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Abstract

Background

As a fast-advancing technology, artificial intelligence (AI) has considerable po-

tential to assist physicians in various clinical tasks from disease identification to

lesion segmentation. Despite much research, AI has not yet been applied to neuro-

oncological imaging in a clinically meaningful way. To bridge the clinical implemen-

tation gap of AI in neuro-oncological settings, we conducted a clinical user-based

evaluation, analogous to the phase II clinical trial, to evaluate the utility of AI for

diagnostic predictions and the value of AI explanations on the glioma grading task.

Method

Using the publicly-available BraTS dataset, we trained an AI model of 88.0%

accuracy on the glioma grading task. We selected the SmoothGrad explainable AI
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algorithm based on the computational evaluation regarding explanation truthful-

ness among a candidate of 16 commonly-used algorithms. SmoothGrad could ex-

plain the AI model’s prediction using a heatmap overlaid on the MRI to highlight

important regions for AI prediction. The evaluation is an online survey wherein

the AI prediction and explanation are embedded. Each of the 35 neurosurgeon

participants read 25 brain MRI scans of patients with gliomas, and gave their judg-

ment on the glioma grading without and with the assistance of AI’s prediction and

explanation.

Result

Compared to the average accuracy of 82.5± 8.7% when physicians perform the

task alone, physicians’ task performance increased to 87.7 ± 7.3% with statisti-

cal significance (p-value = 0.002) when assisted by AI prediction, and remained

at almost the same level of 88.5 ± 7.0% (p-value = 0.35) with the additional AI

explanation assistance.

Conclusion

The evaluation shows the clinical utility of AI to assist physicians on the glioma

grading task. It also reveals the limitations of applying existing AI explanation

techniques in clinical settings.

Keywords: Artificial Intelligence; Neuro-Imaging; Neurosurgery; Explainable Artificial

Intelligence; Clinical Study

Key points

1. Phase II evaluation with 35 neurosurgeons on the clinical utility of AI and its

explanation

2. AI prediction assistance improved physicians’ performance on the glioma grading

task

3. Additional AI explanation assistance did not yield a performance boost

Importance of the study

This study is the first phase II AI clinical evaluation in neuro-oncology. Evaluating

AI is a prerequisite for its clinical deployment. The four phases of AI clinical evaluation

are analogous to the four phases of clinical trials. Prior works that apply AI in neuro-

oncology utilize phase I algorithmic evaluation, which do not reflect how AI can be used

in clinical settings to support physician decision making.
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To bridge the research gap, we conducted the first clinical evaluation to assess the

joint neurosurgeon-AI task performance. The evaluation also includes AI explanation

as an indispensable feature for AI clinical deployment. Results from quantitative and

qualitative data analysis are presented for a detailed examination of the clinical utility

of AI and its explanation.

1 Introduction

Artificial intelligence (AI) and machine learning technologies have transformative poten-

tial in medicine, as evidenced by the ever-increasing research advances in medical AI in

recent years [35, 33]. Using AI in medicine has the potential to support decision-making

processes for healthcare providers and improve patient care. This is largely due to AI’s

predictive capability to learn to recognize patterns from raw and high-dimensional data,

such as medical images, electronic health records, and genomic data. In neuro-oncological

settings, AI and machine learning have been studied in a wide range of applications,

including identifying the grading and genetic mutations of brain tumors [25, 14, 13],

predicting patients’ prognosis [47, 31], segmenting tumors based on magnetic resonance

imaging (MRI) [36], triaging patients based on computed tomography (CT) scans [42],

and discovering radiomics and radiogenomics for brain tumors [39]. Elsewhere, there

are emerging cases of deploying AI in routine neuro-radiology practice, such as the AI-

based RAPID software to detect vessel occlusion and triage stroke patients based on CT

angiography [1].

