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Abstract  42 
 43 
Puberty demarks a period of profound brain dynamics that orchestrates changes to a 44 

multitude of neuroimaging-derived phenotypes. This poses a dimensionality problem 45 

when attempting to chart an individual’s brain development on a single scale. Here, we 46 

illustrate shifts in subject similarity of imaging data that relate to pubertal maturation 47 

and altered mental health, suggesting that dimensional reference spaces of subject 48 

similarity render useful to chart brain dynamics in youths. 49 

 50 
 51 
Introduction 52 
 53 

Recent availability of big data in the neurosciences and sparking technical advances 54 

have opened doors toward a system level understanding of high-dimensional, 55 

multimodal data, integrating information from genetic, behavioral and neuroimaging 56 

sources, amongst others1. Such deep phenotyping avenues are holding great promise 57 

to unravel the complexity and heterogeneity of mental disorders, where a multitude of 58 

factors have been identified as contributors to the risk architectures and clinical 59 

phenotypes2–4. Multimodal big data, however comes with the curse of dimensionality5 60 

or hurdles regarding how to efficiently and effectively integrate different information 61 

sources in biologically meaningful manners6,7.  62 

 63 

Previous research has approached the task of data integration from various angles, 64 

from data concatenation to sophisticated modelling7 such as similarity network fusion 65 

(SNF8). First application attempts of SNF to common brain disorders have illustrated 66 

its potential for deriving insights from heterogeneous populations such as those with 67 

psychiatric (e.g.9) or neurological (e.g.6) disorders. SNF is an unsupervised technique 68 

that integrates unique and complementary information from different data sources, 69 

thus placing individuals in a comprehensive and biologically informed feature space, 70 

which is defined by the similarity between subjects across all data modalities. To 71 

achieve this, SNF exploits the covariance between data modalities. Subsequent 72 

dimensionality reduction methods such as diffusion map embedding10 may reveal 73 

dominant axes of inter-subject similarity on which subjects can be localized by a single 74 

score.  75 
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 3 

Similar attempts of charting an individual’s position on a data continuum have recently 76 

shown success in psychiatry, where mapping dimensions of psychopathology can 77 

yield advantages over categorical systemse.g.,11,12. 78 

 79 

A key challenge in dimensions that are based on inter-subject similarity is that newly 80 

added samples can inevitably result in a change to the overall similarity structure. 81 

Consequently, the score that localizes an individual on the dimension is not stable as 82 

would be desirable in biomarker utilities, thus marking a disadvantage compared to 83 

other data-derived markers such as polygenic risk scores or measures of brain 84 

structure. To overcome this, we here propose a machine learning (ML) framework that 85 

learns the mapping from raw structural MRI features to the low dimensional brain 86 

embedding score and through supervised domain adaptation allows to transfer this 87 

mapping into new datasets without the need to recalculate the fused network. Figure 88 

1A describes the framework schematically. Our approach comes with advantages over 89 

modeling fused networks independently for individual datasets and timepoints: First, 90 

our ML model establishes a subject similarity reference space in an independent 91 

training sample, allowing for robust predictions at an individual subject`s level in 92 

unseen data. Second, domain adaptation offers flexibility to adapt the model to other 93 

datasets that have unique characteristics, such as repeated measures in a longitudinal 94 

design or heterogeneity that is commonly found in patient samples. To this end, we 95 

trained our model in the Philadelphia Neurodevelopmental Cohort (PNC)13 and 96 

withheld data from the target datasets that was used for domain adaptation. We 97 

validated our approach in an unseen longitudinal sample from the Adolescent Brain 98 

Cognitive Development (ABCD) Study14 and on a clinical population of subjects from 99 

the Healthy Brain Network (HBN)15 sample. Both datasets allow to investigate unique 100 

processes shaping the human brain in development, specifically pubertal maturation, 101 

and emerging psychopathology.  102 

 103 

Puberty depicts a phase of biological and psychological changes potentially mediated 104 

by neurodevelopment beyond the effect of age16–18. Variables assessing pubertal 105 

status can thus be more sensitive measures than age for studying brain maturation in 106 

youth (e.g.,19). Previous work revealed global reductions in cortical grey matter 107 

volumes and thickness with advanced pubertal maturation, with evidence from both, 108 
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cross-sectional and longitudinal data. These effects appear to be distributed across 109 

the whole cortex rather than being circumscribed to a specific set of regions (see 17 for 110 

a review). However, as different studies use different approaches to account for age 111 

and sex, inconsistencies exist in terms of effect sizes and effect directions, including 112 

those of opposing effect directions in males and females20,21. These conflicting 113 

observations might arise from certain methodological choices but also from individual 114 

variability in pubertal timing and progression through maturational stages. While all 115 

adolescents undergo the same pubertal stages, there is quite some variability 116 

regarding pubertal onset and tempo of changes, which has been linked to mental 117 

health conditions22–24. In females, earlier pubertal timing appears to be associated to 118 

worse mental health conditions (e.g.,22,25), while for boys both very early and very late 119 

onset has been linked to worse psychological outcome (e.g., 26,27).  120 

 121 

Given the close interplay between pubertal maturation, brain development and its link 122 

to emerging psychopathology, we aimed at investigating the sensitivity of brain 123 

