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Abstract 

Objective: To evaluate the synergistic effects created by fine particulate matter (PM2.5) and 

corticosteroid use on hospitalization and mortality in older adults at high-risk for cardiovascular 

thromboembolic events (CTEs). 

Design and Setting: A retrospective cohort study using a US nationwide administrative 

healthcare claims database. 

Participants: A 50% random sample of participants with high-risk conditions for CTE from the 

2008-2016 Medicare Fee-for-Service population. 

Exposures: Corticosteroid therapy and seasonal-average PM2.5. 

Main Outcome Measures: Incidences of myocardial infarction or acute coronary 

syndrome, ischemic stroke or transient ischemic attack, heart failure, venous 

thromboembolism, atrial fibrillation, and all-cause mortality. We assessed additive 

interactions between PM2.5 and corticosteroids using estimates of the relative excess risk 

due to interaction (RERI) obtained using marginal structural models for causal inference. 

Results: Among the 1,936,786 individuals in the high CTE risk cohort (mean age 76.8, 

40.0% male, 87.4% White), the mean PM2.5 exposure level was 8.3 ± 2.4 μg/m3 and 

37.7% had at least one prescription for a systemic corticosteroid during follow-up. For all 

outcomes, we observed increases in risk associated with corticosteroid use and with 

increasing PM2.5 exposure. PM2.5 demonstrated a non-linear relationship with some 

outcomes. We also observed evidence of an interaction existing between corticosteroid 

use and PM2.5 for some CTEs. For an increase in PM2.5 from 8 μg/m3 to 12 μg/m3 (a 

policy-relevant change), the RERI of corticosteroid use and PM2.5 was significant for heart 

failure (15.6%, 95% CI: 4.0%-27.3%). Increasing PM2.5 from 5 μg/m3 to 10 μg/m3 yielded 

significant RERIs for incidences of heart failure (32.4; 95% CI: 14.9%-49.9%) and 

myocardial infarction/acute coronary syndromes (29.8%; 95% CI: 5.5%-54.0%). 

Conclusion: PM2.5 and systemic corticosteroid use were independently associated with 

increases in CTE hospitalizations. We also found evidence of significant additive 

interactions between the two exposures for heart failure and myocardial infarction/acute 

coronary syndromes suggesting synergy between these two exposures. 
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Strengths and Limitations of this Study 

● We conduct analyses using robust causal inference and machine learning 

techniques and incorporate a large set of individual-level factors that are typically 

absent in environmental health analyses with large claims data sets. 

● We present statistics that evaluate the synergy between fine particulate matter 

and corticosteroid therapy on the additive scale, which is more relevant for 

assessing excess risks and informing policy. 

● Patient medical history prior to receiving Medicare benefits is unknowable within a 

Fee-for-Service claims database, which may lead to exclusion of some high-risk 

individuals from the cohort. 

● We censor participants after the earlier of the end of first corticosteroid regimen or 

the first incidence of the outcome of interest, which makes the analyses 

statistically tractable but sacrifices some information in the data. 
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Introduction 

Climate change is ‘the single biggest health threat facing humanity,’1 and is expected to have a 

growing impact on human health through multiple pathways, including more frequent extreme 

weather events and worsening ambient air pollution.2 Air pollution is currently among the top five 

modifiable contributors to death and disease globally.3 The impacts of air pollution, specifically 

fine particulate matter (PM2.5), on the cardiovascular system are well-established. PM2.5 

exposure has been linked to increased risk of stroke, myocardial infarction, heart failure, venous 

thromboembolism, and other cardiovascular events.4-11 More than half of deaths attributable to 

air pollutants are due to cardiovascular thromboembolic (CTE) events.12 Epidemiological 

assessments in this area are also supported by cellular/toxicological experiments and by 

controlled animal/human studies, which both demonstrate the mechanisms by which PM2.5 may 

trigger acute events as well as prompt the chronic development of cardiovascular diseases.13 

