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Abstract

The co-administration of drugs known to interact has a high impact on morbidity,
mortality, and health economics. We study the drug-drug interaction (DDI)
phenomenon by analyzing drug administrations from population-wide Electronic
Health Records (EHR) in Blumenau (Brazil), Catalonia (Spain), and Indianapolis (USA).
Despite very different health care systems and drug availability, we find a common
large risk of DDI administration that affected 13 to 20% of patients in these
populations. In addition, the increasing risk of DDI as patients age is very similar
across all three populations but is not explained solely by higher co-administration
rates in the elderly. We also find that women are at higher risk of DDI overall— except
for men over 50 years old in Indianapolis. Finally, we show that PPI alternatives to
Omeprazole can reduce the number of patients affected by known DDls by up to
21% in both Blumenau and Catalonia, and 2% in Indianapolis, exemplifying how
analysis of EHR data can lead to a significant reduction of DDI and its associated
human and economic costs. Although the risk of DDIs increases with age,
administration patterns point to a complex phenomenon that cannot be solely
explained by polypharmacy and multimorbidity. The lack of safer drug alternatives,
particularly for chronic conditions, further overburdens health systems, thus
highlighting the need for disruptive drug research.
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1. Introduction

Adverse drug reactions (ADR) are noxious or unintended effects related to drug
administration. ADR are a major public health problem due to their impact on
morbidity, mortality, and health economics [1, 2]. The co-administration of drugs may
cause ADR from a drug-drug interaction (DDI), defined as the effect one drug has on
another either at the pharmacokinetic or pharmacodynamic level. ADR have been
associated with 4.2% to 8.4% of all hospital admissions [2, 3], and of these, about
51% are related to DDIs [2]. These numbers increase with polypharmacy. The risk of
ADR-related hospital admission goes up from five-fold for patients treated with more
than three drugs, to nine-fold for those treated with more than 10 drugs [2]. Because
instances of polypharmacy increase due to higher prevalence of multimorbidity (the
cooccurrence of two or more diseases in the same patient) with aging, so does the
risk of DDIs [4, 5]. For instance, a study analyzing elderly outpatients in six European
countries finds that 46% of outpatients had at least one potentially significant DDI,
and 10% had severe interactions [6].

Factors in addition to age, such as patient sex [5, 7], errors and lack of information
in ambulatory care [8, 9], and number of physicians prescribing drugs [10], are known
to also increase the risk of DDIs. Often, physicians are unaware of the complete list
of the drugs their patients are taking [9]. To counter this, computerized health
information systems (HIS) such as Electronic Health Records (EHR), drug interaction
software, and decision support systems have been developed to proactively screen
for DDIs and alert physicians and pharmacists [11]. Even though reports of
preventable ADR-related hospital admissions vary widely, from 24-52% [12, 13] to
77-92% of all ADR-related hospital admissions [2, 14], HIS attempt to lower these
rates. However, HIS alone are not enough to prevent prescription errors, as
physicians may simply dismiss alerts [15]. Together, these distinct factors paint a
picture of a complex DDI phenomenon with worrying direct consequences for both
patients and health systems. For instance, our own analysis revealed that DDlIs likely
account for a significant financial burden to public health, reaching 2 dollars per
capita in a city in Brazil during an 18-month period —extrapolated to an expenditure
of $565M for the country in the same period [5].

To better untangle the factors involved in the global DDI phenomenon, we analyze
administration patterns retrieved from EHR from three large populations with distinct
public and private healthcare systems: Blumenau (Brazil; pop. 338,876), Catalonia
(Spain; pop. 7.6 million), and Indianapolis (USA; pop. 876,682). We study
demographic variables, such as age and sex, as well as drugs involved in DDlIs in all
three populations in detail. In addition, we evaluate the role of polypharmacy and co-
administration by building a statistical null-model that shuffles drug labels while
accounting for cohort-specific drug availability. Finally, we demonstrate the
population-level impact of individual DDIs by simulating administration of drug
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alternatives to Omeprazole, a commonly prescribed proton pump inhibitor with
several known and avoidable interactions.

2. Results

2.1 Population comparison

In order to best compare the three populations, we first analyze the initial 18
months (the smallest temporal window available, for Blumenau) of administrations in
each population. This is necessary as longer study periods increase the chances of
observing co-administrations and DDIs and could bias our conclusions. We find that
140, 814, and 1,228 unique drugs were dispensed respectively in Blumenau,
Catalonia, and Indianapolis, with 106 drugs common to all three populations (see fig.
S4A). The three populations present a very similar risk of co-administration (RC) with
the largest for Blumenau (76.99%), followed by Catalonia (75.78%), and Indianapolis
(74.16%). This risk increases to 89.83% for Catalonia and 75.53% for Indianapolis
when we analyze all available data (11 and 2 years, respectively; see table S2).

Given the common set of 106 drugs, we observe 149 known DDI pairs co-
administered in all three populations (fig. S4B). The three populations also observe a
similar risk of drug interaction (R/), with the largest again for Blumenau (12.51%), but
closely followed by Indianapolis (12.12%), and then Catalonia (10.06%). This risk
increases to 20.36% for Catalonia and 13.04% for Indianapolis when we analyze all
available data (11 and 2 years, respectively; see table S2). Further leveraging all
available data we show that the DDI phenomenon is more similar between Catalonia
and Blumenau (0.52, Spearman correlation, see fig. S4C), in comparison to
Indianapolis and either Catalonia (0.3) or Blumenau (0.27).