embeddings toward these two entities. We show that our model can reveal traces of 124 

pubertal brain development and allows to capture biological variance related to 125 

emerging psychopathology, suggesting its utility in investigating within-person 126 

changes in youths. 127 

 128 

 129 

 130 

 131 

 132 
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 133 
Figure 1. Inferring a reference space using domain adaptation on brain network embeddings. A) 134 
Schematic workflow of the prediction framework. Step 1: Similarity network fusion is followed by diffusion 135 
map embedding to extract individual subject scores of the first brain embedding. Step 2: A machine 136 
learning model is trained to learn the mapping between raw features and the first brain embedding score. 137 
Using domain adaptation, held-out subsets of the target data (yellow) from ABCD or HBN are added to 138 
the training, respectively. Step 3: Such domain adaptation enhances out of sample prediction for unseen 139 
(grey) data in both datasets. B) Predicted brain embeddings for the ABCD baseline (x-axis) and 2-years 140 
follow-up (y-axis) data reveal a sex gradient. PNC: Philadelphia Neurodevelopmental Cohort, ABCD: 141 
Adolescent Brain Cognitive Development, HBN: Healthy Brain Network.  142 

 143 

 144 

Results 145 

Model Performance 146 

We applied SNF with subsequent diffusion map embedding to data from N=1594 147 

individuals spanning a wide developmental age range (8 – 21 years, PNC13.  148 

Akin to other dimensionality reduction approaches, the first brain embedding captures 149 

most variance and was therefore used to build the reference space, referred to as brain 150 
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embedding. We trained a machine learning model with an instance-based domain 151 

adaptation procedure (Transfer AdaBoost for Regression)28 in a combined sample 152 

comprising  the PNC sample and held-out data from ABCD or HBN to learn the 153 

mapping between raw MRI features – specifically cortical  area and volume - and the 154 

brain embedding. This yielded a domain adapted reference model that could be 155 

applied to independent data in the ABCD and HBN samples. For the ABCD test 156 

sample, we applied the model on baseline and 2-years follow-up data, yielding two 157 

predictions per participant. For the cross-sectional HBN sample, the model yielded one 158 

prediction per participant. Model performance was calculated by comparing the 159 

predicted brain embeddings in the ABCD and HBN dataset to the ‘ground truth’ brain 160 

embeddings after performing SNF and diffusion map embedding on the respective test 161 

datasets. Our model achieved high performance in unseen data, both for the ABCD 162 

and HBN sample (Table 1). Brain maps illustrating the associations between brain 163 

embeddings and raw features showed similar patterns in both samples 164 

(Supplementary Fig. 1). Model performance was better in the ABCD sample, which 165 

might be driven by the fact, that the sample for domain adaptation in the ABCD dataset 166 

was approximately 5x larger than the one used for HBN, allowing for a more efficient 167 

shift towards the target distribution. Furthermore, the HBN set comprised data from 168 

patients, thus the lower accuracy may to some degree also reflect pathological 169 

variance. Moreover, within the ABCD sample, baseline performance was slightly better 170 

compared to the follow-up data, since the data used for domain adaptation was also 171 

from the baseline study visit. Given successful performance of the model, we 172 

proceeded to validating the biological signal in the predictions.   173 

 174 

Table 1. Model performance for unseen data in the ABCD and HBN sample. 175 

 RMSE MAE R2 r 

ABCDbaseline .95 .85 .79 .94 

ABCDfollow-up 1.02 .91 .78 .94 

HBN 1.50 .95 .65 .92 
Note: RMSE= root-mean-squared error, MAE= mean absolute error, R2= coefficient of determination, 176 
r= Pearson correlation coefficient.  177 
 178 
 179 
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Biological validation of the model 180 

We validated the biological utility of the predictions in capturing developmental brain 181 

dynamics by targeting puberty and mental health as two phenotypes that are closely 182 

related to each other. They both lay off their dynamics during adolescence and 183 

therefore are also intertwined with (developmental) brain trajectories24,29. We 184 

hypothesized that these phenotypes should be related to our brain embedding score. 185 

To assess the models` ability to capture variance cross-sectionally, we first calculated 186 

puberty associations for both timepoints and their respective brain embeddings in the 187 

ABCD sample, accounting the statistical model for age and scan site. We observed 188 

associations between the average puberty score measured with the Pubertal 189 

Development Scale (PDS)30 and the predicted brain embedding at both timepoints for 190 

the caregiver reports (baselinefemale: b= -.34, p = 6.88 x 10-16, h2= .02, N= 3344; 191 

baselinemale: b= -.36, p = 5.53 x 10-10, h2= 0.01, N=3920; follow-upfemale: b= -.27, p = 192 

1.94 x 10-15, h2= .03, N= 3316; follow-upmale: b= -.17, p = 1.39 x 10-15, h2= .008, 193 

N=3910). In youth reports we observed similar effects although some did not survive 194 

Bonferroni correction (baselinefemale: b= -.17, p = .005, h2= .006, N= 1479; baselinemale: 195 

b= -.06, p = .34, h2= .0005, N= 2264; follow-upfemale: b= -.20, p = 2.66 x 10-9, h2= .02, 196 

