Research article: Hernia surgical treatment; multi-options and paucity of statistical conformation for the preferred surgical option

Running tittle: Current surgical management advances

Authors' list: Basheer Abdullah Marzoog^{1,*}, Kostin Sergey Vladimirovich¹

¹ National Research Mordovia State University. Address: Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005. Postal address: Mordovia republic, Saransk, Bolshevitskaya Street, 31.

^{*}Corresponding author: Basheer Abdullah Marzoog, undergraduate medical school student at National Research Mordovia State University (marzug@mail.ru, +79969602820). Address: Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, 430005. Postal address: Mordovia republic, Saransk, Bolshevitskaya Street, 31. ORCID: 0000-0001-5507-2413, Scopus ID: 57486338800

Competing interests: No competing interests regarding the publication.

It is made available under a CC-BY-NC-ND 4.0 International license .

Abstract

Background: Hernia is a common pathology in the globe and reported more frequently, particularly, inguinal hernia.

Aims: To identify the surgery of choice for the treatment of hernias by evaluating the required postoperative hospitalization time, as no other complications have been reported according to data from Mordovian Republic hospital.

Material and methods: A retrospective cohort study involved 790 patients for the period 2017-2022 treated surgically for various types of hernia; inguinal hernia, umbilical hernia, spontaneously reduced strangulated post-operative ventral hernia, incarcerated post-operative ventral hernia, and hernia of the Lina Alba. For statistical analysis, used T test, one way ANOVA test, and Pearson correlation test by using Statistica program.

Results: The hospitalization period after Lichtenstein surgery is statistically less than Postemsky surgery (mean 6.88 days, 7.43 days, respectively, t value -2.29593, p<0.02) and laparoscopic surgery (mean 6.88 days, 8.19072 days, respectively, t value 4,206817, p<0,000031). Whereas, Postemsky surgery has shorter post-operative hospitalization period in compare to laparoscopic surgery (mean 7.43 days, 8.19072 days, respectively, t value -2.19326, p<0.02). According to the used surgical approach, the patient's post-operative hospitalization days differs (mean days: min. days; max. days, 7.50192: 0.00; 30.00). According to Postemsky (M \pm m; 7.43262, \pm 0.167012), according to Martynov (M \pm m; 8.37500, \pm 0.113440), according to Lichtenstein (M \pm m; 6.88153, \pm 0.146845), according to Mayo (M \pm m; 7.51282, \pm 0.280156), according to Bassini (M \pm m; 8.77778, \pm 2.379179), laparoscopically (M \pm m; 8.19072, \pm 0.268434), according to Sapezhko (M \pm m; 8.25000, \pm 1.380074), and another type of surgery (M \pm m; 11.40000, \pm 2.501999). Women (mean 8.525114 days) hospitalized longer than men (mean 7.065371 days), t value 5.871044, p< 0.001. A statistically significant correlations r=0.215561, p <0.05).

Conclusions: The study shows that the Lichtenstein surgery is the surgery of choice in terms of hospitalization time after the surgery. Straight association between sex and age with postoperative hospitalization days.

Keywords: Hernia; Surgery; Pathology; Laparoscopic; COVID-19; SARS-CoV2; Lichtenstein surgery

It is made available under a CC-BY-NC-ND 4.0 International license .

Introduction

Hernia is a common pathology in the globe and remains paucity in the therapeutic techniques [1]. Management of such worldwide issue is crucial. Classically, hernias are classified as internal and external hernias. Each of which has its surgical approaches for management [1]. However, the statistical evidence on the surgery of choice requires more elaboration.

Hernia defined as a protrusion of the abdominal organs in another organ or through the abdominal wall as well as canals such as the inguinal canal [2]. In clinical practice, hernias are usually managed by strengthening the wall of the protruded tissue with mesh [3–5].

Postempsky approach involves complete elimination of the inguinal canal, the inguinal gap and in the creation of the inguinal canal with a completely new direction. The edge of the vagina of the rectus abdominis muscle, together with the connected tendon of the internal oblique and transverse muscles, is sewn to the upper pubic ligament. Next, the upper flap of aponeurosis, together with the internal oblique and transverse abdominal muscles, is sewn to the pubic-iliac cord and to the inguinal ligament. These sutures should push the spermatic cord to the lateral side to the limit. The lower flap of aponeurosis of the external oblique abdominal muscle, held under the spermatic cord, is fixed on top of the upper flap of aponeurosis. The newly formed "inguinal canal" with the spermatic cord should pass through the muscular-aponeurotic layer in an oblique direction from behind to front and from the inside to the outside so that its inner and outer openings are not opposite each other. The spermatic cord is placed on the aponeurosis and subcutaneous fat and skin are stitched over it [6].

Whereas, Martynov approach include sewn of the medial flap of the external oblique abdominal muscle to the inguinal ligament in front of the spermatic cord, and the lateral flap is sewn on top of the medial one. A duplicate is created from the flaps of dissected aponeurosis [6].