2.2 Sexrisk comparison

We observe only a slightly higher but significant relative risk of co-administration
for women in the three populations (eq. 8): Blumenau (RRC" = 1.07), Indianapolis
(RRC" = 1.06), Catalonia (RRC" = 1.05) (see table 1). This risk increases substantially
when focused on interacting drugs, especially in Blumenau (RRI" = 1.54), but is also
high in Catalonia (RRI" = 1.25), and present in Indianapolis (RR/" = 1.12). Drug
combinations that cause moderate interactions, which should be used only under
special circumstances because of their clinically significant outcomes, are the most
co-administered in all three populations, and drive the differences between sexes
(see Table 1).
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Table 1. Relative risk for women (RRW) of drug co-administration (RRCW) and interactions (RRIW);
the latter is also computed for types of interactions as per drugs.com (minor, moderate, and major).
The percentage of patients of each sex (M = man; W = woman) for each case is also shown. Values
shown for all three populations during the first 18 months of the study. Asterisks denote statistically
significant relative risks based on Fisher’s exact test results.

Blumenau Catalonia Indianapolis
RRW % W - M | RRW % W- M | RRW % W - M

Co-administration (RRCY)  1.07*  (79.08% - 74.06%) | 1.05*%  (77.39% - 73.88%) | 1.06*  (75.88% - 71.82%)
Interaction (RRIY)  1.54%  (14.64% - 9.49%) | 1.25%  (11.08% - 8.84%) | 1.12%  (12.69% - 11.36%)

Minor Interaction  0.81% (0.36% - 0.44%) 1.27* (0.26% - 0.2%) 1.02 (1.13% - 1.1%)
Moderate interaction — 1.59* (11.3% - 7.1%) 1.4% (8.31% - 5.93%) 1.12% (10.67% - 9.49%)
Major interaction ~ 1.53*  (6.25% - 4.07%) | 1.08%  (3.17% - 2.95%) | 1.02  (4.87% - 4.76%)

2.3 Age risk comparison

To analyze the effect of patient ageing on the risk of drug co-administration and
DDIs, we divide patients into age intervals of 5 years, based on their age at the time
of administration (see section 4.4). As a well-known polypharmacy phenomenon, the
risk of co-administration (RCY"*?, eq. 10) increases with age in all three populations
as depicted in fig. 1a; fig. S5 depicts the proportions of patients per number of drugs
simultaneously co-administered. It is noteworthy that there is a drop in RC in the 10-
14 age range for all three populations. Patients in the 15-59 year-old range in
Catalonia have the lowest RC, although the largest RC is also observed in Catalonia
for patients older than 59. Conversely, it is in Indianapolis that the largest RC is
observed for 20-59 year-old patients.

The risk of a DDI (RI"*¥?, eq. 11) increases with age from less than 0.2% of patients
in the 0-4 year range, to up to 33.6% of patients over 90 years-old (see fig. 1b). After
the age of 75, Rl is at least 20% for all three populations, and over 32% for Blumenau.
Interestingly, all three populations display monotonically increasing Rl with age
(except for the oldest two age groups in Blumenau), despite their widely different
cultures, available medications, and health care systems. Despite this, there are some
noteworthy differences among the three populations as well. For instance,
Indianapolis has the highest R/ in patients age 0-39 as well as those older than 85.
Blumenau, on the other hand, has the highest R/ for patients age 40-84, being
Catalonia the one with the lowest R/ across all age groups, even though its patients
age 60-90 have the highest RC (compare fig. 1a&b).

To evaluate whether the observed increasing R/ with age in all three populations
(fig. 1b) is explained by the also increasing RC, we build a statistical null model,
marked in fig. 1c-e with asterisks, which yields the expected RI*¥?] for each age
range [y1,y2] if patients were prescribed (age-specific) drugs at random. Random
prescription of drugs is of course oblivious to know DDI information, so one would
expect actual prescription—given available information about DDI—to result in lower
risk than the null model. Indeed this is observed for younger age groups, as the actual
Rl is lower than that of the null model with random drug administration. Thus, younger
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patients are at a lower-than-random risk of DDIs for their rate of drug co-
administration. However, and much to our surprise, for patients over 20 years of age
in Catalonia and over 40 years of age in Blumenau and Indianapolis, the actual R/
significantly surpasses what would be expected by chance: a worse-thanrandom
chance of administering DDIs. This means that the higher risk of drug interactions
faced by older age groups cannot be explained solely by increasing polypharmacy.
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Figure 1. Risk of co-administration and interaction by age during the first 18 months of the studies.
Green, red, and blue lines denote measurements for Blumenau, Catalonia, and Indianapolis,
respectively. (a) Risk of co-administration of drugs, RCY1¥? (eq. 10). (b) Risk of co-administration of
drugs known to interact, RIV¥?] (eq. 11). (c-e) RI1¥2] against respective null model RIP2l in (c)
Blumenau, (d) Catalonia, and (e) Indianapolis. Circles denote the values obtained with the real data,
while the asterisks denote the values obtained using the null model. The associated relative risk (eq.
13) is shown above the points. Asterisks denote significant differences (Fisher’s exact test).

2.4 Sexrisk by age comparison

To study the role of sex in the observed age-associated risk of co-administration
and DDI during the first 18 months of data in all three populations, we also analyze
men and women separately. Figure 2a-c shows that women consistently have a
higher risk of drug co-administration (RRC", eq. 8) throughout their lifetime in all three
populations, when compared to men. Nonetheless, this relative risk is typically small,
being significant in almost all age ranges in Catalonia and only in specific age ranges
in the cases of Indianapolis and Blumenau (15-29 years old). Overall, in Catalonia, we



observe the smallest RRC" across all ages, with greater sex imbalance in co-
administration observed in Blumenau and Indianapolis showing; across most age

groups in the former, and greater imbalance for women only in age group 15-44 in
the latter.
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Figure 2. (a-c) Risk of drug co-administration, RC¥219, and (d-f) interaction, RIY1¥219, by age and
sex (as defined in section 4.6) for Blumenau, Catalonia, and Indianapolis in the first 18 months of
administration. Red and blue colors denote the risks in women (g = W) and men (g = M), respectively.
Relative risks of co-administration (RRCY1¥2lW) and interaction (RRIY*2W) for women per age group

displayed above the points (as defined in section 4.5 and section 4.6). Asterisks denote significant
differences (Fisher’s exact test).