Despite the above research advances, the widespread implementation of AI faces con-

siderable challenges in translation from bench to bedside [21, 27]. A prerequisite to clinical

deployment is bridging the AI evaluation gap between existing algorithmic evaluations

and desired clinical evaluations. As with any new medical intervention, AI needs to un-

dergo rigorous evaluation prior to its clinical implementation. Jin et al. [25] previously

proposed four phases of clinical utility evaluation for AI in neuro-oncology, analogous to

the conventional four-phases of clinical trials for drugs or medical devices: phase I is

the algorithmic evaluation that evaluates the performance of AI model alone on unseen

test data; From phase II and above, all evaluations include clinical users; phase II eval-

uates the primary efficacy of AI assistance on joint clinical user-AI task performance,

conducted in experimental settings on simulated tasks; phase III further confirms the

efficiency of the AI assistance on joint clinical user-AI task performance, conducted on

a larger scale randomized controlled trial (RCT) in clinical settings on real-world tasks;

and phase IV is for post-marketing software support and surveillance. Existing work

in AI in neuro-oncology [13, 14, 47, 31, 36] has generally conducted phase I algorithmic

evaluation, which can not reflect AI’s clinical utility in assisting clinical users in clini-

cal workflow. Phase II clinical evaluation of AI has been conducted in other specialties



such as orthopedics [9], psychiatry [23], and ophthalmology [37]. Phase III RCT clinical

evaluation of AI in clinical settings had been conducted in specialties such as gastroen-

terology [45], and results showed a large variation of AI’s clinical utility [48, 40]. To the

best of our knowledge, there are no phase II studies (and above) on the clinical utility

of AI assistance in neuro-oncology, and this is the research gap we aim to bridge in this

study.

In addition to the above AI evaluation gap, another significant hurdle for AI clinical

implementation is the interpretability or explainability problem of AI. The state-of-the-

art AI models, namely deep neural networks, are black-box models, and their decision

processes are incomprehensible even to AI engineers. This impedes the clinical use of AI,

as clinical users will often require an explanation or justification from AI other than a mere

prediction, due to the high-stakes nature of clinical decision-making [44]. Furthermore,

explanations may enable physicians to identify potential errors of AI, and improve the

joint physician-AI team performance [43, 46, 12, 6]. Therefore, we leverage the latest

technical advance in explainable AI (XAI) as a feature of the AI system in our clinical

evaluation study.

In this work, we recruited physicians and conducted a phase II clinical evaluation of AI

in an experimental setting on a simulated clinical task based on brain MRI: classifying a

glioma case into a glioblastoma (GBM, WHO grade IV), or a WHO grade II or III glioma.

This is a clinically relevant question that helps guide subsequent management decisions.

Tumor grading is also a routine and ubiquitous task in neuro-oncological settings and

is commensurate with our participants’ knowledge in neuro-oncology. Ultimately, other

tumor genetic characteristics, such as isocitrate dehydrogenase (IDH) mutation status

and O6-methylguanine-DNA methyltransferase (MGMT) methylation status, are critical

for treatment and prognostication, but are more challenging for clinicians to predict from

imaging studies. Thus, in the present proof-of-concept study, we have focused on the

task of differentiating GBM from grade II/III diffuse gliomas. Traditionally, clinicians

have relied upon patient characteristics, image findings, along with neurological signs and

symptoms to decide whether to proceed with an aggressive resection, perform a biopsy,

or to continue with watchful waiting. The interpretation of imaging findings is contingent

upon the neuro-radiologist’s and neurosurgeon’s experience, and this likely contributes

to some of the heterogeneity seen in practice between clinicians who treat patients with

gliomas [18]. A potential AI-based tool that can accurately predict tumor genetics and

histologic grading would potentially not only decrease the heterogeneity in management,

but also help guide biopsy plans and improve the ability to prognosticate outcomes.

In our evaluation, we conducted a nationwide clinical study in Canada on the glioma

grading task. We recruited 35 neurosurgeons, each of whom read a set of 25 brain

MRIs without and with AI assistance (glioma grade prediction and explanation). Results

showed that physicians’ average task accuracy improved from 82.5% without AI assistance



to 87.7% with the assistance of AI prediction (p = 0.002), and such accuracy did not

change with the additional assistance of AI explanation (p-value = 0.35). The results

confirm the effect of AI to enhance physicians’ clinical task performance in a simulated

clinical setting. This is the first study in neuro-oncology to evaluate the clinical utility

of AI assistance.