One of the most vulnerable populations, older adults, are at elevated risk for mortality and 

morbidity from PM2.5, particularly those with accessory comorbidities such as respiratory and 

cardiovascular diseases.14 Older adults are also at increased risk for CTE from certain 

medications taken to treat or prevent comorbidities.15,16 For example, systemic corticosteroids 

used for asthma/COPD exacerbations and to treat autoimmune diseases have direct 

vasoconstriction effects that inhibit fibrinolytic activity of the blood, leading to clinically-

recognized thrombogenicity.17 Further, systemic corticosteroids can cause sodium and fluid 

retention issues, leading to hypertension or heart failure exacerbations.18-20 

Although the independent effects of air pollution and corticosteroids on CTE are well-known, no 

prior study has assessed the risk of both exposures simultaneously on CTE. Thus, it is unknown 

whether there is a synergy between these factors. Leveraging rich healthcare utilization data on 

a large cohort of Medicare beneficiaries with comorbidities linked to residential PM2.5 

concentrations, we examined whether simultaneously experiencing elevated PM2.5 

concentrations and being exposed to corticosteroid therapies leads to an increased risk of CTE 

that is greater than the combination of these two effects independently. To our knowledge this is 

the first study to examine interactions between a drug and an air pollution exposure. We 

therefore provide a causal analytic framework that enables robust investigation of the 

contributing factors that explain individual-specific vulnerabilities to air pollution through the 

evaluation of additive interactions in survival models. Additionally, our analyses adjust for a 

large set of individual-level potential confounders that are typically unmeasured in 
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environmental health analyses with large claims datasets, which lends added credibility to our 

findings. 

Methods 

Study Population and Cohort Definition 

The cohort used in this study has been previously described.14 Briefly, we used data from a 50% 

random sample of the 2008-2016 Medicare Part D-eligible Fee-for-Service beneficiary 

population and formed a cohort of individuals with conditions known to increase the risk of CTE. 

These high-risk conditions included pre-existing cardiovascular diseases, prior venous 

thromboembolism, total joint arthroplasty, and cancer. Any beneficiary who had an inpatient 

diagnosis/procedure at any position (primary or otherwise) for one or more of the above causes 

during a one-year baseline period from their date of enrollment into the Medicare Fee-for-

Service system was entered into the cohort at the end of the baseline period. This definition for 

high CTE risk has been shown to be highly predictive of future CTE events (see Supplemental 

Table S1 for specific International Classification of Diseases (ICD-9/10) diagnosis codes used to 

define each high-risk condition). 21 

Outcomes 

We followed all participants until they developed one of the outcomes of interest, or until they 

experienced a censoring event – whichever occurred first. Outcomes of interest included 

hospitalization for: 1) myocardial infarction or acute coronary syndrome (MI/ACS); 2) ischemic 

stroke or transient ischemic attack (Stroke/TIA); 3) heart failure (HF); 4) atrial fibrillation (Afib); 

5) venous thromboembolism (VTE); or 6) death from any cause (see Supplemental Table S2 for 

ICD-9/10 diagnosis and procedure codes identifying the outcomes). Non-administrative 

censoring events included death (when death was not the outcome under study), loss of 

eligibility for Medicare Part D, and the participant’s moving to a ZIP-code without available PM2.5 

exposure data. We also censored participants after the discontinuation of their first 

corticosteroid therapy, with a 30-day grace period. 

PM2.5 Exposures 

Seasonal-average PM2.5 concentrations were derived from spatially and temporally aggregated 

predictions from a well-validated, high-resolution PM2.5 model.22 This model predicts PM2.5 

concentrations at 1-km square grids across the US and consists of an ensemble of neural net 
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and machine learning sub-models trained on integrated high-resolution satellite, land use, 

emissions, ground monitoring, and weather data. Daily gridded estimates were aggregated and 

linked to participants by residential ZIP-code, and then averaged within seasons. Figure 1 

demonstrates the significant between-season variation in PM2.5 patterns in the US, which 