N= 3271; follow-upmale: b= -.14, p = .0003, h2= .006, N=4056; see Figure 2). Aiming at 197 

replicating these puberty associations in the clinical HBN sample, we performed two 198 

additional analyses in which we subsampled the HBN sample to the age of the ABCD 199 

baseline and the ABCD follow-up data. Calculating the same cross-sectional puberty 200 

models in these HBN subsets did not yield statistically significant results 201 

(Supplementary Table 2).  202 

 203 

Beyond the cross-sectional associations, the framework allows to apply the model to 204 

longitudinal data of the same subjects and investigate change scores between 205 

timepoints, as the predicted brain embedding is modeled with respect to the reference 206 

and thus remains stable compared to fused networks derived from individual 207 

timepoints, which might introduce additional variance when computing the difference 208 

score. Accordingly, we argue that the difference between two predicted brain 209 

embeddings (D brain embedding) is capable of tracing brain trajectories and thus may 210 

serve as a marker for brain dynamics. Hence, we were particularly interested whether 211 

the D brain embedding captures biologically meaningful pubertal variance and is thus 212 
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sensitive to biologically relevant processes shaping the human brain. Consequently, 213 

we repeated the linear models with D brain embedding as dependent and the DPDS 214 

scores (i.e., the puberty difference between baseline and 2-years follow up) as 215 

independent variable (caregiver report: female mean= 0.77, male mean= 0.38, youth 216 

report: female mean= 0.70, male mean= 0.21). For age adjustment of this longitudinal 217 

analysis, we included the age difference between baseline and the 2 years follow-up 218 

(Dage) as a covariate.  219 

Whereas cross-sectional effect sizes were comparable between sexes across both 220 

timepoints, change association appeared to be more pronounced in females. For 221 

females we observed significant associations between DPDS and D brain embedding 222 

for both caregiver (b= -.06, p = 2.37 x 10-10, h2= .02, N= 3135) and youth report (b= -223 

.08, p = 3.79 x 10-11, h2= .04, N= 1375) whereas for males, associations did not pass 224 

adjustment for multiple comparison (Bonferroni-adjusted a = .05/12 = .004; caregiver: 225 

b= .01, p =.19, h2= .0002, N= 3700; youth: b= .01, p =.36, h2= .0003, N= 2204; see 226 

Figure 2). These effects for females were even more pronounced after controlling for 227 

baseline puberty status (caregiver: b= -.08, p= 7.88 x 10-20, h2= .02, youth: b= -.11, p= 228 

2.38 x 10-18, h2= .04). It is worth noting that whereas age explained some variance in 229 

the brain embedding scores, significant pubertal effects were always larger than the 230 

respective age effects (Supplementary Table 1), supporting that the brain embedding 231 

captures variance relevant to pubertal development beyond age related brain changes. 232 

After accounting for Body Mass Index (BMI), socioeconomic status (SES), and 233 

race/ethnicity in the puberty association models, associations between DPDS and D 234 

brain embedding remained significant whereas cross-sectional associations did not 235 

(Supplementary Fig. 2 for methodological details and Supplementary Table 1 for exact 236 

model outcomes), further supporting sensitivity of the approach to longitudinal 237 

contexts.  238 

 239 

 240 
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 241 
Figure 2. Associations between brain embeddings and puberty, both in cross-sectional and 242 
longitudinal data. First two columns in A) and B) refer to associations between predicted brain 243 
embeddings and the respective pubertal score (PDS mean) per timepoint. D refers to the 244 
association between the D brain embedding and the DPDS mean score. Annotations refer to effect 245 
sizes and hashed cells indicate non-significant results.  246 

 247 

Related, we observed that D brain embeddings are distributed quite equally across 248 

males and females for early pubertal stages, whereas from the ‘midpubertal’ period 249 

onwards distributions start to diverge with respect to earlier developmental stages but 250 

also with respect to between group differences (Figure 3). Interestingly, deviations 251 

between sexes get even more pronounced with females` menarche, that marks the 252 

onset of the late pubertal state.  253 

 254 
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 255 
Figure 3. Distribution of D brain embedding in the ABCD sample stratified for sex and pubertal 256 
categories at one year follow up. Pubertal categories are based on youth report, but caregiver-257 
based categories follow the same pattern (Supplementary Fig. 3). Vertical dashed lines indicate 258 
the mean D brain embedding per group.  259 

 260 

Puberty and adolescence depict a time of cascading changes ranging from biological, 261 

emotional to social domains and this phase of transition also constitutes a sensitive 262 

and critical period for emerging psychopathology and mental disorders24,31,32.  263 

Assuming that mental disorders emerge as deviations from a brain ‘norm’33 we argue 264 

that our approach of modeling the low dimensional representation anchored to a 265 

population sample may allow to exploit the resulting reference space (i.e., the brain 266 

embedding) in a normative fashion. To validate this, we tested in a sample of patients 267 

drawn from the HBN15 cohort for associations between the predicted brain embedding 268 

score and mental health. We calculated a proxy measure for psychopathology severity, 269 

that is the sum of all diagnoses per subject. Participants had between 1 and 10 270 
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diagnoses (meanmale= 2.71, stdmale= 1.62, meanfemale= 2.71, stdfemale= 1.55). Using this 271 

proxy measure as independent variable together with age and site as covariates, we 272 

did not observe a significant effect of psychopathology on the brain embedding for 273 

males (b= .04, p = .05, h2 = .001, N=1487), but for females the effect survived multiple 274 

comparison correction (b= .07, p= .007, h2 = .007, N=784; Bonferroni-adjusted a = 275 