2 Study Material

2.1 MRI data

We used the publicly-available Multimodal Brain Tumor Segmentation (BraTS) 2020

dataset [32, 5] in the glioma grading clinical study, as well as to train the AI model. The

BraTS dataset contains routine clinically-acquired, pre-operative brain MRI scans from

patients with glioma. The brain MRIs in BraTS dataset were obtained with different clin-

ical protocols and various scanners from 19 institutions, including the publicly-available

TCGA/TCIA repositories [4, 3]. Each MRI scan consists of four MRI pulse sequences

of T1-weighted, T1-weighted contrast enhancing (T1C), T2-weighted, and T2 Fluid At-

tenuated Inversion Recovery (FLAIR). MRIs in the BraTS dataset were pre-processed

images with the pre-processing steps of co-registration to the same T1 anatomic template,

resampling to 1mm3 voxel resolution, and skull-stripping. The pre-processing methods

are detailed in Bakas et al. [5]. Each MRI scan is associated with a tumor grade label of

a GBM or grade II/III glioma, which was pathologically confirmed. The total number of

MRI cases are 369, of which 76 are grade II/III glioma cases, and 293 are GBM cases.

2.2 AI model and algorithmic evaluation on glioma grading

task

We trained an AI model using the BraTS 2020 dataset to grade glioma MRIs. The AI

model receives an MRI input and outputs a glioma grade of either a GBM or a grade II/III

glioma. The model architecture is a VGG-like [38] three-dimensional (3D) convolutional

neural network (CNN), with six 3D CNN layers connected to two fully connected layers.

We stratified split the BraTS dataset into 65% training (239 cases), 15% validation (56

cases), and 20% (74 cases) hold-out test set by keeping the same grade II/III : GBM

ratio in each set. There were no patient’s ID overlapping across the three datasets. The

training, validation, and test accuracies of the AI model are 80.28%, 92.86%, and 90.54%,

respectively. The fine-grained model performance metrics are in Supplemental S2 Fig. 1,

which was also shown to participants in the clinical study.

From the test set, we sampled a subset of 25 MRIs as the clinical test subset used in

the glioma grading clinical study. We sampled the subset by keeping the same ratio of the



correctly/incorrectly predicted grade II/III glioma or GBM as the confusion matrix of

model performance in Supplemental S2 Fig. 1. This is to keep an equivalent performance

of the AI model on the test set and the clinical test subset. In the clinical test subset,

there are 7 cases of grade II/III glioma, and 18 cases of GBM. The AI model has an

accuracy of 88.00% on the clinical test subset.

2.3 Generating and selecting the optimal AI explanation

The AI model we trained to grade glioma is a black-box CNN model. To explain the

model decisions to physicians, we applied post-hoc XAI algorithms that act as a surrogate

model to approximate the black-box AI model by probing the model parameters and/or

input-output pairs. From a candidate list of 16 post-hoc XAI algorithms that can generate

feature attribution map or heatmap (named as color map in the user study) to explain

the important image regions for model prediction, we selected SmoothGrad [41], which

is most truthful to the AI model decision process [26]. The evaluation method and result

are detailed in Supplemental S2.

3 Method

3.1 Participants

We recruited physicians to evaluate their clinical task performance without and with AI

assistance. The inclusion criteria for the study participants were: the participant must

hold an MD or equivalent; and must be a consultant neurosurgeon, radiologist, or neuro-

radiologist, or a trainee in neurosurgery, radiology, or neuro-radiology. Since the study

was conducted anonymously as an online survey, two stages of eligibility screening were

conducted: one was conducted at the beginning of the online survey, where participants

were filtered by their answers to the questions about their roles in medical practice and

their medical specialty. The other was conducted using a post-survey screening process to

filter out responses that do not meet the inclusion criteria due to random guess or lack of

required expertise in neuro-oncological MRI interpretation. We did so by only including

participants whose task accuracy when performing the grading task alone was above 0.55.