motivated our choice to examine seasonal-average PM2.5 exposures rather than more traditional 

yearly-average exposures as shorter-term increases in exposure may have harmful effects in 

this vulnerable population. We are particularly focused on contrasting outcomes under PM2.5 

exposures of 12 μg/m3 vs. 8 μg/m3, which are policy-relevant thresholds currently in review by 

the US Environmental Protection Agency (EPA; 12 μg/m3 being the current US limit for annual 

average PM2.5).23 We also compare outcomes for the contrast between PM2.5 levels of 10 μg/m3 

vs. 5 μg/m3 in a secondary analysis, informed by the WHO’s updated guidelines recommending 

an annual average limit of 5 μg/m3 (recently reduced from 10 μg/m3).24 

Corticosteroid Exposures 

We used Medicare Part D drug dispensing data to identify systemic corticosteroid exposure. 

Systemic corticosteroids of interest included Cortisone, Hydrocortisone, Prednisone, 

Prednisolone, Methylprednisolone, Triamcinolone, Dexamethasone, and Betamethasone. 

Initiation and duration of each corticosteroid were estimated based on the dispensing date, 

dispensing dose, and days’ supply of the participants’ prescriptions. Because allowing for 

continuous follow-up was computationally infeasible, corticosteroid therapy status was updated 

quarterly until one of the study endpoints was achieved for each participant. 

To ensure that individuals’ quarterly follow-up times aligned with key dates of corticosteroid 

usage, we constructed unique drug exposure panels for each cohort member. The anchor point 

of the drug exposure panels is the date of initiation of corticosteroid therapy during follow-up for 

users. In other words, for a participant who uses corticosteroids at some point during follow-up, 

the first day of their corticosteroid therapy always coincides with the first day of a quarter. We 

then constructed individual-specific panels spanning quarterly intervals extending backward in 

time to the participant’s index date and forward in time to the participant’s end date (see 

Supplemental Figure S1 for example). For individuals who never use corticosteroids during 

follow-up, quarter start times coincide with changes in season. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2022.12.15.22283489doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283489


7 
 

Covariates 

We identified individual-level sociodemographic characteristics, comorbidities and health 

services utilization information derived from Medicare enrollment files and inpatient, outpatient, 

and drug dispensing data from files pertaining to Medicare Parts A, B, and D, respectively. 

Using Medicare enrollment files, we extracted the following individual-level baseline variables: 

age, sex, race/ethnicity, and Medicaid eligibility (a proxy for low-income status). Various pre-

enrollment measurements were assessed based on diagnosis codes for inpatient and outpatient 

visits during each participant’s baseline period (see Tables S3 for complete list of 

comorbidities). We also derived metrics of health services utilization during the baseline period, 

including the number of hospitalizations, number of emergency department visits, number of 

outpatient visits, and number of generic medications dispensed. We consider this collection of 

variables as time-invariant and treat them as potential confounders between corticosteroid use 

and CTE. 

Additional temporal and neighborhood-level features were also identified to enable further 

confounding adjustment, for both PM2.5-CTE and corticosteroid-CTE associations. These 

variables included season, year, region, and PM2.5 from the prior four seasons as well as area-

based measures of population density, proportion of residents living below the federal poverty 

line, proportion of housing units that are owner-occupied, median home value, median 

household income, proportion of residents identifying as Hispanic, proportion of residents 

identifying as Black, and proportion of residents 25+ with at least a college degree that were 

linked to Medicare by ZIP-code of beneficiaries’ residence. These demographic and 

socioeconomic features were considered as time-varying covariates updated yearly. We also 

accounted for ZIP-code changes that occur during follow-up and updated participants’ PM2.5 

exposures and neighborhood features accordingly. 