.05/2 = .025). The identified association remained significant when covarying for PDS 276 

(females: b= .07, p= .01, h2 = .01, N=589), yet PDS itself was not significant in this 277 

cross-sectional sample, nor were interaction terms between puberty and 278 

psychopathology (see Suppl. Table 2 for all effects). Replacing the sum of diagnosis 279 

with a dimensional measure of psychopathology, i.e., the CBCL total score (Child-280 

Behavior Checklist34) we replicated the effects from the previous analysis. Specifically, 281 

we did not observe a significant effect of psychopathology on the brain embedding for 282 

males (b= .002, p = .06, h2 = .004, N= 1269), however, for females the effect reached 283 

statistical significance (b= .004, p = .008, h2 = .01, N= 635). The identified association 284 

for psychopathology operationalized via the CBCL total score in females remained 285 

significant when controlling for puberty (PDS): b= .005, p = .002, h2 = .02, N= 471. 286 

Since dimensional measures of psychopathology allow to test these associations also 287 

in a non-clinical sample, we aimed at validating these findings in the cross-sectional 288 

and longitudinal data from the ABCD sample. Here, we observed significant effects (all 289 

p < .005) between the CBCL score and the brain embedding, for all cross-sectional 290 

models (males and female) and the longitudinal model in males (Supplementary Fig. 291 

4 and Supplementary Table 1 for details and exact effect sizes).  292 

 293 

 294 

Discussion 295 

 296 
The present work illustrates a proof of concept for a new approach that allows to map 297 

high dimensional brain imaging data into a low dimensional brain embedding score 298 

which can be then transferred to new datasets by means of domain adaptation and 299 

machine learning. By doing so, our framework builds upon similarity network fusion8 300 

integrating information from different data sources, but does not suffer under the 301 

instability of similarity measures and thus can be translated to datasets with unique 302 
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features such as longitudinal study designs or clinical cohorts without the need to 303 

recalculate a fused network in the new sample.  304 

 305 

To validate our framework and to test its applicability to other datasets, we trained our 306 

model in a sample of subjects spanning a wide age range from the PNC cohort13 with 307 

simultaneous supervised domain adaptation and tested it on two independent 308 

validation samples, that is longitudinal data from the ABCD Study14 and a clinical 309 

population of subjects from the HBN sample15. Domain adaptation in both datasets 310 

was enhanced with independent data that was later not used in the prediction process, 311 

such as data from ABCD subjects for whom only baseline data was available and 312 

participants in the HBN cohort without clinical diagnoses. Model performance was high 313 

for unseen test data in both datasets, confirming the model’s ability to generalize to 314 

other cohorts. Our approach thus proved useful in two unseen datasets that both 315 

displayed unique sample characteristics. We hypothesize that the good model 316 

performance also relies on choosing the PNC sample as a source task which stores a 317 

rich repertoire of (dis)similarities between participants, from which the domain 318 

adaptation procedure for the two new datasets could have benefitted. However, we 319 

consider it important to further investigate the frameworks` boundaries in terms of 320 

sample characteristics of the source and target datasets, that is, under which condition 321 

the model performance diminishes.   322 

 323 

Beyond model building, we aimed at investigating whether brain embedding scores 324 

are sensitive to capture biologically meaningful variance in processes shaping the 325 

brain and thus may represent a useful imaging phenotype for (developmental) brain 326 

dynamics. Related to work suggesting a close link between pubertal dynamics and 327 

neurodevelopment19,29,35, we observed significant cross-sectional associations 328 

between the predicted brain embedding scores and puberty measures for all models 329 

at all timepoints except for baseline data based on youth reports, which might have 330 

been biased by the difficulty to rate one´s own pubertal maturation at these early ages. 331 

Such bias appears to be particularly true for males at baseline (see Supplementary 332 

Fig. 5). In addition, we observed higher correlations between caregiver and youth 333 

reports for the 2-year follow-up, suggesting an overall better alignment between 334 

reports, potentially minimizing biases. Of note, all analyses were performed stratified 335 
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for sex, because the brain embeddings span a sex-gradient (see Figure 1B), and 336 

pubertal timing and trajectories are known to vary between females and males36. 337 