The cross population comparison of the risk of sex-related drug interaction (RR/",
eq. 9) across age groups, reveals some similarities as well as more nuanced
differences. RRI" is higher for women in Blumenau and Catalonia in almost all age
ranges, with the exception of younger age groups (10-14 in Blumenau and 0-14 in
Catalonia as shown in fig. 2d-e). In contrast, in Indianapolis, men are at a higher risk
of DDI in the 50-89 age range, significantly so for patients aged 50-64, as seen in fig.
2f. Nonetheless, the relative risk of interaction reaches higher values for women than
for men in all three populations. In Catalonia, which presents the most sex-balanced
scenario across age groups, women aged 25-59 face a significant risk of interaction
in comparison to men near or above 20% (RRI*>*%*" > 1,19). Interestingly, when we
analyze all 11 years of data for Catalonia, the risk for younger women is also above



20% with RRI">** > 1.2 (see fig. S6e). In fact, when analyzing all 11 years worth of
data, the largest relative risk of DDI for women is observed in the 15-29 age range,
which correlates with higher Ethinylestradiol administrations in the year 2012 (fig. S7a
and fig. S8d-e).

In Indianapolis, women aged 15-44 face a risk of interaction at least 26% higher
than men (RRI">**" > 1.26), peaking at RRI****" = 1.76. In Blumenau, women aged
25-64 face a risk of interaction in comparison to men near or above 30% (RR/*>54" >
1.29), reaching a peak at RRI"***"=1.61. In summary, across the three populations,
women between 15 and 49 face a substantially higher risk than men of administering
a known DDIl—the largest risk is observed in Blumenau for women aged 15-19
(RRI'19W =2 05). When compared to the null model (R11¥1¥2), we note that the worst-
than-random risk of interaction happens earlier for Catalan women (15-19 age range)
than for men (20-24) (fig. S9). For Blumenau and Indianapolis there is no sex
difference when comparing to the null model.

Naturally, DDIs can cause different levels of adverse events, from mild headaches
to patient hospitalization due to liver damage complications. Thus, we study the sex-
associated differences based on the severity of the DDI, by tallying the number of
women and men in each age range while accounting for minor, moderate, and major
DDIs. DDI severity is extracted from drugs.com [16] (see section 4.4). Results are
shown in figs. S10 and S11 and indicate that moderate DDIs are the most common
with increasing patient age. In addition, in Indianapolis, the shift in gender-associated
risk is largely explained by moderate DDIs, more common in women 15-49 years old
and in men over 50 (see fig. S10j). An interesting pattern of elevated risk for major
DDIs in older men is also present in both Catalonia and Indianapolis, but not
Blumenau. In Catalonia, men have a higher risk of major DDlIs in the ages 50-84 (see
fig. S10g, while in Indianapolis men have a higher risk of major DDlIs in ages 45-84
(see fig. S10k). Since drugs.com is tailored to an U.S. audience, drugs administered
in other countries and their associated interactions may not be included in the site.
The differences in the risk of administering these DDI is very similar in the three
populations, being higher for women in Blumenau, and for men in Catalonia and
Indianapolis.

2.5 Drug interaction networks

To better characterize the DDI phenomenon in each of the three populations, as
described in section 4.7, we build drug-drug interaction networks shown in fig. 3 and
figs. S1 to S3.

Nodes are colored based on their drugs.com category and sized based on the
probability that patients prescribed the drug will experience a DDI (eq. 12). Edge width
represents the strength of drug interaction (eq. 6) and edge color denotes the sex-
associated relative risk of a DDI (eq. 9), with red (blue) denoting higher risk for women
(men). An interactive version of these networks can be explored at http://disease-
perception.bsc.es/ddinteract/.
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Figure 3. Catalonia DDI Network. Nodes denote drugs iinvolved in at least one co-administration known
to be a DDI. Only nodes connected via edges with rf’ ;> 0.18 are shown for clarity. Node color

represents the highest level of primary action class, as retrieved from drugs.com. Node size proportional
to P(UP) per eq. 12, the probability of patients being affected by a DDI involving drug i. Edge weights
denote strength of interaction, T, per eq. 5. Edge colors denote RRIf]., where g € M, W, to identify DDI

edges that are higher risk for women (red) or men (blue). Color intensity for RRIf]. varies in [1,5]; that is,
values are clipped at 5 for clarity.

These networks help us visualize not only which drugs are most involved in
interactions but also to identify pairs with the same sex-associated bias (edge color)
in all populations. For instance, considering the 149 DDIs common to all three
populations, 56% are associated with increased risk for the same sex (56 DDIs for
women, 27 for men). In addition, the network representation facilitates inferences for
specific drugs or categories. For instance, drug pairs associated with Fluconazole,
contraceptives, or benzodiazepines tend to be associated with higher risk for women,
while most of the interactions associated with anticoagulants (Warfarin with
Phenytoin, Prednisone, Amiodarone, etc) represent higher risk for men.

Conversely, there are drug pairs where the sex-associated bias is reversed in at
least one population, with Blumenau presenting the highest discordance: 27 pairs.
Interestingly, 11 of these 27 discordant interactions are major DDIs, including the
concomitant use of ASA (anticoagulant) and Ibuprofen (anti-inflammatory), a
combination that reduces the effectiveness of aspirin in preventing stroke and
increases the risk of developing gastrointestinal ulcers (see table S5).
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Figure 4. Top 20 drug interactions with the highest difference between RIV1¥2MW and RIY1Y21M (see

eg. 11). Colors denote a higher risk of interaction for women (red) and men (blue). Markers (+ and -)
denote significantly higher risk of DDI administration for the respective sex after correcting for multiple
testing (FDR < 0.05). Note color scale is different across populations, as the maximum and minimum
differences in RIV'¥? are different between populations.