Statistical Analysis 

We first described summary measures of the individual- and neighborhood-level characteristics 

and calculated the number of person-years at risk, number of events, and event rates per 1,000 

person years for each of the six outcomes examined, both overall and stratified by corticosteroid 

status. We then fitted history-adjusted marginal structural Cox proportional hazard models, 

facilitated by estimated inverse probability weights (IPWs), to investigate both the independent 

and synergistic effects of PM2.5 and corticosteroid use on the CTE outcomes.25,26 Separate 

models were used to estimate the IPWs for each of the outcomes considered, and separate 
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weighted Cox models were fit over the age-time scale.27 We included penalized spline 

components in the weighted Cox models to account for potential nonlinear effects of PM2.5, in 

addition to a main effect for corticosteroid use and an interaction between corticosteroid use and 

PM2.5 (the penalized spline representation). Given that our cohort comprises individuals with 

diverse diseases each potentially affecting thrombosis risk, we employed stratification in the 

Cox models based on disease indication. Particularly, we allowed for disease-specific baseline 

hazards for autoimmune diseases and COPD/asthma (see Table S4 for ICD-9/10 codes), as 

these two categories of diseases exhibit unique pathways for cardiovascular and 

thromboembolic events independent of corticosteroid therapy.28-33 

The final IPW for a given participant and follow-up period was constructed as the product of 

three distinct IPWs accounting for different potential sources of bias: an inverse probability of 

treatment weight for each of the PM2.5 and corticosteroid exposures, to adjust for confounding, 

and an inverse probability of censoring weight to account for informative censoring. The ZIP-

code and season-specific IPWs for PM2.5 were constructed by taking the inverse of estimated 

generalized propensity scores modeled using gradient boosting regression. The individual-level 

IPWs for the quarterly corticosteroid use indicators were obtained by inverting propensity scores 

estimated using gradient boosting classification. Additionally, over the same corticosteroid use 

quarters, we modeled the probability of censoring with gradient boosting classification to 

produce inverse probability of censoring weights. The three IPWs were stabilized by the 

marginal probabilities of treatment/censoring. Extreme weights were truncated at the 1st and 99th 

percentiles of the final IPW distribution (see Supplement for additional details on the 

construction of the IPWs). 

We report the hazard ratio estimates and 95% confidence intervals associating PM2.5 with the 

five CTE outcomes and all-cause mortality (comparing average hazards evaluated at PM2.5 

levels of 12 vs. 8 μg/m3 and 10 vs. 5 μg/m3) with corticosteroid status held fixed (both on and off 

treatment). We also provide hazard ratios associating corticosteroid use with each outcome, 

with PM2.5 held fixed at 8 μg/m3. We assessed synergy between PM2.5 and corticosteroids by 

calculating the relative excess risk due to interaction (RERI) – a measure of interaction on the 

additive scale that can be interpreted as the relative increase in risk due to the combined effect 

of the two exposures versus the individual effects of the two exposures summed together 

(presented as a percentage).34-38 Cluster m-out-of-n bootstrap samples of the Cox model 

parameters were used to compute standard errors for the RERI which account for the 
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correlation between units in the same ZIP-code while maintaining adequate computational 

efficiency.39 Additional details for estimating the RERI are provided in the Supplement. 

This study was approved by the Institutional Review Board of Rutgers University. All analyses 

were conducted using R version 4.2.0. Data cleaning was performed using SAS version 9.4. 

Patient and public involvement: Patients and/or the public were not involved in the design, 

conduct, reporting, or dissemination of this research. 

Results 

The cohort included 1,936,786 beneficiaries with a total of 4,629,432 person-years of follow-up. 

Average age at index date was 76.8 years, with 60.0% of cohort members female, 15.9% 

Medicaid eligible, 87.4% White, and 8.2% Black (Table 1). The average participant follow-up 

time was 2.4 ± 2.3 years, although this figure along with the total person-years of follow-up 

fluctuates depending on the outcome being evaluated (Supplemental Table S5). Among the 

Medicare beneficiaries evaluated, 37.7% had at least one prescription for corticosteroid therapy 

during follow-up. Participants who received corticosteroid therapy were slightly younger than 

those who never received corticosteroid therapy (75.7 versus 77.4 years old), were more likely 

to be White (89.8% versus 85.9%) and were less likely to be Medicaid eligible (14.0% versus 

17.0%). Table 1 and Supplemental Table S3 shows summary statistics of several comorbidities 

included into the IPW models, stratified by disease indications listed in Table S4. Table 2 

contains data on demographics and season-specific PM2.5 measurements over 329,544 ZIP-

code years from 35,695 unique ZIP-codes. The average PM2.5 level was 8.3 ± 2.4 μg/m3, 

average population density was 1,425 people per square mile, and the overall poverty rate was 

10.3%. 