Moreover, for models in which we observed significant puberty effects, these effects 338 

were always larger than the respective age effects, supporting its sensitivity to puberty 339 

specific dynamics beyond age.  340 

 341 

After adding BMI, SES, and race/ethnicity37,38 as covariates into our model, cross-342 

sectional effects diminished. This aligns with reports suggesting a close link between 343 

those factors and pubertal timing and duration (e.g., 38,39). Given the high inter-344 

correlation between the studied variables, it may be difficult to disentangle variance to 345 

distinct components. Therefore, we argue, that longitudinal analyses may help to 346 

resolve the ambiguity of the cross-sectional analyses.  Since the ABCD study offers 347 

an unprecedented resource for granular investigations of child and adolescent brain 348 

and pubertal maturation, we leveraged the longitudinal data of the ABCD cohort and 349 

investigated whether the D brain embedding, that is the difference between the two 350 

predicted brain embedding scores for baseline and the 2-years follow up data, can 351 

serve as an additional marker for brain trajectories. Pubertal associations with the D 352 

brain embeddings were significant for females, but not for males, which appeared to 353 

align with the pubertal maturation in females in the studied time period. The same 354 

pattern was observable when controlling for BMI, SES, and race/ethnicity, supporting 355 

that the reported cross-sectional puberty effects do not simply represent differences in 356 

these confounding factors either.  357 

Moreover, it appears that the D brain embeddings for both sexes follow a comparable 358 

distribution in early pubertal stages, whereas from females´ menarche onwards, both 359 

patterns start to deviate from each other. Given the narrow age range in the ABCD 360 

study, pubertal categories may serve as a proxy for pubertal timing with females often 361 

undergoing earlier puberty. Greater pubertal stage for a given age has been related to 362 

more mature, i.e., thinner cortices (e.g. 22), which might be a putative explanation for 363 

the divergence in the D brain embedding.  Upcoming releases of the ABCD data may 364 

help to further investigate the D brain embedding and its ability to capture subtle 365 

biological processes like pubertal maturation. With additional longitudinal data one 366 

would also expect to have access to more datapoints that represent male participants 367 

in later pubertal stages potentially allowing to better disentangle the putative brain 368 
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trajectories encoded by the D brain embedding. While studies on normative brain 369 

development generally report overarching brain trajectories across different brain 370 

measures40, recent work by Bottenhorn and colleagues41 highlight a high degree of 371 

intra- and interindividual variability in brain maturation across imaging measures. 372 

Identifying and understanding these sources of variance depict an important step 373 

towards population-level neuroscience, which however may complicate downstream 374 

analyses because of the heterogeneity across regions and imaging measures. 375 

Because of its sensitivity to pubertal processes shaping the human brain, we suggest 376 

that our approach may help to unify those different sources of variance into a 377 

condensed score that does not only serve as a dimension reduction technique but 378 

places individuals in a biologically meaningful feature space.  379 

 380 

Since puberty is a critical time window for emerging mental disorders24,31,32, we aimed 381 

at additionally exploiting the models predictions as a ‘normative’ score and tested its 382 

association to psychopathology in the HBN sample. In females only, we observed 383 

small yet significant effects of psychopathology severity on the brain embedding score. 384 

By accounting these analyses for age, we ruled out that these associations simply 385 

mimic a larger number of diagnoses with increasing age.  Since descriptive statistics 386 

of the number of diagnoses were almost identical across sexes (Supplementary Fig. 387 

6), we deem it unlikely that such subtle variances might have driven differences in 388 

association strength. A more likely explanation might be the diagnoses themselves, as 389 

we observed diagnosis distributions matching the known patterns of more male-390 

prevalent (e.g., ADHD) vs. more female-prevalent (e.g., mood or anxiety) disorders. 391 

Thus, it may be possible that the derived brain embeddings are more sensitive to 392 

female-prevalent disorders. Even though puberty associations did not reach statistical 393 

significance in the HBN sample, they pointed towards higher effects in females. As 394 

many female-typical mental disorders emerge during puberty42 our brain embedding 395 

may also have a higher sensitivity towards those disorders. However, since we were 396 

not able to test this directly because of sample size restrictions, this line of reasoning 397 

should be considered as hypothesis generating and needs to be investigated in future 398 

research. When extending the model with pubertal variables, we did not observe 399 

additional effects, which may be related to prevalence of emerging psychopathology 400 

in the HBN sample, which may interfere with puberty and may thus explain, why we 401 
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were not able to replicate the cross-sectional puberty associations in the HBN sample. 402 

Furthermore, subsampling the HBN sample to the respective age ranges of the ABCD 403 

visits decreased the available sample size in a way that has not sufficient statistical 404 

power to detect small to moderate effects. 405 

 406 

We acknowledge that the sum of diagnoses in the HBN sample rather depicts a coarse 407 

measure of psychopathology, however, by expanding our work with a dimensional 408 

measure (the CBCL total psychopathology score), we did observe similar associations. 409 

Furthermore, both measures were moderately correlated (r ~ .3) supporting our initial 410 

approach to operationalize sum of diagnosis as a measure of psychopathology 411 

severity. Future research may leverage more fine-grained quantities, such as 412 

hierarchical representations of psychopathology (HiTOP43) or different syndrome 413 

scales to better disentangle associations between the (D) brain embedding score and 414 

emerging mental health conditions during puberty. For example, dimensional 415 

approaches may further help to investigate whether the brain embedding scores are 416 

sensitive to capture neuronal traces of early pubertal timing (e.g., early menarche in 417 

females44 and their relationship to internalizing psychopathology45). To overcome 418 

sample size restrictions often observed in clinical samples, leveraging the longitudinal 419 

data from ABCD may further help to investigate the marker’s sensitivity to capture 420 

refined, but biologically meaningful, mental health processes related to brain 421 

dynamics46. Our validation analyses in the ABCD sample yielded small – yet significant 422 