2.6 Drug interactions driving sex-associated biases

Among the shared drug interactions in all three populations (149), we observe a
strong association between Omeprazole and both Clonazepam and Diazepam for
women in Blumenau and Catalonia (see red cells in fig. 4ab), but not in Indianapolis
(see fig. S12). This is particularly supported by the over administration of Omeprazole
in the two populations (see table S9). Similarly, the risk of co-administering Alendronic
acid—used to treat osteoporosis—and nonsteroidal anti-inflammatories is higher for
women, paired with Diclofenac in Catalonia and lbuprofen in both Blumenau and
Catalonia. This DDI may result in increased risk for stomach and intestine irritation.
The co-administration of Ethinylestradiol (contraceptive) and Amoxicillin (antibiotic) is
significantly high in all three populations. This DDI may result in reduced
contraceptive effectiveness, thus increasing the risk of unwanted pregnancy.
Interestingly, the major interaction between ASA and Ibuprofen previously observed
to be associated with an higher risk for women in Blumenau [5], is conversely
associated with a lower risk for women in the other two populations (see figs. 4 and
S12), suggesting a particularity of the Blumenau health care system. This result points
to the existence of cultural or social factors that play a role in this sex-associated
bias. Another interesting DDI case that may point to social or cultural factors is the
drug pair Lidocaine-Carvedilol, that only presents a higher risk for men in Indianapolis
(see fig. S12).



Looking further at the DDIs with high sex- and age-associated risks in each
population (Figure 4), we notice in Blumenau a significantly higher risk for women of
co-administering Fluoxetine (major depression treatment) with Tramadol (opioid
analgesic) or Amitriptyline (tricyclic antidepressant). In Catalonia, for men over 40
years old, the risk of co-administering anticoagulants such as ASA and
Acenocoumarol either with each other or with anti-diabetic drugs (Gliclazide and
Glyburide), Allopurinol (gout treatment), Prednisone (glucocorticoid anti-
inflammatory), or antibiotics (Ciprofloxacin and Levofloxacin) is significantly higher
(see fig. 4b). Lastly, in Indianapolis young women are at a significantly higher risk of
co-administering Oxytocin, used to induce labor, and Phenylephrine, used to
increase blood pressure (see fig. 4c). For women older than 55 in Indianapolis, there
is also a significantly higher risk of co-administering Levothyroxine, used to treat
hypothyroidism, with Calcium, which can change the absorption levels of
Levothyroxine. Conversely, we also found drug pairs with an increased risk for men.
For instance, the combination of two anticoagulants, ASA and Heparin; Verapamil (a
calcium channel blocker) and Midazolam (benzodiazepine); Lidocaine (a local
anesthetic) with Metoprolol and Carvedilol (a beta blocking agent); and anti-diabetic
drugs, such as Insulin lispro and Insulin glargine, with ASA and Metoprolol, a betat
receptor blocker used to treat high blood pressure that can increase the risk of
hypoglycemia. Specific interacting pairs can be visualized at http: //disease-
perception.bsc.es/ddinteract/

2.7 Alternative drug treatments to avoid DDIs

While the observed DDIs involving Omeprazole and either Clonazepam or
Diazepam are mostly irrelevant in Indianapolis (administered by 256 and 135 patients,
respectively), they are the most co-administered drug pairs in Blumenau (5,076, 998)
and Catalonia (47,811, 253,473). Here, we analyze the preferential co-administration
of Omeprazole over alternative proton-pump inhibitors (PPI) that have no known
drug-interaction with benzodiazepines in Catalonia (see section 4.9). Catalonia
presents a significant preferential co-administration of Omeprazole with Diazepam or
Clonazepam, as compared to other PPl as a group (i.e., Esomeprazole, Pantoprazole,
Rabeprazole and Lansoprazole) (OR = 17.6 and 12.2, respectively) or individually (see
table S6). Conversely, in Indianapolis, there is a significant preferential administration
of alternative PPl in combination with Diazepam or Clonazepam (OR=38.3 and 13.5).
Importantly, alternative PPI are available for administration in Catalonia, which is not
the case for the public health care system of Blumenau where they can only be
purchased from private pharmacies. Indeed, 12 of the 16 (75%) drugs associated
with Omeprazole interactions can be avoided using an alternative PPI.

Based in this observation, we first simulate for Catalonia the population-level effect
of removing the Omeprazole-associated interactions from the overall DDI risk. In this
simulation, we replace Omeprazole with currently available alternative PPI and
recalculate the DDI risk. We find that administering alternative PPI reduces the overall



levels of DDI in Catalonia by 23.28% in women and 20.09% in men (see fig. S16b).
The majority of these avoidable Omeprazole interactions are generating moderate
adverse effects (see fig. S13b), which affect 18.85% (12.31%) of men (women) and
can be avoided in 34.82% and 32.9% of the patients. For Indianapolis, the same
simulation only reduces overall DDI levels by 2.55% in men and 2.56% in women (see
fig. S16g-h). Though no Omeprazole substitutes are available free of charge in
Blumenau, we followed the same simulation procedure using the alternatives
available in Catalonia. Interestingly, the percentages of preventable interactions are
almost identical to those in Catalonia, 23.19% for women and 19.51% for men (see
fig. S16a-c).