During an average follow-up of 2.4 years per person, we observed a total of 244,451 

hospitalization for HF, 118,754 hospitalizations for Afib, 101,611 hospitalizations for Stroke/TIA, 

93,191 hospitalizations for MI/ACS, 41,635 hospitalizations for VTE, and 491,445 deaths. The 

incidence rates per 1,000 person-years were 57.1 for HF, 27.0 for Afib, 22.8 Stroke/TIA, 20.8 for 

MI/ACS, 9.1 for VTE, and 106.2 for death (Supplemental Table Table S5). 

Corticosteroid use was associated with higher risks of CTE and death, with significant 

associations for all six outcomes examined. Holding PM2.5 fixed at 8 μg/m3, the hazard ratios 

(95% CI) for corticosteroid use were 2.04 (1.94, 2.14) for MI/ACS, 1.51 (1.42, 1.61) for 
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Stroke/TIA, 2.18 (2.11, 2.25) for HF, 3.39 (3.19, 3.61) for VTE, 2.25 (2.11, 2.40) for Afib, and 

2.64 (2.57, 2.72) for Death.  

Seasonal-average PM2.5 exposure was also significantly associated with an increased risk of 

each of the six CTE and mortality outcomes. Increasing the PM2.5 concentration from 8 μg/m3 to 

12 μg/m3, in the absence of corticosteroid therapy, resulted in hazard ratios (95% CI) of 1.244 

(1.226, 1.263) for MI/ACS, 1.252 (1.234, 1.271) for Stroke/TIA, 1.336 (1.323, 1.349) for HF, 

1.307 (1.278, 1.337) for VTE, 1.181 (1.163, 1.200) for Afib, and 1.227 (1.218, 1.236) for Death. 

Figure 2 contains the estimated hazard ratios associated with increasing PM2.5 from 5 μg/m3 to 

10 μg/m3 and the estimated PM2.5 hazard ratios while receiving corticosteroid therapy.  

Evaluating the interactions between PM2.5 and corticosteroid use on the additive scale, we 

observed significant interactions (RERI [95% CI]) associated with increasing PM2.5 from 8 μg/m3 

to 12 μg/m3 for HF (15.6% [4.0%, 27.3%]), with a borderline significance interaction detected for 

death (12.5 [-0.6%, 25.5%]). Increasing PM2.5 from 5 μg/m3 to 10 μg/m3 resulted in a 

significantly increased excess risk due to interaction (RERI [95% CI]) for HF (32.4% [14.9%, 

49.9%]) and MI/ACS (29.8% [5.5%, 54.0%]). Figure 3 plots the RERI curves corresponding to 

various PM2.5 contrasts across the range of observed exposure levels for each outcome. For 

most outcomes, the increase in RERI is steepest when PM2.5 is less than 10 μg/m3, indicating 

more intense synergy between PM2.5 and corticosteroids even at PM2.5 concentrations below 

current US annual average PM2.5 standards.   