Lichtenstein method involves insertion of a polypropylene mesh of approximately 6x12 cm behind the spermatic cord. From below, it is sewn to the upper pubic and inguinal ligaments [7]. Laterally, it is cut, a "window" is made for the passage of the spermatic cord, then it is sewn again. It is sewn to the inner oblique and transverse muscles at the top, medially to the edge of the rectus muscle. Subsequently, the mesh sprouts connective tissue, and intraperitoneal pressure spreads evenly through it [6].

To date, there are more than 12 classifications, Nyhus classification, Gilbert classification, Aaachen classification [8, 9]. However, the European Hernia Society Board recommend using classification based on the Aachen system developed by Schumpelick et al. [10].

Materials and methods

A retrospective cohort study involved 790 patients for the period 01.01.2017-28.02.2022 treated surgically for various types of hernia. The study involved 571 (72.28%) males and 219 (30.46%)

It is made available under a CC-BY-NC-ND 4.0 International license .

females aged from 17-92 years old (mean; 59.23, standard error: 0.487868). 355 (44.93671%) patients live in the village and 435 (55.06329) live in the city.

Data collected from Mordovian Republic Hospital for the past 5 years and retrospectively analyzed. The consent of the patients has been taken for scientific purposes to analyze and publish the results of the study.

For statistical analysis, used T test, one way ANOVA test, and Pearson correlation test by using Statistica program (StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10. www.statsoft.com.).

Results

The descriptive statistical analysis showed that the mean age of the male 58.06 years (minimum 17; maximum 92) years, whereas the mean age of the females 62.26941 (minimum 21; maximum 92) years. (Table 1) Approximately 8 different surgical approaches have been used to treat these patients and without any further life-threatening complications. According to Postemsky 141 (17.84810%) patient, according to Martynov 8 (1.01266 %) patients, according to Lichtenstein 287 (36.75%) patients, according to Mayo 117 (14.81013 %) patients, according to Bassini 9 (1.13924 %) patients, laparoscopically 194 (24.84 %) patients, patients, according to Sapezhko 20 (2.53165 %) patients, another way of plastic 5 (0.64%), and 9 (1.13924%) recovered on conservative therapy.

The mean age of patients who passed Martynov surgery is 58.75000, ST. Err. 5.793315. Mean age of patients who passed Lichtenstein surgery is 59.37282, ST. Err. 0.778549. Mean age of patients who have passed Mayo surgery is 59.08547, ST. Err. 1.287770. Mean age of patients who have passed Bassini surgery is 72.77778, ST. Err. 2.822419. Mean age of the patients who passed Laparoscopic surgery is 58.60309, ST. Err. 0.942875. Mean age of patients who passed Sapezhko surgery is 60.85000, ST. Err. 3.864327. Mean age of patients who passed Postemsky surgery is 58.46099, ST. Err. 1.242506. Mean age of patients who passed another type of surgery is 59.00000, ST. Err. 4.969909.

The hospitalization period after Lichtenstein surgery is statistically less than Postemsky surgery (mean 6.88 days, 7.43 days, respectively, t value -2.29593, p<0.02) and laparoscopic surgery (mean 6.88 days, 8.19072 days, respectively, t value 4,206817, p<0,000031). Whereas, laparoscopic surgery has longer post-operative hospitalization period in compare to Postemsky surgery (mean 8.19072 days, 7.43262 days, respectively, t value -2.19326, p<0.02). (Figure 1)

According to the used surgical approach, the patient's post-operative hospitalization days differs (mean days: min. days; max. days, 7.50192: 0.00; 30.00). According to Postemsky (M \pm m; 7.43262, \pm 0.167012), according to Martynov (M \pm m; 8.37500, \pm 0.113440), according to Lichtenstein (M \pm m; 6.88153, \pm 0.146845), according to Mayo (M \pm m; 7.51282, \pm 0.280156),

It is made available under a CC-BY-NC-ND 4.0 International license .

according to Bassini (M \pm m; 8.77778, \pm 2.379179), laparoscopically (M \pm m; 8.19072, \pm 0.268434), according to Sapezhko (M \pm m; 8.25000, \pm 1.380074), and another type of surgery (M \pm m; 11.40000, \pm 2.501999). (Table 2,3)

The patients hospitalized before surgery for different periods ranged from zero days to 7 days (mean 1.3261, standard error 0.025952). Interestingly, gender plays important role in the determination of the post-operative period hospitalization time. Where women (mean 8.525114 days) hospitalized longer than men (mean 7.065371 days), t value 5.871044, p< 0.001.

Also, age plays important role in the hospitalization time, where statistically significant correlation has been found between age and post-operative hospitalization time (Spearman Rank Order Correlations r=0.215561, p <0.05). (Figure 2)

Since Severe acute respiratory syndrome-Corona Virus appeared in the late 2019, not all patients have been checked for the association between corona virus infection disease -19 (COVID-19) and the post-operative hospitalization period. Out of 485 patients, only 51 (8.72%) are having antibodies against COVID-19 infection. There is no statistically significant correlation between the COVID-19 infection and the post-operative hospitalization period.