3. Discussion

This is the first study to analyze DDI administration patterns in three large
populations with distinct health care systems. In total, we analyze drug administration
records from almost six million patients from up to 11 years worth of data. Despite
different study periods and data resolutions for each population, similar patterns were
revealed. The risk of drug co-administrations and interactions by age are both similar
for the three populations (fig. 1ab). This shows that the DDI phenomenon is a public
health burden in both developed and developing nations regardless of access to
medication or type of health care system. Furthermore, our statistical null model,
designed to account for polypharmacy while preserving the same number of
prescribed drugs and co-administrations per age, shows that the much higher risk of
DDI in older age (in all populations) is not solely explained by higher risk of co-
administration in those age groups. Indeed, this worrisome result previously observed
in Blumenau [5], is here shown to be even worse in Catalonia, where patients have a
worse-than-random risk of DDI starting early in their twenties—reaching 2.7 fold
higher-than-random risk for 55 to 59 year-olds (see fig. 1d). This worse-than-random
risk of DDI remains even when separating men and women populations (see fig. S9),
questioning multimorbidity treatments and its current focus on geriatric patients.

Also similarly observed in all populations is a higher risk for women of both drug
co-administration and interactions in comparison to men. The general risk of co-
administration for women increases as they age, although the largest difference from
men occurs during peak reproductive age (age ranges 15-29, see fig. 2 and fig. S6)
which may be explained by the greater use of the healthcare systems by women
during these years [17]. On the other hand, the sex imbalance risk is generally much
higher for interactions than for co-administration (see fig. S17). There are possible
explanations as for why women have a generally higher risk of DDI. For instance,
some drugs are simply women-specific, such as hormones and contraceptive drugs.
Thus, women-specific drugs may partially explain the higher risk of DDI observed,
particularly for younger women. The DDI pair Ethinylestradiol and Amoxicillin was
jointly given to 0.98% of Catalan women, but only to 0.0008% of men. In Blumenau,



this same drug pair was given to 0.6% of women, and to no men. Unfortunately, we
cannot infer from our data whether prescribers informed the patients of this DDI and
potential need for additional contraceptive methods during co-administration.

Additional reasons for the generally observed higher risk for women come from
the fact that some diseases are more likely to affect women. For instance,
osteoporosis is a skeletal disorder characterized by compromised bone strength [18]
and known to be diagnosed more frequently in women [19]. This sex-associated
prevalence is clearly observed in our data for the populations with disease codes
(Catalonia and Indianapolis, see fig. S15). Bisphosphonates, such as Alendronic acid,
are used to treat osteoporosis and, as a consequence, the risk of DDI related to
Alendronic acid is higher for women, especially those over 50. For instance, the risk
of interaction for women aged 60-64 between this drug and Ibuprofenis 1.8 and 1.34
for Catalonia and Blumenau, respectively. For men at the same age this risk is only
0.1 and 0.22 in both populations (see table S7). The same can be seen in Indianapolis
albeit at a smaller scale. The risk of interaction for Alendronic acid and lbuprofen is
only 0.04 for women in Indianapolis at the same 60-64 age range. And virtually no
men administered this DDI in Indianapolis (see table S7). This smaller risk for
Indianapolis is further supported by the comparatively small administration of
Alendronic acid (0.5% compared to 3.5% and 1.7%, see table S8) which likely stems
from the decreased use of bisphosphonates in the US after the 2010 FDA
bisphosphonate drug safety communication [20].

A deviation from the general trend of increased DDI risk for women is particularly
noteworthy. In Indianapolis, men over 50 years of age do have a higher risk of DDI
than women. This difference is driven by two factors. First, less frequent use of
Omeprazole in combination with benzodiazepines, widely used for women in the
other two populations and correlated with significantly higher risk there (see table S3).
Indeed, when we remove Omeprazole administration in Catalonia from our analysis
(see section 2.7), men over 60 also show higher risk of DDI than women (fig. S14).
Second, the administration of some particular DDI that are given significantly more to
men in Indianapolis, such as Verapamil-Midazolam, Metoprolol-Lidocaine, and
Lidocaine-Carvedilol (see fig. 4c). These observations highlights how our study also
reveals specifics of sex-related bias in the DDI phenomenon for each population.
Given the tools we provide for further analysis, other researchers interested in this
problem can further study and characterize specific DDIs of interest.

Another facet of the complex DDI phenomenon is patient multimorbidity. The
proportion of patients with multimorbidities increases substantially with age, with
almost 80% of the people suffering from at least two morbidities at the age of 65 [21].
As classical treatments are disease independent, patients with multimorbidities are
particularly at increased risk for DDI. For instance, patients with type 2 diabetes are
known to be at higher risk for cardiovascular diseases and thrombotic complications
[22]. To treat both conditions, antidiabetic drugs such as Glyburide, Gliclazide, Insulin
lispro, and Insulin glargine are often combined with anticoagulants such as ASA and



Acenocoumarol (the last being dispensed only in our Catalonia data), which increases
the risk of hypoglycemia. Our work highlights these are among the top 10 DDIs ranked
by the number of patients they affect in all three populations. In addition, several of
these drugs are usually co-administered for long periods of time, as characterized by
our strength of interaction measure (see table S3). Also related to anticoagulants,
gout, an inflammatory disease characterized by elevated levels of uric acid, is known
to increase the risk of thrombosis [23]. As a potential consequence, we find a higher
than expected chance of concomitantly prescribing Allopurinol with Warfarin (see
table S1), a DDI that increases the risk of bleeding due to the potentiation of the
anticoagulant effect [24]. Interestingly, the incidence of type 2 diabetes, and gout are
higher for men over 50 in Catalonia (fig. S15) and can potentially explain the higher
administration of the above mentioned DDls.