An interesting result worth noting concerns the hazard ratios associated with PM2.5 while 

receiving corticosteroid therapy. Observe that nearly every estimate of the hazard ratio in the 

third subplot of Figure 2 is attenuated toward the null value of one relative to the second subplot 

in Figure 2 examining the effects of PM2.5 while not receiving corticosteroid therapy. This implies 

that the multiplicative interaction between PM2.5 and corticosteroid use is negative.  Thus, our 

results provide an example of the discordance that can occur between additive and 

multiplicative measures of synergy, which is well-established in the literature, and further 

demonstrates the caution one needs to consider when evaluating potential causal interactions.40 

Discussion 

In this study, we examined the interaction between seasonal-average PM2.5 exposure and 

corticosteroid use on the risk of CTE in a cohort of Medicare beneficiaries with high-risk 

conditions for CTE from the broadly generalizable set of Fee-for-Service enrollees. Using 
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marginal structural models from the causal inference literature, which adjust for time-varying 

confounding attributable to several observed neighborhood- and individual-level covariates, we 

found that the escalation in risk for certain CTE outcomes during periods of simultaneous high 

PM2.5 exposure and corticosteroid use was larger than what would be expected from the 

independent effects of the two factors added together. In particular, we detected synergism 

between these two exposures for heart failure and myocardial infarction/ACS. 

Numerous studies have reported that older adults and those with comorbidities, particularly 

respiratory and cardiovascular disease,41 are at elevated risk for mortality and morbidity from air 

pollution. Older adults may be more vulnerable not only because of age and pre-existing 

diseases, but also because of the multiple medications they receive.42 Despite making up only 

13% of the US population, older adults account for more than one-third of all prescriptions 

dispensed.43,44 Yet, current evidence on the health impacts of air pollution lacks consideration of 

additional factors to characterize individuals at risk.40,45 In particular, studies lack considerations 

for medication use, a prevalent risk factor that may further increase vulnerability in older 

adults.45 To our knowledge, our study provides the first epidemiologic evidence of synergistic 

effects of air pollution and medication on CTE outcomes in older adults. 

In addition, examining the independent effects of PM2.5 and corticosteroid use on CTE and 

mortality, we observed results that corroborate those already found in the current literature. 

PM2.5 has been significantly associated with increased risk of MI/ACS,6 Stroke/TIA,7 HF,46 

VTE,14 Afib,5 and all-cause mortality.47 Our results sometimes yielded associations larger in 

magnitude than those found in previous studies. This is unsurprising given that our cohort 

consists only of participants already at high-risk for CTE.14 Likewise, corticosteroid use was 

strongly and significantly associated with increased risk of the five CTE outcomes and all-cause 

mortality in our study. The deleterious effects that corticosteroids can have on CTE outcomes 

have already been described in several other reports.19,20 

There are several potential biological mechanisms explaining the synergistic interactions 

between prescription systemic corticosteroids and PM2.5 on CTE. First, both PM2.5 and 

glucocorticoids have been shown to induce hypercoagulable states in humans. As PM2.5 is small 

enough to translocate into the bloodstream, chronic PM2.5 exposure may increase coagulability 

indirectly through production of pro-oxidative and pro-inflammatory factors that can then induce 

production of coagulation factors and fibrinogen. Steroids may complement this thrombogenicity 

by stimulating Plasminogen Activator Inhibitor-1, which decreases dissolution of fibrinogen.48 
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Second, PM2.5 may also lead to atherosclerotic changes and autonomic cardiac dysfunction 

(i.e., reduced heart rate variability), which in conjunction with adverse metabolic changes seen 

with systemic glucocorticoid use, can increase risk of cardiovascular disease-related outcomes. 

Third, both PM2.5 inhalation49 and glucocorticoids50 have been shown to have vasoconstrictive 

effects, which can increase blood pressure, risk of hypoxia in cardiac/brain tissue, and ultimately 

lead to MI or stroke. Some steroids also exhibit mineralocorticoid activity at higher doses which 

can lead to fluid retention and potassium efflux.51 In combination with PM2.5’s effects on 

autonomic dysfunction and modulation of vascular tone,52 this could potentially exacerbate heart 

failure or induce arrhythmias. 