– effect for the psychopathology associations, indicating that our model may also be 423 

sensitive to subtle psychopathological manifestations that do not (yet) exceed a clinical 424 

threshold. These initial results suggest that our approach may also render useful to 425 

study psychopathology in future releases of the ABCD sample.  426 

 427 

Limitations and Future Directions  428 

Potential limitations might stem from the fact that only two imaging modalities, that is 429 

brain volume and surface area, were integrated in our framework. Since brain volume 430 

and area follow a comparable normative developmental trajectory from late childhood 431 

into late adolescence40, building similarity networks on both measures may result in 432 

robust and non-sparse reference space that allows to better disentangle sex effects, 433 

since additional heteroscedasticity of different imaging measures may be mitigated41.  434 
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However, beyond the proof-of-concept of the current study, we nevertheless deem it 435 

important to extend our approach with additional (imaging) modalities to tests its 436 

generalizability beyond the two imaging features. Furthermore, integrating additive 437 

data sources may result in a more holistic (i.e., multimodal) phenotype representing 438 

brain development or dynamics which may help to explain additional variance in 439 

behavioral or mental health measures and thus may substantiate the brain embedding 440 

score utility in capturing brain trajectories. In addition, focusing on more than the first 441 

brain embedding might also help to explain additional variance in the tested 442 

associations. However, we consider it essential for future work to systematically test 443 

how modality-specific information is encoded in the brain embeddings before testing if 444 

later embeddings contain biologically meaningful between or within subject variances. 445 

Lastly, since our model results in a single brain embedding score, our current approach 446 

is limited in its spatial interpretability. While univariate analyses may yield the highest 447 

interpretability, they come at the cost of methodological hurdles, such as 448 

multicollinearity, high dimensionality, or conflicting feature importance despite similar 449 

model performances (e.g.,47,48). Beyond those hurdles, modeling brain maturation and 450 

sex differences introduces additional variance, which might be difficult to model in an 451 

univariate fashion41,49. Our approach of integrating high-dimensional data into a single 452 

score may facilitate the modeling of developmental slopes and might thus be better 453 

suitable for tracking within-subject changes. To address limitations in interpretability, 454 

we provided brain maps illustrating the correlation of each brain feature to the brain 455 

embedding (Supplementary Fig. 1). Similarity in these maps between cohorts supports 456 

robustness of the observed patterns. Other approaches, such as feature deletion50 457 

may further increase post-hoc interpretability. 458 

 459 

 460 

Conclusion 461 

We introduced a novel approach which allows to integrate high dimensional imaging 462 

data into a coherent feature space in which subjects can be localized by a single brain 463 

embedding score. We suggest that transferring this mapping to other datasets results 464 

in a new imaging phenotype which inherits a sensitivity to capture meaningful and 465 

biologically relevant processes shaping human brain dynamics.   466 
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Methods 467 

 468 

Sample Descriptions 469 

 470 

PNC 471 

As source model we used imaging data from the Philadelphia Neurodevelopmental 472 

Cohort (PNC), a large-scale cross-sectional population study of child and youth 473 

between 8- and 21-years age dedicated to study (brain) development. All PNC study 474 

procedures were approved by institutional review boards of the University of 475 

Pennsylvania and the Children`s Hospital of Philadelphia. All participants or their 476 

caregiver provided written informed consent. Data in the PNC sample was acquired 477 

from a single site13. We included data from N=1594 individuals with available T1-478 

weighted imaging (females= 834, age: M= 14.95, SD= 3.69). We used brain area and 479 

volume of 68 cortical brain regions matching the Desikan-Killiany atlas51 estimated 480 

from T1 MRI images using FreeSurfer (version 7.1.1)52. 481 

 482 

 483 

ABCD 484 

The Adolescent Brain Cognitive Development (ABCD) Study is a 10-year longitudinal 485 

study of children recruited at age 9 to 10 aiming at characterizing brain developmental 486 

trajectories. Overall ~11.000 children were recruited across 21 different sites in the 487 

United States14. Study procedures have been approved by either the local site 488 

Institutional Review Board (IRB) or by local IRB reliance agreements with the central 489 

IRB at the University of California. All participants and their parents provided written 490 

informed consent. Data for the current study was obtained from ABCD release 4.0 491 

utilizing phenotypic and imaging data from the baseline and 2-years follow up study 492 

visit. Preprocessed imaging data from the Desikan-Killiany atlas (68 regions)51 were 493 

downloaded from the NIMH data archive. Since we were interested in the longitudinal 494 

data, we included only children having MRI data from both baseline and 2-years follow 495 

up visit (N=7776, females= 3587, agebaseline: M= 9.90, SD= .62; agefollow-up: M= 11.90, 496 

SD= .65). 497 

 498 
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HBN 499 

The Healthy Brain Network (HBN) is a community sample of children and adolescent 500 

(ages 5 – 21) in the New York area aiming at capturing and investigating the 501 

heterogeneity in developmental psychopathology and its biological underpinnings15. 502 

Imaging data was acquired across four different scanning sites and study procedures 503 

were approved by the Chesapeake IRB. All participants or their caregiver provided 504 

written informed consent. Brain area and volume of 68 cortical brain regions from T1 505 