An important aspect of our study is to exemplify how our large-scale study of the
DDI phenomenon can lead to actionable interventions for public health benefit. For
that purpose, we studied the role of the proton pump inhibitor Omeprazole on the
observed DDIs in the three populations. PPl are the leading therapy for upper
gastrointestinal disorders and prevention of gastric ulcers associated with the use of
non-steroidal anti-inflammatories [25]. However, there is substantial evidence for
inappropriate over-prescription of PPI, particularly of Omeprazole [26-29]. For
instance, in 2008 it was estimated that 100 million pounds from the National Health
Service budget, and almost 2 billion pounds worldwide, were being spent
unnecessarily on PPI [28]. And four fifths of all PPl administrations in the UK were
associated with Omeprazole.

The lack of awareness, overuse, and misuse of PPI, together with the elevated
number of drug interactions associated with Omeprazole (Phenytoin, Methotrexate,
and several benzodiazepine derivatives, among others), makes Omeprazole one of
the most important culprits of DDIs. Indeed, in our study, Omeprazole is the 3 and
4™ most dispensed drug in Blumenau and Catalonia, respectively. Conversely, in
Indianapolis it is the 44™. Therefore, we simulated the substitution of Omeprazole with
alternative PPl—such as Pantoprazole and Lansoprazole—as a possible, but
actionable, public health intervention. Such an intervention would result in a reduction
of 20% of all men and 23% of all women currently administering a DDI in Catalonia
(fig. S16b). This means 156,210 women and 92,533 men would be DDI-free in
Catalonia if their Omeprazole prescription was substituted by another PPI. To put this
in perspective, assuming 10% [6] of these patients had to seek hospital care due to
this DDI, this intervention would amount to a total savings of 42 million euros for the
Catalan health care system (calculated based on the average hospitalization cost of
1,709.85 euros for Catalonia in 2020 [30]). In contrast, extending the simulation to
Indianapolis, results in a much smaller reduction of DDI risk (only 2.5% fewer patients
would have not been administered a DDI, see fig. S16c). This shows that in
Indianapolis the availability of PPI alternatives is being utilized to avoid known DDIs



or ADR involving this drug. Thus, as actionable interventions, our study suggests that
Catalonia should encourage prescription of available PPI alternatives.

Some limitations of our study are warranted. First, we assume that drugs
dispensed were administered for their complete treatment length. In reality, patients
may stop administration mid treatment, and prescribers may substitute drugs for
patients with complaints of adverse effects. Also, adverse drug reactions may in
some cases be avoided by separating drug intake during the day or adjusting dosage.
Thus, our results should be seen as a worst-case scenario for the administration of
known DDlIs. Nonetheless, since many still unknown DDlIs certainly exist and our
analysis only covers DDIs known in 2011 (see section 4.4), the true importance of the
DDI phenomenon is likely larger than what we observed. In addition, the relatively
short study periods for Blumenau and Indianapolis compared to Catalonia may mask
shifts in drug availability policy. This certainly highlights the importance of pursuing
future studies with longer periods of observation as data becomes available.

In summary, our large-scale epidemiological analysis shows that DDls are certainly
a problem that affect a substantial proportion of patients in the three distinct
populations studied. Ours is the first study to compare the DDI phenomenon in three
large and distinct health care systems, both public and private, and follow close to 6
million patients for more than a decade. Because we studied very diverse populations
and health systems, from developing to developed countries, our results likely
generalize to a range of other nations where access to EHR data is still difficult or
non-existent. Of particular importance is that similar gender and age biases exist in
the administration of known DDls in all observed public health systems, albeit with
some context-specific differences we also characterize. Thus, physicians, drug
developers, and health care professionals should be aware that the existence of sex
and age biases need to be taken into consideration in drug management. The
analysis, results, and tools we provide, can be used by others to investigate additional
actionable interventions. Indeed, our study emphasizes that much more attention
should be put to understand and reduce the DDI phenomenon and its biases.
Because interactions between cultural, economical, and biological factors are likely
at play, in addition to computational and epidemiological studies such as ours, the
DDI phenomenon calls for greater interdisciplinary collaboration. We hope that by
uncovering such a large footprint of the DDI phenomenon, with the burden it
represents to patients and health care systems alike, we also contribute to awareness
of the need to accelerate disruptive drug research toward new and safer therapeutic
targets, particularly for chronic conditions.

4. Methods

4.1 Data - Blumenau

Drugs reported in the Pronto HIS are available via medical prescription only, free
of charge, and administered to citizens of Blumenau. Via Pronto, doctors prescribe



medications by selecting drugs and dosages, then pharmacists dispense them by
selecting quantity. This allows us to estimate the length of drug administration in
days. We note patients are not required to retrieve drugs from the public system.
They can buy prescribed medications from private pharmacies at their own expense,
without such transactions being recorded in Pronto. Drug names originally in
Portuguese have been translated to English, disambiguated, and matched to their
IDs in DrugBank, an open-source drug database that contains DDI information.
Medications with multiple drug compounds have been split into their constituent
drugs. Administered substances not matched in DrugBank were discarded. The data
includes eighteen months (Jan 2014-Jun 2015) of anonymized drug administration
and patient demographics retrieved from Pronto. It is the same data used in Correia
et al. [5] except for the removal of ophthalmological drugs, topical drugs, and
vaccines from the analysis. In total, we analyze 140 unique DrugBank IDs dispensed
to 133,047 patients. The study was approved by Indiana University’s Institutional
Review Board.

4.2 Data - Catalonia

Monthly drug billing data from the HIS includes drugs identified by their
Anatomical Therapeutic Chemical (ATC) classification, which contains five levels of
detail. We use the finest detail level—chemical substance—and remove topical
drugs. For comparison, we map ATC codes to DrugBank IDs. Importantly, we note
that: (a) a drug can map to more than one ATC code when it has different routes of
administration or therapeutic uses, and (b) some ATC codes represent combined
drugs. For simplicity, we aggregate all ATC code billing that matches a DrugBank ID
and split combined drugs into their constituent drugs. Only patients born before
January 2007 were included in the study. The data includes eleven years (Jan 2008-
Dec 2018) of anonymized drug billing data, disease diagnoses (ICD-10), and patient
demographics provided by the Catalan Health Institute and extracted from the
Information System for the Development of Research in Primary Care. In total, we
analyze 814 unique DrugBank IDs administered to 5,555,924 patients. The study was
approved by the Jordi Gol University Institute for Research Primary Healthcare ethics
committee.

