiologists, public health 

researchers, and demographers, the pandemic has fostered many research questions. 

What methods and models are best suited to monitor and predict the severity of the 

current or future pandemics? And what lessons are to be learnt for non-pandemic 

mortality, or other kind of mortality shocks?  

Mortality forecasting depends on data availability and data quality [29]. One limitation 

in infectious disease forecasting is that methods are very demanding in terms of 

information (cause mortality data, hospital data, mobility data, etc.). In theory-based 

models, e.g., compartmental models, estimates for case fatality rate, infection fatality 

rate, basic reproductive numbers (R0), and other key parameters essential in 

modelling, might be unavailable or inflated. Input data are usually available in highly 

specific settings, e.g., hospitals and care homes, leading to predictions produced on a 

small scale (3-32). Early during health shocks, registration systems are often not in 

place and limited data are available.  

The few examples of all-cause mortality forecasts during severe mortality conditions 

are limited to seasonal influenza, such as the FluMOMO model, extending the 
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EuroMOMO model to measure excess death [11]. However, these models require 

information other than mortality, usually data collection of indicators of temperature 

and influenza activity provided by surveillance systems, which are voluntary and 

insufficiently systematic and detailed [40]. Excess death is retrospective and does not 

permit a timely assessment. Furthermore, counterfactual estimates of baseline 

mortality might be outdated over several years.  

Our study has proposed a novel method to produce realistic one-month-ahead 

forecasts of overall mortality, while requiring minimal input data and assumptions. 

The later/earlier method incorporates important features of mortality, learning from 

past seasonality of deaths and from the current yearly variable level of mortality. This 

ensures a flexible structure for forecasting in normal epidemic years, during and after 

a major shock, e.g., the COVID-19 pandemic. Moreover, the method can be extended 

to forecast other phenomena that vary periodically.  

The main strength of the later/earlier method is that it requires minimal input. The 

choice of predicting all-cause mortality is particularly suitable for timely, realistic 

predictions. It avoids bias in causes of death registration (especially in the context of 

emerging pandemics), and issues of standardization of cause-of-death classification 

across countries and time. Furthermore, all-cause mortality data are usually available 

more readily, compared to, for instance, “COVID-19 death” to be confirmed by a testing 

procedure, or cause-specific deaths requiring a diagnosis.  

The proposed forecasts rely on the assumption of stationarity of the series of 

later/earlier ratios. In our application, tests for stationarity proved that the assumption 

was met. If the assumption were not to hold, time series methods could be used to 

remove non-stationarity from the series of later/earlier ratios.  
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Conclusion 

Mortality monitoring is fundamental to health planning, risk assessment and public 

health action. Realistic and comparable forecasts are required to identify and react to 

changes in mortality patterns in a timely manner. In this study, we introduced and 

applied the later/earlier method to forecast monthly mortality. We applied it to four 

countries with different population sizes, and variation in pandemic phases and death 

tolls during the COVID-19 pandemic. Using this method, it proved possible to predict 

one month ahead the number of who would die. The forecasts produced showed to be 

competitive in terms of accuracy when compared to the well-established 5-year-

average method and the quasi-Poisson Serfling regression.  

The later/earlier method might serve statistical offices and surveillance systems in 

closely monitoring mortality progression, especially when little information is 

available, as it requires limited input data and no information on the spread of 

infectious diseases or cause of death. The method is flexible to changes in all-cause 

mortality because it assumes a seasonal mortality structure across epidemic years and 

forecasts adjusting it to the level of mortality within the given epidemic year. The 

later/earlier method might provide provisional estimates in the case of delays in 

registration. Given the pressing demand for vital statistics during the COVID-19 

pandemic, statistical offices should continue to improve the release and the timing of 

reliable mortality data.  
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