The accuracy threshold was set to be slightly higher than the random guess accuracy of

0.5. We used convenience sampling and recruited participants by directly contacting the

researchers’ national-wide clinical research network. The recruitment period was from

October 2021 to February 2022.



3.2 Study design and procedure

We designed a pre-post clinical study to examine the clinical utility of AI system regard-

ing its benefit to physicians’ task performance. The study consisted of an online glioma

grading survey (30-40 minutes) and an optional remote interview (20-30 minutes). Par-

ticipants provided separate consents for the survey and the interview.

The online survey is the main part of the study, where participants read a set of 25

MRIs without and with the assistance of AI prediction and its explanation. The MRIs

were sampled from the BraTS 2020 dataset as described in Section 2.1. The sequence in

which MRIs were shown was randomized for each participant to avoid bias due to MRI

reading order. Participants were first introduced to the AI system and its performance on

the test set. Then they began the MRI reading task. For each MRI, the participants first

gave their own judgment. Then the AI’s prediction was revealed to them, and they were

asked to give their current and possibly updated judgment of the glioma grade. The AI

prediction was shown only after participants gave their own judgment. Next, participants

were asked about their willingness to check AI’s explanation of how it arrived at the

prediction, and were shown a heatmap explanation from AI with important regions for

AI’s prediction highlighted (an example image is shown in Supplemental S2 Fig.2). The

MRI and heatmap explanation were both 3D images shown in video format, in which

participants could control the video play to view different MRI slices and corresponding

heatmap explanation. After that, participants were asked to provide their final (again,

possibly modified) judgment on the glioma grade, and evaluate the agreement between

their own clinical judgment and heatmap on an 11-point scale from 0 to 10.

We also asked participants to rate, on an 11-point scale, their trust level in the AI

system and willingness to incorporate this AI’s suggestions into routine clinical practice.

The two questions were asked at three time points: at the beginning of the survey before

exposure to any information on the AI system as baseline, after viewing AI’s performance

metrics (Supplemental S2 Fig. 1) on the test set, and after using AI with its prediction and

explanation assistance for the 25 MRIs. The survey ends with the question on the ranking

of possible goal(s) of checking AI explanations, and a short demographic questionnaire

on the participant’s medical experience, familiarity with AI, attitude towards AI, age,

and gender. The full survey content is in Supplemental S3.

After completing the online survey, participants were given monetary compensation

($50 CAD gift card) as appreciation for their time and effort. The participant could

choose to participate in an optional remote interview. In it, participants talked about

their user experience and commented on the AI system. Participants provided additional

consent prior to the interview. The remote interview sessions were video- or audio-

recorded for qualitative data analysis. The study was approved by the Research Ethics

Board of Simon Fraser University (Ethics number: H20-03588).



Variable name Survey question Survey
question
options

DR What grade of glioma would you predict
this MRI to be?

• Grade II/III glioma
• Grade IV glioma

DR+AI After viewing AI’s suggestion, what is your
current judgment on the tumor grade?

ditto

DR+XAI After viewing AI’s explanation, what is
your final judgment on the tumor grade?

ditto

Need
explanation

Would you like to check the explanation
from AI for this MRI?

Yes/No option

Explanation
quality

How closely does the highlighted area of the
color map match with your clinical
judgment?

[0-10 scale]
• 0, Not close at all
• 5, Somewhat close
• 10, Very close

Trust What is your trust level in this AI model?

[Scale from -5 to 5]
• -5, Totally distrust the AI
• 0, Neutral, neither distrust
nor trust
• 5, Totally trust the AI

Willingness to
use AI

How likely will you incorporate this AI’s
suggestions into your routine clinical
practices, such as diagnosis, prognosis, and
medical management?

[0-10 scale]
• 0, Not likely
• 5, Somewhat likely
• 10, Very likely

Explanation
goal

When are you most likely to check those
color map explanations from AI?