MRI images were estimated according to the Desikan-Killiany atlas51 using FreeSurfer 506 

(version 7.1.1)52. Based on clinical diagnostic information and the presence of a 507 

primary diagnosis, we integrated data from N= 2271 (females= 784, age: M= 10.43, 508 

SD= 3.45) participants.  509 

 510 

 511 

Model Building and Testing 512 

Brain volume and area from the Desikan-Killiany atlas51 were used to construct fused 513 

similarity networks with snfpy (version 0.2.2, https://github.com/rmarkello/snfpy). In the 514 

following we will briefly describe the SNF workflow but refer the reader to Wang et al.8 515 

for a more detailed description: First, we generated subject x subject affinity networks 516 

for MRI area and volume by converting between-subject (squared euclidean) distances 517 

to similarities with a scaled exponential kernel, respectively. Next, SNF iteratively fused 518 

each feature affinity matrix resulting into one symmetric similarity matrix integrating 519 

information from all data sources. Both previous steps are governed by the 520 

hyperparameters K (i.e., the number of neighbors to consider) and µ (i.e., weighting of 521 

between subjects’ edges) with K Î [1, 2, …, i], i Î ℤ andµ Î ℝ+. Markello et al.6 522 

performed a grid-search across 10.000 hyperparameter combinations and reported 523 

consistent embeddings across all combinations (rmean= .97), suggesting a neglectable 524 

effect of extensive hyperparameter tuning for consecutive analyses aiming at 525 

continuous representations. We thus set K= 30 and µ= 0.8 in accordance with the 526 

suggested range of values in snfpy. The fused matrix is full rank and can then be either 527 

subjected to clustering or dimensionality reduction to achieve continuous 528 

representation of the data in a low-dimensional space. Since we were interested in the 529 

latter, we performed diffusion map embedding on the fused network to derive low-530 

dimensional representations of the imaging data using BrainSpace (version 0.1.3)53. 531 
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Diffusion map embedding is a non-linear dimensionality reduction technique that 532 

projects the raw data onto dimensions (i.e., brain embeddings) that encode the primary 533 

axes of between-subject similarity. The resulting embeddings are unitless and subjects 534 

can be localized according to their inter-subject similarity along these dimensions6. 535 

Critically, diffusion map embedding has been shown to be sensitive to non-linear 536 

relationships and robust against noise perturbations compared to other techniques, 537 

such as Principal Component Analyses (PCA)10,54. The diffusion time parameter t was 538 

set to zero to model the most global relationship of the input data10. For further 539 

analyses the first brain embedding was used, as it captures the highest variance akin 540 

to PCA.  541 

 542 

For our machine learning framework we then trained an Elastic Net in scikit-learn 543 

(version 1.0.2)55 to learn the mappings between the raw feature space (i.e., area and 544 

volume MRI data, each with shape 1594 x 34 after averaging features across both 545 

hemispheres) and the first brain embedding. Since our goal was to maximize out of 546 

sample generalizability, we 1) trained the model with default parameters (l1_ratio = 0.5 547 

balancing L1 and L2 norm regularization, alpha= 1.0 which tunes the overall penalty 548 

strength) aiming at minimizing overfitting to the training set and 2) utilized an instance-549 

based supervised domain adaptation (Transfer AdaBoost for Regression; 550 

TrAdaBoostR2)28 implemented in ADAPT (version 0.4.1)56. TrAdaBoostR2 combines 551 

a source (PNC) and target data set into a single set and performs reverse boosting in 552 

which weights of the source instances poorly predicted decrease at each iteration while 553 

the ones of the target instances increases, thus shifting the relative importance towards 554 

the target set28. Thus, the algorithm makes use of those source instances that are 555 

similar to the target domain and “ignores” the ones that are more dissimilar. Since 556 

increasing the boosting iterations may lead to overfitting, the algorithm per default uses 557 

the weighted median of the last N/2 iterations for prediction. To avoid data leakage, we 558 

used held-out data from the ABCD and HBN: For the ABCD data we used N= 3984 559 

(females= 2027, age: M= 9.95, SD= .63) children for which only baseline imaging data 560 

was available at release 4.0. In the HBN sample we used imaging data from a healthy 561 

sample of N=389 (females= 162, age: M= 10.45, SD= 3.81) for which no primary 562 

diagnosis was reported. Of note, for the latter we did pool subjects with the label ‘no 563 

diagnoses’ either based on a complete or aborted evaluation. For both datasets we 564 
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used brain volume and area from the Desikan-Killiany atlas51. Since MRI data was 565 

acquired on different scanners both for the ABCD and HBN data, we harmonized both 566 

the volume and area imaging data individually using neuroCombat (version 0.2.12)57. 567 

Of note, for the ABCD data, batch correction was performed on individual timepoints 568 

and separated for train and test set.  569 

After fitting with domain adaptation, we applied the model to unseen test data from the 570 

ABCD and HBN, respectively. To quantify the quality of predictions we additionally also 571 

performed SNF and diffusion map embedding on the ABCD and HBN test sample and 572 

calculated error metrics (MSE; MAE; RMSE) and R2 and correlation values between 573 

the predicted and ‘true’ first brain embedding after orthogonal Procrustes alignment 574 

with mapalign (version 0.3.0, https://github.com/satra/mapalign)58. A schematic 575 

representation of the workflow is depicted in Figure 1A. Additionally, Supplementary 576 