A statistically significant association has been found between erythrocyte level and the postoperative hospitalization period. Data did not show a relationship between the home and the postoperative hospitalization period.

	Descripti	ve Statistics	5				
Variable	Valid N	Mean	Minimum	Maximum	Std.Dev.	Standard	
						Error	
Total hospitalization days	790	8,7608	1,0000	31,0000	3,21194	0,114276	
Age	790	59,2278	17,0000	92,0000	13,71246	0,487868	
Ht1	790	41,8785	39,0000	50,0000	1,60020	0,056932	
Hb1	790	145,3380	115,0000	166,0000	10,94709	0,389480	
Le1	790	6,7265	3,1000	13,5000	1,90036	0,067612	
Er1	790	4,5978	3,7000	5,7000	0,50988	0,018141	
Er2	790	4,1978	3,3000	5,3000	0,50988	0,018141	
Hb2	790	144,3380	114,0000	165,0000	10,94709	0,389480	
Ht2	790	39,9759	37,0000	48,0000	1,64711	0,058602	
Le2	790	6,0765	2,6000	13,0000	1,61392	0,057421	
days before surgery	785	1,3261	0,0000	7,0000	0,72713	0,025952	
Days after surgery	785	7,4726	0,0000	30,0000	3,19032	0,113867	

Table 1: Descriptive statistics of the sample.

Table 2: The duration of post-operative hospitalization in different surgical approaches for hernia treatment.

Descriptive Statistics

Effect	Level of	Ν	Days after				
	Factor		surgery	surgery	surgery	surgery	surgery
			Mean	Std.Dev.	St. Err	-95,00%	+95,00%
Total		78	7,50192	3,170223	0,113440	7,279238	7,72460
		1					
surgical	by Martynov	8	8,37500	5,180665	1,831642	4,043856	12,70614
treatment							
surgical	by	28	6,88153	2,487713	0,146845	6,592499	7,17057
treatment	Lichtenstein	7					
surgical	by Mayo	11	7,51282	3,030350	0,280156	6,957936	8,06770
treatment		7					
surgical	by Bassini	9	8,77778	7,137538	2,379179	3,291381	14,26417
treatment							
surgical	Laparoscopic	19	8,19072	3,738848	0,268434	7,661282	8,72016
treatment		4					
surgical	by Sapezhko	20	8,25000	6,171880	1,380074	5,361471	11,13853
treatment							
surgical	Another way	5	11,40000	5,594640	2,501999	4,453337	18,34666
treatment	of plastic						
surgical	Postemsky	14	7,43262	1,983161	0,167012	7,102432	7,76282
treatment		1					

It is made available under a CC-BY-NC-ND 4.0 International license .

By the localization and type of the hernia, the most frequently reported localization is postoperative ventral hernia 86 (10.96%) patients of the total sample. These patients have an average hospitalization time 10.05814 days, St. err. \pm 0.409983) and an average age of 61.84884, St. err. 1.14054. Approximately 72 different types of hernia have been reported. (Table 4)

Patients have statistically significant longer postoperative hospitalization days in case of postoperative ventral hernia and strangulated umbilical hernia (t value 4.103840, p=0.000077). Also, have statistically significant longer post-operative hospitalization days in case of post-operative ventral hernia and umbilical hernia (t value 6.072506, p=0.000000).

Table 3:Dependence of the postoperative hospitalization period on the type of surgery.

Dependent:	Median Test	, Overall Median =	7,00000; Da	ys after surge	ry					
Days after	Independent	(grouping) variable	e: surgical tre	atment						
surgery	Chi-Square =	Chi-Square = $27,82642 \text{ df} = 7 \text{ p} = ,0002$								
	by	by Lichtenstein	by Mayo	by Bassini	Laparoscopic	by	Another	Postemsky	Total	
	Martynov					Sapezhko	way of			
							plastic			
<= Median:	6,00000	207,0000	66,0000	5,000000	101,0000	10,00000	1,00000	86,0000	482,0000	
observed										
expected	4,93726	177,1242	72,2074	5,554417	119,7286	12,34315	3,08579	87,0192		
obsexp.	1,06274	29,8758	-6,2074	-0,554417	-18,7286	-2,34315	-2,08579	-1,0192		
> Median:	2,00000	80,0000	51,0000	4,000000	93,0000	10,00000	4,00000	55,0000	299,0000	
observed										
expected	3,06274	109,8758	44,7926	3,445583	74,2714	7,65685	1,91421	53,9808		
obsexp.	-1,06274	-29,8758	6,2074	0,554417	18,7286	2,34315	2,08579	1,0192		
Total:	8,00000	287,0000	117,0000	9,000000	194,0000	20,00000	5,00000	141,0000	781,0000	
observed										

Table 4: The incidence rate of different types of hernias and there required post-operative hospitalization days in Mordovia Republic. Abbreviations: p/o; post-operative.