Select and rank
from a set of 15
predefined and a
self-filled
options

Table 1: List of variables collected in the survey, and their corresponding survey questions.
For the trust scale, we post-processed the responses by adding 5 to all responses, so that
the scale range is from 0 to 10. In the following text, we underline the variable names
listed in the table. Variables above the double horizontal line were asked for each MRI
case, and the ones below were only asked once or several times at different time points.



3.3 Statistical Analysis

We conduct statistical analysis to test for the following null hypotheses:

1. There are no differences in physicians’ accuracies on the glioma grading task, across

the three conditions: 1) Physician performing the task alone, denoted as DR; 2)

Physician performing the task with the assistance of AI prediction, denoted as

DR+AI; 3) Physician performing the task with the assistance of AI prediction and

explanation, denoted as DR+XAI.

2. There are no differences in the physicians’ trust level across the three time points:

1) Initial baseline without knowing any information from AI; 2) After viewing AI

performance metrics; and 3) After using AI with its prediction and explanation

assistance for the 25 MRIs.

3. There are no differences in the physicians’ willingness to use AI across three time

points: 1) Initial baseline without knowing any information from AI; 2) After view-

ing AI performance metrics; and 3) After using AI with its prediction and expla-

nation assistance for the 25 MRIs.

To test the above three hypotheses, a one-way analysis of variance (ANOVA) with re-

peated measures is performed when data fulfill the assumptions of normality and spheric-

ity. We use Shapiro-Wilk test of normality and Mauchly’s test for sphericity to test

the assumptions for ANOVA. If the null hypothesis is rejected, a post-hoc analysis is

conducted using Tukey’s HSD (honestly significant difference) test when data met the

assumption of homogeneity of variances. Otherwise, if assumptions for ANOVA are vio-

lated, we use the non-parametric Friedman test, and a post-hoc analysis using Wilcoxon

signed-rank test with Bonferroni correction.

Additionally, the Spearman correlation coefficient is used to measure the association

between two continuous variables; and the chi-square test of independence is conducted

to test the association between two categorical variables. Unless otherwise stated, we

use a significance level α = 0.05. The statistical analysis was performed using Python

statistical package SciPy1 and Pingouin2. We make the survey data and analysis code

available in Supplemental S4 for reproducibility.

3.3.1 A pilot study to estimate sample size

Before launching the formal national study, we conducted a pilot study to iterate the

survey content and estimate the sample size. Six neurosurgical residents were recruited

in the pilot study. With a two-sided test size of 5% and a power of 90%, based on the

effect size of 1.3 between DR and DR+AI, the estimated sample size is 13.

1http://scipy.org/
2http://pingouin-stats.org/index.html

https://scipy.org/
https://pingouin-stats.org/index.html


3.4 Presentation of results

In the manuscript, we report the quantitative analysis of the survey data, and provide

the full results of the qualitative data analysis in Supplemental S1. The qualitative data

are from the interview and free-text input in the survey. We discuss findings from both

quantitative and qualitative data in the Discussion Section 5. We number the participants

with N1, N2, ... when directly quoting their words.

4 Result

4.1 Participants

(B)   Familiarity with AI(A)   Distribution of participants’ experience (C)   Attitude toward AI

hear 
of AI

46%
(13)

can program, 
but not write AI code

21%
(6)
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21%
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Figure 1: Participants’ demographic information. Panel (A) shows the distribution of
participants’ years of neurosurgical practice; The sticks on the x-axis show each partic-
ipant’s years of practice. Panel (B) shows participants’ familiarity with AI, and panel
(C) shows their attitude towards AI, with the percentage and number of participants (in
parentheses) for each catalog indicated.

A total of 35 participants met the inclusion criteria and were enrolled in the study.

The recruitment rate was 14.8% (35 out of 236 eligible participants contacted). Among

them, 29 participants completed the survey, while 6 participants dropped out without

completing the survey (their numbers of completed MRI interpretation cases were: 2, 3,

3, 3, 8, and 17, respectively). In addition, five participants took the interview to provide

qualitative comments on the use of the AI system in the survey. The recorded self-

reported demographic data of the participants were: female: male = 7:19; age: 34.7±8.2

(mean ± std); all participants were from the neurosurgery specialty, and their positions

were: 12 attending neurosurgeons, 2 neurosurgical fellows, and 21 neurosurgical residents.