Our analysis is not without its limitations. First, using model-based PM2.5 aggregated to ZIP-

codes carries the potential for attenuation created by exposure measurement error.53 However, 

even with such potential attenuation, we still obtained significant results. Second, comorbidities 

were captured and fixed at the index date and not allowed to vary over time. However, most 

comorbidities that we accounted for are chronic diseases that are rarely reversed. Third, we 

censored participants after their first corticosteroid therapy ended, and repeated corticosteroid 

exposure was not considered in the analyses. A recurrent events model might have been 

constructed to alleviate this issue; however, fitting marginal structural models in this design is 

both more time-intensive and new to the causal inference space. Moreover, our approach to 

consider the first course of exposure makes epidemiological sense given that repeated drug 

exposures are likely to be associated with worsening of the disease or comorbidities, which is 

difficult to correct for in a model of the exposure responses.54 Fourth, exposure to PM2.5 may 

contribute to the development of diseases that necessitate corticosteroid therapies, such that 

corticosteroids may mediate the overall impact of PM2.5. However, in this paper we did not 

specifically assess this role of corticosteroids as a potential mediator of PM2.5 effects. Instead, 

our focus was on examining the combined effects of PM2.5 and corticosteroid use. Finally, while 

we allowed for differing baseline risks of the outcomes for certain disease indications, we did not 

investigate the potential differential exposure effects experienced by distinct groups of patients 

using corticosteroids. Based on the findings of this initial analysis, further investigation of these 

heterogeneous effects is necessary in future studies. 

Conclusion 

Using a cohort of nearly two million adults at high-risk for CTE, we found evidence of a 

synergistic effect between seasonal PM2.5 exposure and corticosteroid use on several CTEs. 
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We used advanced causal inference methods to control for potential confounding attributable to 

a large set of individual- and neighborhood-level covariates. We also observed strong 

independent impacts of PM2.5 and corticosteroids on each of the six outcomes examined. Our 

study demonstrates that certain combinations of medication and PM2.5 can work synergistically 

to impose increased health risks on older adults, even when PM2.5 concentrations fall below 

EPA standards. While our results should not discourage clinicians/older adults from 

prescribing/taking medications needed for treatment, they do shape our conceptual model of 

disease risk, which we believe should incorporate potential synergisms between individual- and 

environmental-level risk factors. Our results also emphasize the need for stricter control of PM2.5 

concentrations to help protect these vulnerable populations for whom corticosteroid medications 

are commonly indicated. 
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Tables and Figures 

Table 1. Characteristics of high-risk Medicare beneficiaries (total N=1,936,786). Beneficiaries 

are further divided into strata of those who received at least one dispensing of systemic 

corticosteroid during follow-up and those who never received corticosteroids during follow-up. 

We report counts (%) for categorical variables and mean ± standard deviation for continuous 

variables. 

Variable Level All Participants  
(N = 1,936,786) 

Participants with 
Autoimmune Diseases 

(N = 212,697) 

Participants with COPD or 
Asthma (N = 510,941) 

Age at Index  76.8 ± 8.0 75.9 ± 7.3 76.5 ± 7.7 

Male  774,852 (40.0) 88,897 (41.8) 204,382 (40.0) 

Race     

 White 1,692,791 (87.4) 183,623 (86.3) 449,203 (87.9) 

 Black 159,001 (8.2) 20,555 (9.7) 41,194 (8.1) 

 Hispanic 35,508 (1.8) 3,110 (1.5) 9,337 (1.8) 

 Asian 24,152 (1.3) 2,582 (1.2) 5,293 (1.0) 

 North American 
Native 6,943 (0.4) 

649 (0.3) 2,026 (0.4) 

 Other 18,391 (1.0) 2,178 (1.0) 3,888 (0.8) 

Medicaid Eligibility  307,985 (15.9) 29,050 (13.6) 103,352 (20.2) 

Chronic Conditions     

 Total Hip Arthroplasty 231,114 (11.9) 
30,939 (14.6) 54,452 (10.7) 

 Total Knee 
Arthroplasty 473,206 (24.4) 

66,549 (31.3) 104,298 (20.4) 

 Acute Coronary 
Syndrome 74,783 (3.9) 