	Desci	riptive Statistics						
Effect		Level of	Ν	Days after		Days after	Days after	Days after
		Factor		surgery	surgery	surgery	surgery	surgery
m , 1			705	Mean	Std.Dev.	St. Err	-95,00%	+95,00%
Total	1	Nº 1 - '1 1 1' - ' ' 11 '	785	7,47261	3,19032	0,113867	7,2491	7,69613
Hernia localization	1.	Right-sided direct inguinal hernia	56	6,85714	1,63405	0,218360	6,4195	7,29475
Hernia localization	2.	Strangulated right inguinal hernia	14	8,21429	2,15473	0,575876	6,9702	9,45839
Hernia localization	3.	Left side oblique inguinal hernia	27	6,51852	1,50308	0,289269	5,9239	7,11312
Hernia localization	4.	Right-sided oblique inguinal hernia	30	6,90000	1,15520	0,210909	6,4686	7,33136
Hernia localization	5.	Right-sided oblique inguinal hernia	71	6,21127	1,73135	0,205474	5,8015	6,62107
Hernia localization	6.	Hernia of the white line of the abdomen	23	7,65217	2,69020	0,560945	6,4888	8,81550
Hernia localization	7.	P/o ventral hernia	86	10,05814	3,80203	0,409983	9,2430	10,87330
Hernia localization	8.	Giant p/o ventral hernia	1	5,00000				
Hernia localization	9.	Strangulated hernia of the white line of the abdomen	9	6,11111	2,14735	0,715783	4,4605	7,76171
Hernia localization	10.	Strangulated umbilical hernia	28	6,89286	2,57249	0,486156	5,8953	7,89037
Hernia localization	11.	Right femoral hernia	2	8,00000	1,41421	1,000000	-4,7062	20,70620
Hernia localization	12.	P / o ventral hernia of large sizes	2	14,50000	6,36396	4,500000	-42,6779	71,67792
Hernia localization	13.	Right-sided direct inguinal hernia	46	6,89130	2,66857	0,393459	6,0988	7,68377
Hernia localization	14.	Umbilical hernia	61	6,65574	2,56830	0,328837	5,9980	7,31351
Hernia localization	15.	Incarcerated p/o ventral hernia	33	9,06061	4,09984	0,713691	7,6069	10,51435
Hernia localization	16.	Spontaneously reduced strangulated umbilical hernia	7	5,14286	2,11570	0,799660	3,1862	7,09955
Hernia localization	17.	Spontaneously reduced p/o ventral hernia	3	9,66667	4,61880	2,666667	-1,8071	21,14041
Hernia localization	18.	Left-sided oblique inguinal hernia	61	6,75410	3,34493	0,428274	5,8974	7,61077
Hernia localization	19.	Strangulated right femoral hernia	3	6,00000	3,00000	1,732051	-1,4524	13,45241
Hernia localization	20.	Strangulated left femoral hernia	3	14,00000	11,35782	6,557439	-14,2144	42,21438
Hernia localization	21.	Strangulated spontaneously reduced umbilical hernia	2	7,00000	2,82843	2,000000	-18,4124	32,41241
Hernia localization	22.	Incarcerated spontaneously reduced left- sided inguinal hernia	3	7,00000	1,00000	0,577350	4,5159	9,48414
Hernia localization	23.	Axial hiatal hernia	5	10,40000	6,46529	2,891366	2,3723	18,42772
Hernia localization	24.	Recurrent p/o ventral hernia	11	9,90909	2,58668	0,779913	8,1713	11,64685
Hernia localization	25.	Spontaneously reduced strangulated hernia of the white line of the abdomen	2	5,00000	1,41421	1,000000	-7,7062	17,70620
Hernia localization	26.	Spontaneously right restrained p / o ventral hernia	4	9,75000	2,50000	1,250000	5,7719	13,72806
Hernia localization	27.	Recurrent umbilical hernia	2	8,50000	6,36396	4,500000	-48,6779	65,67792
Hernia localization	28.	Recurrent hernia of the linea alba	2	8,50000	3,53553	2,500000	-23,2655	40,26551
Hernia localization	29.	Spontaneously reduced strangulated p/o ventral hernia	3	6,66667	5,13160	2,962731	-6,0809	19,41427
Hernia localization	30.	Recurrent strangulated p/o ventral hernia	1	30,00000				
Hernia localization	31.	Strangulated right-sided direct inguinal hernia	16	7,75000	4,71169	1,177922	5,2393	10,26068
Hernia localization	32.	Left femoral hernia	1	4,00000				

It is made available under a	CC-BY-NC-ND 4.0	International license
It is made available under a	CC-D1-NC-ND 4.0	