Their years of practicing medicine were 9.8 ± 9.1; and their years of practicing neuro-

surgery were 7.1± 6.5. Figure 1 summarizes their familiarity with AI and their attitude

towards AI. Most participants (96%) are familiar with AI technologies, e.g. they had

heard of AI, or had used it at work or in their daily lives. Over 2/3 of participants had

a positive attitude towards AI, whereas the rest had a skeptical or neutral attitude. The

detailed demographics are listed in Supplemental S2 Table 1.



4.2 Physicians’ task performance in three decision-support

conditions

A total of 2279 glioma grading decisions were collected for the three decision-support

conditions of 1) DR: physician performing the task alone (761 decisions); 2) DR+AI:

physician performing the task with AI prediction assistance (759 decisions); and 3)

DR+XAI: physician performing the task with AI prediction and explanation assistance

(759 decisions). Participants’ average task accuracies for the three conditions were: DR:

82.49± 8.69% (mean±std), DR+AI: 87.70± 7.33%, and DR+XAI: 88.52± 7.02%. The

descriptive statistics of participants’ task accuracy for the three conditions are in Table 2.

Condition N M±SD Min 25% Q Mdn 75% Q Max
DR 35 82.49± 8.69 60.00 80.00 84.00 88.00 100.00
DR+AI 35 87.70± 7.33 68.00 84.00 88.00 92.00 100.00
DR+XAI 35 88.52± 7.02 72.00 84.00 88.00 92.00 100.00

Table 2: Descriptive statistics for all participants’ task performance accuracy (%). N -
number of participants, M - mean, SD - standard deviation, Q - quantile, Mdn - median.

All data passed the sphericity assumption test for ANOVA, but the data on DR

condition did not pass the normality assumption. Therefore, we used the non-parametric

Friedman test instead, and results showed a statistically significant difference in task

accuracies among the three conditions, χ2
F (2) = 23.53, p < 0.001. We then conducted

post-hoc analysis using Wilcoxon signed-rank tests with Bonferroni correction. Results

showed that the DR+AI condition had a statistically higher accuracy compared to the

DR condition (Z = 9.0, p = 0.002); similarly, the DR+XAI condition had a statistically

higher accuracy compared to the DR condition (Z = 3.0, p = 0.0004). However, the

accuracy values across the DR+AI and DR+XAI conditions did not show statistically

significant difference (Z = 15.5, p = 0.35) (Fig. 2). We also calculated the effect size using

common language effect size, and results showed a physician has a probability of 67.2% of

having a higher accuracy when assisted by AI prediction (DR+AI) than performing the

task alone (DR), a probability of 71.0% of having a higher accuracy when assisted by AI

prediction and explanation (DR+XAI) than performing the task alone (DR), but only

a probability of 53.6% of having a higher accuracy when assisted by AI prediction and

explanation (DR+XAI) than assisted by AI prediction alone (DR+AI). In addition to the

above result analysis using the performance accuracy metric, we also report the results

and statistical tests regarding other performance metrics, including accuracy, sensitivity,

specificity, and F1 score in Supplemental S2 Table 3.
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Figure 2: Participants’ task performance on glioma grading in three conditions: 1) DR:
Physicians performing the task alone; 2) DR+AI: Physicians performing the task with
AI assistance (with predictions from AI); 3) DR+XAI: Physician performing the task
with XAI assistance (with predictions and explanations from AI). We show box plots for
the three conditions, with lines and dots indicating the change of performance for each
participant. The dots indicate individual participants’ performances. The lines connect-
ing dots indicate a participant’s performance change in between different conditions, with
a dashed line indicating an increment, a solid line indicating no change, and a dotted line
indicating a decrement. ns: p > 0.05, ∗∗ : 0.001 ≤ p ≤ 0.01, ∗ ∗ ∗ : 0.0001 ≤ p ≤ 0.001.