4.3 Data - Indianapolis

Unlike the other populations, drugs in Indianapolis could have been administered
as prescribed by primary physicians as well as administered in a hospital setting. The
data includes drug quantity and treatment duration that allowed us to estimate the
length of administration in days. Similarly to the Blumenau data, we disambiguate
individual medication names and matched them to DrugBank IDs, and split
medications with multiple drug compounds into their constituent drugs. We removed
ophthalmological drugs, topical drugs, and vaccines from the analysis. The data



includes two years (Jan 2017-Dec 2018) of anonymized drug administration data,
disease diagnoses (ICD-10), and patient demographics from the Regenstrief Institute
for all three care levels of a major health care provider in the city of Indianapolis. We
analyze 1,228 unique DrugBank IDs dispensed to 264,607 patients. The study was
approved by Indiana University’s Institutional Review Board.

4.4 Drug-drug interactions

To ensure all DDIs found from the earliest dispensation dates in our study to the
most recent, we use the 2011 version of DrugBank as our drug interaction reference.
Following the notation proposed in Correia et al. [5], we denote patients by u € U,
and drugs by i,j € D, where U, € U represents the subset of patients dispensed drug
i, and D" < D is the subset of drugs dispensed to patient u. Since patients can be
administered a drug i multiple times during the study period, we denote the set of
distinct administration intervals a", (in days or months) of drug i to patient u as
AY = {a"*}. The total number of administrations and time units a patient u is
administered a drug i are denoted by o} = |A¥| and A} = Ya**. For Blumenau and
Indianapolis we are able to compute drug administration length in days. For
Catalonia, however, we only have monthly drug billing data, therefore, in this case,
a = Ai denotes the number of months drug i was administered to patient u. We
assume dispensed drugs were administered for the entire prescribed length.
Similarly, the number of distinct co-administration periods of two drugs (i and j) to

u

patient u and the length of co-administration are denoted byq;’; and 4; ;, respectively

(see fig. 5). To simply flag whether patient u co-administered drug pair (i,j) at least
once, we define a Boolean variable 1//:‘] € {0,1}:

v = (A > 0). (1)

Likewise, to flag the co-administration to patient u of drugs (i,j) that are known to
interact we define another Boolean variable (p;‘j € {0,1}:

¢1ifj = (‘//:] =1A é‘i,j = 1)’ (2)

where the symmetrical binary map A: DxD — {0,1} indicates whether every drug pair
(i)) € D x D is a known DDI in DrugBank (6, ; = 1) or not (5;; = 0).
For each observed DDI (V(pl.]. =1), we manually retrieve a severity score

s € {major, moderate, minor,n/a} from drugs.com [16], a website containing drug
information, including DDI descriptions, powered by the American Society of Health-
System Pharmacists and IBM Watson Micromedex. From these values, we compute
other quantities and sets per patient u, drug i, or drug pair (i,j).

To characterize the conditional likelihood of a drug pair (i,j) in the population, we
obtain the number of patients who administered the drug pair concomitantly, |Ul.‘f;. ,

and normalize it by the number of patients who administered one of the drugs in the



pair, to obtain the probability that patients who administered drug i also co-

administered drug pair (i,j):
124
%= o )

Values of 7;"]. closer to 1 indicate that drug j is usually co-administered with drug i in

the population, or vice-versa for ;/]f”l., as this measure is not symmetrical (7;”]. + ;33’;).
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Figure 5. Diagram of co-administration and interaction computation for Catalonia, Blumenau, and
Indianapolis. Two hypothetical patient-drug dispensing timelines with three drugs (i, j, & k) are
represented. In Catalonia (left), two drugs (i,j) are assumed to be co-administered if they were
dispensed and billed during the same month. In Blumenau and Indianapolis (right), two drugs are
assumed to be co-administered if they were dispensed for an administration period with an overlap of
at least one day. Drug administration lengths (in days for Blumenau and Indianapolis, and months for
Catalonia) are shown for each dispensation. The three possible pairwise comparisons (i,j), (i,k), and
(i,k) between the dispensed drugs are shown with their co-administration overlap marked with
backgrounds in either orange (not known DDI) or red (known DDI).

Since ;/lf”j does not differentiate if drugs i and j are concomitantly administered for

a short or long period of the time, and we assume that the length of DDI administration
is relevant for ADR, we also characterize the length of co-administration of drug pairs
to a patient u by calculating

= (4)

LT A -AY

Where 7;/; € [0,1]. This measure of normalized co-administration length per patient
differentiates between drug pairs with complete temporal overlap, (7;}; — 1), and with
a small temporal overlap (7;}; — 0). Its mean value for the cohort of patients who
administered drug pair (ij) concomitantly yields a measure of strength of co-
administration of the pair in the population:

u
ZuE Ulf//. Ti j

Vo= 5
= ©

This proximity measure defines a weighted, undirected graph T [31] on set D with
edges, r:”] € [0,1], that relate drugs in the patient population according to the strength



of co-administration (as inferred by normalized co-administration length). Graph TV
synthesizes the multivariate phenomenon of drug co-administration in a given
population.

To focus on the DDI phenomenon, we compute the strength of a DDI as:

Ti, j

= Ti/jxgi,j. (6)
It also defines T?, a subgraph of T¥ that contains only the known interacting drug
pairs observed in a given population (e.g., fig. 3). Graph T thus synthesizes the
multivariate DDI phenomenon in a given population as a network, which is further
refined in section 4.7. Naturally, a conditional likelihood of drug interaction can be

similarly obtained from eq. 3 as
7’51 = 1 X (7)

As noted above, this measure does not take into account length of DDI
administration, while eq. 6 does.