Effect	Deser	riptive Statistics Level of	Ν	Days after	Days after	Days after	Days after	Days aft
Lineer		Factor	1	surgery Mean	surgery Std.Dev.	surgery St. Err	surgery -95,00%	surgery +95,00%
Hernia localization	33.	Spontaneously reduced strangulated umbilical hernia	1	6,00000				,
Hernia localization	34.	Left direct inguinal hernia	22	7,36364	1,36436	0,290882	6,7587	7,96856
Hernia localization	35.	Strangulated right-sided inguinal-scrotal hernia	3	7,00000	1,00000	0,577350	4,5159	9,48414
Hernia localization	36.	Recurrent left-sided inguinal hernia	1	8,00000				
Hernia localization	37.	Strangulated recurrent right inguinal hernia	2	7,50000	0,70711	0,500000	1,1469	13,85310
Hernia localization	38.	Recurrent left-sided inguinal hernia	15	7,00000	1,64751	0,425385	6,0876	7,91236
Hernia localization	39.	Strangulated left inguinal hernia	6	7,33333	0,51640	0,210819	6,7914	7,87526
Hernia localization	40.	Right-sided inguinal-scrotal hernia	18	8,61111	3,68046	0,867492	6,7809	10,44136
Hernia localization	41.	Left-sided inguinal-scrotal hernia	5	7,40000	2,19089	0,979796	4,6797	10,12035
Hernia localization	42.	Left side oblique inguinal hernia	4	7,25000	0,50000	0,250000	6,4544	8,04561
Hernia localization	43.	Left-sided oblique inguinal-scrotal hernia	3	6,66667	0,57735	0,333333	5,2324	8,10088
Hernia localization	44.	Left-sided sliding inguinal hernia	5	6,60000	1,14018	0,509902	5,1843	8,01571
Hernia localization	45.	Left-sided sliding inguinal-scrotal hernia	1	7,00000				
Hernia localization	46.	Recurrent right inguinal hernia	7	6,71429	1,60357	0,606092	5,2312	8,19734
Hernia localization	47.	Right sided inguinal hernia	1	9,00000				
Hernia localization	48.	Recurrent right-sided inguinal-scrotal hernia	3	7,66667	1,52753	0,881917	3,8721	11,46125
Hernia localization	49.	Spontaneously reduced strangulated right inguinal hernia	1	4,00000				
Hernia localization	50.	Spontaneously reduced strangulated left inguinal hernia	1	8,00000				
Hernia localization	51.	Recurrent right inguinal hernia	1	5,00000				
Hernia localization	52.	Strangulated left inguinal hernia	15	5,86667	2,16685	0,559478	4,6667	7,06663
Hernia localization	53.	Recurrent right-sided direct inguinal hernia	5	6,80000	0,83666	0,374166	5,7611	7,83885
Hernia localization	54.	Left-sided direct inguinal hernia	17	6,41176	2,52633	0,612725	5,1128	7,71068
Hernia localization	55.	Recurrent left-sided strangulated inguinal hernia	1	7,00000				
Hernia localization	56.	Right-sided sliding inguinal hernia	2	8,50000	0,70711	0,500000	2,1469	14,85310
Hernia localization	57.	Strangulated recurrent inguinal-scrotal hernia	1	8,00000				
Hernia localization	58.	Incarcerated spontaneously reduced right- sided direct inguinal hernia line	2	5,50000	0,70711	0,500000	-0,8531	11,85310
Hernia localization	59.	Strangulated recurrent Right-sided direct inguinal hernia line	1	6,00000				
Hernia localization	60.	Sliding left inguinal hernia	1	6,00000				
Hernia localization	61.	Strangulated sliding left inguinal hernia	1	6,00000				
Hernia localization	62.	Spontaneously reduced strangulated left- sided inguinal hernia	1	8,00000				
Hernia localization	63.	<u> </u>	3	8,00000	3,46410	2,000000	-0,6053	16,60531
Hernia localization	64.	Incarcerated left-sided inguinal-scrotal hernia	5	9,00000	6,55744	2,932576	0,8579	17,14214
Hernia localization	65.	Left-sided recurrent sliding inguinal hernia	1	10,00000				
Hernia localization	66.	Right-sided oblique inguinal-scrotal hernia	1	7,00000				
Hernia localization	67.	Spontaneously reduced strangulated right-sided sliding inguinal-scrotal hernia	1	7,00000				
Hernia localization	68.	Spontaneously reduced strangulated Right-sided direct inguinal hernia line	4	5,50000	1,91485	0,957427	2,4530	8,54696

	Descriptive Statistics						
Effect	Level of	Ν	Days after				
	Factor		surgery	surgery	surgery	surgery	surgery
			Mean	Std.Dev.	St. Err	-95,00%	+95,00%
Hernia	69. Bilateral inguinal hernia	1	6,00000				
localization	-						
Hernia	70. Recurrent strangulated right-sided direct	2	5,00000	1,41421	1,000000	-7,7062	17,70620
localization	inguinal hernia line						
Hernia	71. Recurrent bilateral inguinal hernia	1	9,00000				
localization							
Hernia	72. Spontaneously reduced strangulated	1	10,00000				
localization	right-sided inguinal-scrotal hernia						

It is made available under a CC-BY-NC-ND 4.0 International license .