7,263 (3.4) 21,984 (4.3) 
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 Cancer 291,014 (15.0) 
25,508 (12.0) 76,843 (15.0) 

 Atrial Fibrillation 595,876 (30.8) 
64,386 (30.3) 177,324 (34.7) 

 Hemorrhagic Stroke 184,442 (9.5) 
16,084 (7.6) 45,901 (9.0) 

 Heart Failure 291,993 (15.1) 
37,048 (17.4) 111,890 (21.9) 

 Ischemic Stroke 175,201 (9.1) 
15,453 (7.3) 44,106 (8.6) 

 Myocardial Infarction 127,147 (6.5) 
11,516 (5.4) 38,020 (7.4) 

 Peripheral Vascular 
Disease 196,055 (10.1) 

20,666 (9.7) 68,855 (13.5) 

 Transient Ischemic 
Attack 56,930 (2.9) 

5,073 (2.4) 13,806 (2.7) 

 Venous 
Thromboembolism 95,081 (4.9) 

11,035 (5.2) 28,077 (5.5) 

 Cerebrovascular 
Accident 184,442 (9.5) 

16,084 (7.6) 45,901 (9.0) 

 Carotid Stenosis 828 (0.0) 
100 (0.1) 304 (0.1) 

Hospitalization and 
Medication History     

 Prior Inpatient 
Hospitalizations 1.7 ± 1.3 

1.8 ± 1.4 2.0 ± 1.7 

 Prior ER Visits 0.8 ± 1.2 
0.8 ± 1.3 1.1 ± 1.5 

 Prior Outpatient Visits 8.3 ± 9.2 
8.9 ± 9.5 9.0 ± 9.5 

 Prior Medications 
Dispensed 12.1 ± 7.1 

14.0 ± 7.4 14.8 ± 7.8 
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Table 2. Neighborhood-level characteristics averaged over 329,727 ZIP-code years across 

35,695 unique ZIP-codes. 

Variable Level Mean ± SD 

PM2.5 (μg/m3)   

 Yearly Average 8.3 ± 2.4 

 Winter 8.7 ± 3.4 

 Spring 7.8 ± 2.4 

 Summer 9.5 ± 2.9 

 Fall 7.5 ± 2.4 

Population Density 
(per mile2)  1,425.0 ± 4,978.5 

Median House Value 
($)  180,117.4 ± 154,630.3 

Median Household 
Income ($)  52,276.7 ± 22,549.9 

% Poverty  10.3 ± 10.7 

% Owner Occupied 
Housing  72.3 ± 17.4 

% Hispanic  9.7 ± 17.1 

% Black  8.5 ± 16.5 

% White  82.9 ± 20.8 

% less than High 
School  23.5 ± 16.8 
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Figure 1. Season-specific average PM2.5 measurements for every ZIP-code across the United 
States over the period 2008-2016. Note that the PM2.5 measurements are most severe in the 
Southern states during the Summer and in the upper-Midwest states during Winter. 
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Figure 2. Hazard ratios (and 95% confidence intervals) for corticosteroid use and increasing 

PM2.5 while both on and off corticosteroids. We contrasted the effects of setting PM2.5 

concentrations to 10 vs. 5 μg/m3 and 12 vs. 8 μg/m3 which were chosen based on WHO and 

EPA guidelines.23,24 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2022.12.15.22283489doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283489


25 
 

Figure 3. Relative excess risk due to interaction (RERI) between PM2.5 and corticosteroid usage 

for each of the six outcomes (and their 95% confidence interval bands), comparing a range of 

PM2.5 concentrations to reference values of 5 μg/m3 (salmon) and 8 μg/m3 (blue). Curves 

represent the change in RERI due to simultaneously initiating corticosteroid treatment and 

increasing PM2.5 exposure to any given level above the corresponding PM2.5 reference level. 

Note that the curves intersect zero at their respective reference levels, as there can be no 

excess risk increase due to the interaction without changing both exposures concomitantly. 
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