To test the significance of the observed DDIs in the population, we calculate
Fisher’s exact tests on the number of patients affected by each DDI, |Ul.‘i’j|, and the

Bonferroni adjusted p-value based on the total number of DDI found in each
population, ¢ = Yu € U} i,j € D¥ ¢;- Interacting drug pairs with a false discovery
rate (FDR) < 0.05 are considered significant and further analyzed.

For each population we calculate the risk of co-administration (RC) as the number
of patients who co-administered at least two drugs divided by the total number of
patients, |UY|/|U|. Similarly, we calculate the risk of interaction (Rl) as |U¢|/|U|,
denoting the risk of any patient in the population to be administered at least one DDI.

4.5 Sexrisks

The relative risk of co-administration (RRC) for women is computed as the ratio of
the conditional probabilities of patients administering at least one pair of drugs
concomitantly, given their sex:

w _ P(y*>0lueu™) _ [u¥W|/|u%|
RRCT = P(y>0lueUM) — |uwM|/|uM| ®)

The same risk for men is computed as RRCM = 1/RRC"Y. Similarly, we also compute
the relative risk of interaction (RR/) for women as:

w _ P(#*>0lueu") _ jutW/ju")
RRIT = P(#*>0lueuM) — |UM|/|uM| ©)

with RRI™ = 1/RRIY . Additionally, Fisher’s exact tests are used to calculate the
significance of the various relative risk measures.



4.6 Agerisks

To evaluate the effect of patient age in the DDI phenomenon, we bin patients into
5-year age groups (or age cohorts) to compute an age-dependent risk of co-
administration and DDI. In other words, the risk of co-administration for age group
[v1, y2] can be computed by simply constraining RC per age group:

|uwlyLyz]|

RCW1y2] — (10)

|lulyryz])*

Similarly, the risk of interaction for age group [y1, y2] is calculated as

_ |ueyLy2]|
T ubiyz))? (11)

RI1y2]

which we interpret as the risk of a patient in age range [y1, y2] being exposed to a
known DDI. Additionally, we parse age risk by sex and drug pair, by computing
RIY1Y219 for each sex g € {W, M} using eq. 11 for users u € U129, and RIi[jfl’yz]'g
for each drug pair i,j. These allow us to also compute relative risks constrained on
age ranges, sex, and drug pairs, such as RRIY1¥2W gnd RRIi[ﬁl'yz]’W. Note that due
to the temporal nature of our study, patient age is calculated based on their date of
birth and the date of the drug event. This means that individual patients may be
accounted for in multiple independent age ranges.

4.7 Drug-drug interaction network

To synthesize, depict, and analyze the DDI phenomenon captured by the EHR
data, we build a DDI network for each population where nodes represent drugs and
edges denote an observed and significant (per criterion in section 4.4) drug
interaction in the population. Each population network is defined by graph T?, further
refined such that edge width is proportional to P i the strength of DDI (eq. 6), while

edge color represents the sex-specific risk (eq. 9, but computed for each DDI as
Rlej) for women in darker red and men in darker blue. Further, node size denotes

the probability of patients who administered drug i to be exposed to a DDI associated
with that drug, and is computed as

P(UY) = ﬂ (12)

i’

where |Ui¢| is the number of patients who administered a DDI involving drug i. An
interactive application that allows the user to filter results and explore the associated
network is available at http://disease-perception.bsc. es/ddinteract/.

4.8 Null model

The null model, H}™¢, captures the expected increase in RI1¥2] with age, given
observed polypharmacy and patient demographics within each age group. We



assume a random administration of drugs to patients in a specific age group,
therefore maintaining the same number of unique drugs dispensed and co-
administered for each randomly drawn patient. Specifically, we randomly draw
|U>2]| patients from each age group [v1,y2]. Then for each patient u, we randomly
“dispense” |D*| drugs drawn from set of drugs that were observed to be dispensed
to patients in the same age group, DY'¥21, In other words, in the null model patients
“administer” the same number of drugs as in the observed real population, but the
drugs are randomly selected from the set of drugs observed to be prescribed for that
age group. Then, eq. 711 is calculated for the null model simulation and denoted by
RIVLY2l Arisk disparity between the actual data and the null model can be computed
as the relative risk

RR = RIY1»2l /RIy1y2], (13)

Additionally, Fisher’s exact tests are used to calculate the significance of the relative
risk measures. Furthermore, the null model also uses the same number of “co-
administred” w}‘j Y, drug pairs (ij) as observed in the real data, with the co-

administered drugs j also drawn randomly from the set D* of “administered” drugs to
user u in the null model. These random drug pairs are subsequently checked for DDI
status in DrugBank, as in the original analysis. We repeat this random sampling
process 100 times and compute all derived risk measures, as done with the original
data.

4.9 Removal of Omeprazole-associated interactions

Since Omeprazole is known to be over prescribed and has one of the largest
number of interactions observed in our study (see tables S3 and S9), we simulate the
replacement of Omeprazole with alternative PPIs in observed DDI cases. We use the
ATC drug classification system that describes chemical subgroups containing drugs
that could, in principle, be interchanged for the treatment of the same disease to
identify alternatives. Thus, as proof of concept, we focus on the PPl subgroup:
Omeprazole, Pantoprazole, Esomeprazole, Lansoprazole, and Rabeprazole. We then
replace, in each situation, Omeprazole with the alternative that avoids interactions
with other drugs and recalculate the previously described risk measures.

Data Availability
Data is available at: https://github.com/rionbr/DDI-Cat-Indy-Bnu
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