Depending on the age, the risk of different hernias increases. The most common hernia for young people is recurrent right-sided inguinal-scrotal hernia (mean age by years 40.66667, St. Er. 7.68838). For elderly people, most common type of hernia is strangulated left femoral hernia (mean age by years 78.66667, St. Er. 7.05534). The mean age for hernia development in both men and female is 59.22785 years, St. Err. 0.48787.

Choosing the surgery type is a hernia type dependent and age dependent. The mean age of the patient who passed Martynov surgery was 58.75000, St. Er. 5.793315. Mean age of patient passed Lichtenstein surgery 59.37282, St. Er. 0.778549. The mean age of the patient passed Mayo surgery 59.08547, St. Er. 1.287770. Mean age of patient passed Bassini surgery 72.77778, St. Er. 2.822419. Mean age for patient passed Laparoscopic surgery 58.60309, St. Er. 0.942875. Mean age of patient passed Sapezhko surgery 60.85000, St. Er. 3.864327. The mean age of the patient passed another type of plastic surgery 59.00000, St. Er. 4.969909.

Current prospective for future therapeutic strategy

The current advancement in the surgical treatment has been achieved huge advances in improving the prognosis, reduce hospitalization days and less complications frequency associated with surgery [5]. The current approaches for treatment of the most frequently reported hernia remains poorly developed and requires further investigations [11]. Using of transabdominal preperitoneal (TAPP) repair and totally extraperitoneal (TEP) surgery for treatment of inguinal hernia is safe and effective method [12]. According to a systemic review results, the TEP has longer surgery time, shorter total hospitalization days, earlier discharge [13]. The recurrence rates of hernia in post TEP are similar to those for open inguinal hernia repair [13]. However, the TEP involves greater expenses for hospitals, but appears to be cost effective from a societal perspective [13].

Recent study demonstrated that applying combined mesh repair with autologous tissue repair has more efficacy in preventing the recurrence of inguinal hernia [14]. The current guidelines for hiatal hernias strongly indicated repair of symptomatic paraoesophageal hiatal hernias, particularly those with acute obstructive symptoms or which have undergone volvulus [15].

It is made available under a CC-BY-NC-ND 4.0 International license .

Discussion

In our country, the standards of medical care until December 2019 included the standard one day of hospitalization before surgery for laboratory tests and the postoperative period until the removal of the skin sutures or stable dynamics of the wound process. Therefore, patients were not discharged for outpatient treatment with the presence of skin sutures. The criterion of complete recovery was considered to be complete healing of the skin at the site of surgery. The time for removing stitches from the skin is 7-10 days. Whereas, in plastic surgery this criterion does not exist. With hernioplasty, local tissues are sewn together and the faster they fuse, the better the result. During laparoscopy, the local tissues do not participate in the operation. Thus, the difference in the terms of hospitalization characterizes only the methods of surgical intervention (open and laparoscopic; plastic surgery with local tissues and mesh graft, strengthening of the anterior and posterior walls of the inguinal canal).

Males at an early age are affected in hernia more than females. Also, the incidence rate of hernia is seen more frequently in male than in female. The choice of surgical treatment method depends on the localization of the hernia, the risk of complications development, and the postoperative recovery time as well as the choice of the patient [4, 7, 22, 11, 14, 16–21]. Also, with age hernia risk increases. Our statistical data constant with the previous recommendation of the American College of Surgeons. Where they recommend using Lichtenstein hernia repair [7]. Several advantages are in favor of Lichtenstein surgery including the low hernia recurrence rate, low risk of complications, ability to perform in outpatient manner [20, 23]. We add to that Lichtenstein surgery has the less recovery days after surgery.

The recurrence of hernia has been assessed by a randomized clinical trial and showed no statistical difference between laparoscopic and Lichtenstein surgery [24]. However, some other meta-analysis showed superiority of laparoscopic procedure on Lichtenstein in terms of patient satisfaction [25].

Inguinal hernias remain the most commonly reported hernia worldwide. Annually, 20 million patients treat surgically inguinal hernia. Post-operative sequelae are also crucial in terms social life and daily activity. Using the Short Form-36 is (SF-36) is an acceptable tool to assesses the post-operative patient's health status. Additionally, development of severe pain in some patients has been reported in some patients, which is also reported in other studies [26].

Conclusions

In the light of our results, statistically significant correlation between the type of the surgery and the post-operative period hospitalization days have been identified. Also, our study showed that Lichtenstein surgery is the surgery of choice in terms of the hospitalization time after the

It is made available under a CC-BY-NC-ND 4.0 International license .

surgery. Straight association between sex and age with postoperative hospitalization days. The relationship between laboratory values and postoperative hospitalization time shows a poor correlation.

Declarations

Authors' contributions: MB analyzed the statistical data, wrote the draft, and revised the final version of the paper, KS collected the data from the hospital. All authors have read and approved the manuscript.

List of abbreviations

COVID-19; corona virus infection disease -19, TAPP; transabdominal preperitoneal, TEP; totally extraperitoneal

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study approved by the National Research Mordovia State University, Russia, from "Ethics Committee Requirement N8/2 from 30.06.2021".