Fig. 1 depict the correlation between the raw features and the first brain embedding in 577 

the HBN and ABCD sample, respectively. 578 

 579 

Modelling Puberty 580 

Pubertal development in the ABCD and HBN sample was assessed with the Pubertal 581 

Development Scale (PDS) which was designed to resemble the Tanner stages without 582 

the need of a physical examination30,38. The child’s pubertal development is rated on 583 

a four-point Likert scale ranging from ‘has not begun’ to ‘completed’ with one exception, 584 

that is a binary response item regarding females’ menarche. Overall, there are general 585 

and sex-specific items that are administered with respect to the biological sex, e.g., 586 

voice-deepening or breast development. The rating can be conducted by the children 587 

or their caregivers, thus reflecting self or other-perceived pubertal maturation. In the 588 

ABCD study both children and caregiver report are available for both timepoints38, 589 

whereas in the HBN study only participant responses are available15. Individual item 590 

scores were used to calculate the average PDS score (PDSmean) in line with procedure 591 

described in Herting et al.37. For longitudinal associations, we additionally calculated a 592 

DPDS score as a marker for pubertal maturation, that is the difference between 593 

baseline and 2-years follow up PDS score. Moreover, pubertal category scores were 594 

derived for males and females. For males, the sum of three items related to pubic and 595 

facial hair growth as well as voice deepening was calculated. For females, pubic hair 596 

growth and breast development was summed and information about the menarche 597 
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was additionally incorporated. Eventually, pubertal scores were converted into pubertal 598 

categories ranging from prepubertal to post pubertal based on the ABCD conversion 599 

scheme (see Supplementary Table 3). The frequency of pubertal categories for the 600 

baseline and follow-up data is shown in Supplementary Table 4. PDSmean scores were 601 

also calculated in the HBN sample to test for out-of-sample replicability and 602 

generalizability.  603 

 604 

Modelling Psychopathology  605 

In the HBN sample each participant and their caregiver underwent an online version 606 

of a semi-structured DSM-5 based psychiatric interview (K-SADS)59 to derive clinical 607 

diagnoses. Consensus diagnoses for each participant are made based on the overlap 608 

of the child and caregiver interview by a research clinician15. We calculated the sum of 609 

all consensus diagnoses per subject as a proxy for psychopathology severity. 610 

Frequencies of psychopathology measures can be derived from Supplementary Table 611 

5. 612 

 613 

 614 

Association Analyses 615 

All association analyses were performed with statsmodels (version 0.13.2)60. To test 616 

for associations between pubertal development and the predicted brain embeddings 617 

in the ABCD study, we implemented linear models for each timepoint (i.e., baseline 618 

and 2-year follow up) with the respective brain embedding as dependent variable (DV) 619 

and the PDSmean score as independent variable (IV) with two-sided significance testing. 620 

For all associations we additionally report partial-eta-squared (h2) per predictor of 621 

interest. Since we were particularly interested whether the difference between both 622 

brain embeddings (D brain embedding) captures biological variance that is associated 623 

to brain dynamics, we performed an additional linear model with D brain embedding as 624 

DV and the DPDSmean score as IV. Analyses were stratified for sex and youth and 625 

caregiver reports accounting for differences how pubertal development might be 626 

perceived38. Despite the rather narrow age range at each study visit, age or  Dage (i.e., 627 

the difference in age between baseline and 2 years follow-up accounting for variance 628 

in between-visit durations) was added as a covariate to the linear model in ABCD, to 629 

rule out that putative pubertal effects merely represent aging effects. For the ABCD 630 
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sample the number of observations varies between models as the amount of missing 631 

data is different per timepoint and depends on whether the participants themselves or 632 

their caregiver provided the data. In the HBN sample, we tested the association 633 

between the predicted brain embedding (DV) and the sum of diagnoses (IV), which we 634 

introduced as a proxy for psychopathology severity. Based on the close relationship 635 

between puberty and emerging mental disorders, we additionally calculated linear 636 

models which included both the summed diagnoses and the PDSmean score as IVs and 637 

one model containing an interaction term summed diagnoses: PDSmean score next to 638 

the main effects. PDSmean score was based on participant reports. For the HBN sample 639 

the number of observations varies between models as missing data was excluded on 640 

a model-by-model bases, i.e., dependent on the IVs of interest. Linear models were 641 

stratified for sex and age and site were added as covariates of no interest. All linear 642 

models were Bonferroni corrected for multiple comparisons61.  643 

 644 

Data Availability  645 

Data incorporated in this work were gathered from various resources (see 646 

acknowledgements) and are shared under data use agreements of the respective 647 

cohorts. 648 

 649 

Code Availability 650 

All code used in this manuscript is available on github 651 

(https://github.com/dominikkraft/DomAdapt_BrainNetFusion) and builds upon python 652 

3.7.11. Basic data handling relied on pandas (version 1.3.5)62 and numpy (version 653 

1.21.5)63. Data visualization relied on matplotlib (version 3.5.1)64 and seaborn (version 654 

0.11.2)65.  655 

  656 
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