HUMAN AND ANIMAL RIGHTS

No animals were used in this research. All human research procedures followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national), and with the Helsinki Declaration of 1975, as revised in 2013.

CONSENT FOR PUBLICATION

Written informed consent was obtained from the patients for publication of study results and any accompanying images.

STANDARDS OF REPORTING

STROBE guideline has been followed.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

References

- International Guidelines for Groin Hernia Management. *Hernia*, 2018, 22 (1), 1–165. https://doi.org/10.1007/s10029-017-1668-x.
- [2] Grove, T. N.; Kontovounisios, C.; Montgomery, A.; Heniford, B. T.; Windsor, A. C. J.;Warren, O. J.; de Beaux, A.; Boermeester, M.; Bougard, H.; Butler, C.; et al. Perioperative

It is made available under a CC-BY-NC-ND 4.0 International license .

Optimization in Complex Abdominal Wall Hernias: Delphi Consensus Statement. *BJS Open*, **2021**, *5* (5). https://doi.org/10.1093/bjsopen/zrab082.

- [3] Aguirre, D. A.; Santosa, A. C.; Casola, G.; Sirlin, C. B. Abdominal Wall Hernias: Imaging Features, Complications, and Diagnostic Pitfalls at Multi-Detector Row CT. *Radiographics*, 2005, 25 (6), 1501–1520. https://doi.org/10.1148/RG.256055018/ASSET/IMAGES/LARGE/G05NV01G30B.JPEG.
- [4] Vitous, C. A.; Jafri, S. M.; Seven, C.; Ehlers, A. P.; Englesbe, M. J.; Dimick, J.; Telem, D. A. Exploration of Surgeon Motivations in Management of Abdominal Wall Hernias: A Qualitative Study. *JAMA Netw. open*, 2020, *3* (9), e2015916. https://doi.org/10.1001/jamanetworkopen.2020.15916.
- [5] Andresen, K.; Rosenberg, J. [Development in Abdominal Hernia Repair]. Ugeskr. Laeger, 2016, 178 (30).
- [6] Кузин, М. И.; Шкроб, О. С.; Кузин, Н. М.; КРЫЛОВ, Н. Н.; УСПЕНСКИЙ, Л. В.; КУЛАКОВА, А. М.; АРТЮХИНА, Е. Г.; ЧИСТОВ, Л. В.; ШКРОБ, О. С. Хирургические Болезни, 3rd ed.; Кузина, М. И., Ed.; Медицина, 2002.
- [7] Amid, P. K. Lichtenstein Tension-Free Hernioplasty: Its Inception, Evolution, and Principles. *Hernia*, 2004, 8 (1), 1–7. https://doi.org/10.1007/s10029-003-0160-y.
- [8] Gilbert, A. I. An Anatomic and Functional Classification for the Diagnosis and Treatment of Inguinal Hernia. *Am. J. Surg.*, **1989**, *157* (3), 331–333. https://doi.org/10.1016/0002-9610(89)90564-3.
- Schumpelick, V.; Treutner, K. H.; Arlt, G. [Classification of Inguinal Hernias]. *Chirurg.*, 1994, 65 (10), 877–879.
- Kulacoglu, H.; Ozdogan, M.; Gurer, A.; Ersoy, E. P.; Onder Devay, A.; Duygulu Devay,
 S.; Gulbahar, O.; Gogkus, S. Prospective Comparison of Local, Spinal, and General Types of Anaesthesia Regarding Oxidative Stress Following Lichtenstein Hernia Repair. *Bratisl. Lek. Listy*, 2007, *108* (8), 335–339. https://doi.org/18203536.
- Knaapen, L.; Buyne, O.; Slater, N.; Matthews, B.; Goor, H.; Rosman, C. Management of Complex Ventral Hernias: Results of an International Survey. *BJS Open*, 2021, 5 (1). https://doi.org/10.1093/bjsopen/zraa057.
- [12] Cao, C.; Shi, X.; Jin, W.; Luan, F. Clinical Data Analysis for Treatment of Adult Inguinal Hernia by TAPP or TEP. *Front. Surg.*, 2022, 9. https://doi.org/10.3389/fsurg.2022.900843.
- Kuhry, E.; van Veen, R. N.; Langeveld, H. R.; Steyerberg, E. W.; Jeekel, J.; Bonjer, H. J.
 Open or Endoscopic Total Extraperitoneal Inguinal Hernia Repair? A Systematic Review.
 Surg. Endosc., 2007, 21 (2), 161–166. https://doi.org/10.1007/s00464-006-0167-4.

It is made available under a CC-BY-NC-ND 4.0 International license .

- [14] Chen, L.-F. Applying Tissue and Mesh Combined Repair (TMC Repair) to Treat Adult Inguinal Hernia—A Study Based on 1,169 Cases. *Front. Surg.*, 2022, 8. https://doi.org/10.3389/fsurg.2021.810212.
- Kohn, G. P.; Price, R. R.; Demeester, S. R.; Zehetner, J.; Muensterer, O. J.; Awad, Z.;
 Mittal, S. K.; Richardson, W. S.; Stefanidis, D.; Fanelli, R. D. Guidelines for the
 Management of Hiatal Hernia. *Surgical Endoscopy*. 2013, pp 4409–4428.
 https://doi.org/10.1007/s00464-013-3173-3.
- [16] Jenkins, J. T.; O'Dwyer, P. J. Inguinal Hernias. *BMJ*, 2008, 336 (7638), 269–272.
 https://doi.org/10.1136/bmj.39450.428275.AD.
- Berle, M.; Dahlslett, K. H.; Kavaliauskiene, G.; Hoem, D. Internal Abdominal Hernia. *Tidsskr. Nor. Laegeforen.*, 2017, 137 (16). https://doi.org/10.4045/tidsskr.17.0090.
- Białecki, J.; Pyda, P.; Antkowiak, R.; Domosławski, P. Unsuspected Femoral Hernias Diagnosed during Endoscopic Inguinal Hernia Repair. *Adv. Clin. Exp. Med.*, 2021, 30 (2), 135–138. https://doi.org/10.17219/acem/130357.
- [19] Berndsen, M. R.; Gudbjartsson, T.; Berndsen, F. H. [Inguinal Hernia Review].
 Laeknabladid, 2019, 105 (9), 385–391. https://doi.org/10.17992/lbl.2019.09.247.
- [20] Kulacoglu, H. Current Options in Inguinal Hernia Repair in Adult Patients. *Hippokratia*, 2011, 15 (3), 223–231.
- [21] Selçuk, D.; Kantarci, F.; Oğüt, G.; Korman, U. Radiological Evaluation of Internal Abdominal Hernias. *Turk. J. Gastroenterol.*, 2005, 16 (2), 57–64.
- [22] Mayagoitia González, J. C. [NO TITLE AVAILABLE]. *Rev. Col. Bras. Cir.*, 2010, 37 (1), 004–005. https://doi.org/10.1590/S0100-69912010000100002.
- [23] Aldoescu, S.; Patrascu, T.; Brezean, I. Predictors for Length of Hospital Stay after Inguinal Hernia Surgery. J. Med. Life, 2015, 8 (3), 350.
- [24] Eklund, A.; Rudberg, C.; Leijonmarck, C.-E.; Rasmussen, I.; Spangen, L.; Wickbom, G.;
 Wingren, U.; Montgomery, A. Recurrent Inguinal Hernia: Randomized Multicenter Trial Comparing Laparoscopic and Lichtenstein Repair. *Surg. Endosc.*, 2007, 21 (4), 634–640. https://doi.org/10.1007/s00464-006-9163-y.
- [25] Yang, J.; Tong, D. N.; Yao, J.; Chen, W. Laparoscopic or Lichtenstein Repair for Recurrent Inguinal Hernia: A Meta-Analysis of Randomized Controlled Trials. ANZ J. Surg., 2013, 83 (5), 312–318. https://doi.org/10.1111/ans.12010.
- [26] Iftikhar, N.; Kerawala, A. QUALITY OF LIFE AFTER INGUINAL HERNIA REPAIR.
 Pol. Przegl. Chir., **2021**, *93* (3), 1–5. https://doi.org/10.5604/01.3001.0014.8218.

It is made available under a CC-BY-NC-ND 4.0 International license .

Figure legend

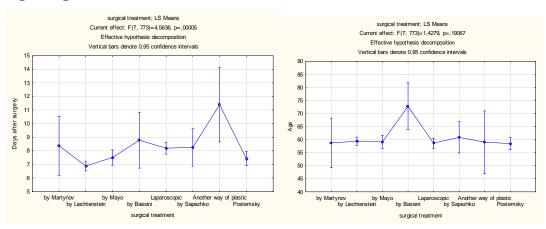


Figure 1: The shortest the postoperative hospitalization time is seen in Lichtenstein surgery and the longest in another way of plastic surgery (p < 0.00005). Age does not affect the choice of surgery (p=0.19067).

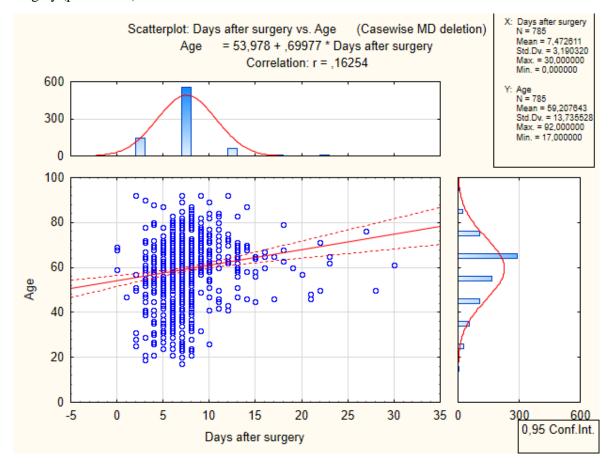


Figure 2: Elderly people have longer post-operative hospitalization time.