4.3 Decision agreement and decision change patterns
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Figure 3: Participants’ decision change stream plot for each error category of all partici-
pants. The three columns represents the three conditions of DR, DR+AI, and DR+XAI,
respectively. The four rectangles within each column records the number and percentages
of cases when the doctor and the AI’s decision where correct (✓) or not (×), e.g., the
decision agreement tally is reported in the first and fourth rectangles, reflecting when
the doctor and AI made the same decisions (whether both are correct or incorrect). The
total number of decisions is 759 for each column.

We analyzed the decision agreement and decision change for each fine-grained decision

in the three conditions (DR, DR+AI, and DR+XAI), and visualized such patterns as

decision change stream plot in Fig. 3. The subgroup analysis for attending and resident

+ fellow physician subgroups showed similar patterns (Supplemental S2 Fig.7).

For the decision agreement pattern, as shown in Fig. 3, as a baseline when physicians

performed the task alone (DR), physicians and AI’s decisions agree with each other

in 81.0% (615/759) decisions. The decision agreement increased to 86.8% (659/759)

when physicians were assisted by AI’s prediction (DR+AI), and further increased to

87.2% (662/759) when physicians were assisted by both AI’s prediction and explanation

(DR+XAI).

For physicians’ decision change pattern during AI assistance, as shown in Fig. 3, with

assistance by AI’s prediction (DR+AI condition), physicians changed 5.8% (44/759) of

their original decision to AI’s prediction, and such decision change occurred only during

decision disagreement between AI’s prediction and physicians’ decision. Among these

decision change cases, 81.8% (36/44) of the change where correct changes, i.e., resulted

in a corrected decision (i.e., updated judgment matched the ground truth diagnosis), and

the remaining 18.2% (8/44) were incorrect changes, i.e., leading to an erroneous decision.

With further assistance by AI’s explanation (DR+XAI condition), physicians changed



1.7% (13/759) of their decisions, and such decision change occurred during both decision

agreement (0.7%, 5/759) and disagreement (1.1%, 8/759) between AI’s prediction and

physicians’ decision. Among them, 69.2% (9/13) changed correctly, and 30.8% (4/13)

changed incorrectly.

4.4 Trust and willingness to use AI

We tested whether participants would calibrate their level of trust in the tested AI system

and their willingness to use AI with the exposure to AI’s performance metrics and the ac-

tual AI usage experience. Participants’ level of trust in AI and willingness to use AI were

recorded at three time points: 1) the initial baseline without knowing any information

from AI; 2) after viewing AI’s performance metrics, and 3) after using AI’s predictions

and explanations for the 25 MRIs. The descriptive statistics of the two variables at three

time points are listed in Table 3. In addition, the two variables trust in AI and will-

ingness to use AI are highly correlated, with a Spearman correlation coefficient of 0.70

(p < 0.001).

Time
point

N M±SD Min 25% Q Mdn 75% Q Max

Trust Bsl 29 5.31± 2.04 0.00 5.00 5.00 7.00 9.00
Pfm 29 6.72± 1.67 3.00 5.00 7.00 8.00 9.00
Use 29 6.62± 2.68 0.00 6.00 8.00 8.00 9.00

Willingness Bsl 29 4.10± 2.79 0.00 2.00 5.00 5.00 10.00
to use AI Pfm 29 5.07± 2.45 0.00 3.00 5.00 7.00 10.00

Use 29 4.59± 3.16 0.00 1.00 5.00 8.00 9.00

Table 3: Descriptive statistics for participants’ trust and willingness to use AI. N - number
of participants, M - mean, SD - standard deviation, Q - quantile, Mdn - median. The
three time points are: 1) Bsl: the initial baseline without knowing any information from
AI; 2) Pfm: after viewing AI performance metrics, and 3) Use: after using AI’s predictions
and explanations for the 25 MRIs.
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Figure 4: Box plots and changes of participants’ trust in the AI (left), and willingness to
use AI (right) at the initial baseline, after viewing AI’s performance metrics, and after
using the AI’s predictions and explanations. Both dependent variables are reported on
a 0-10 point scale. The lines in between two time points indicate the change for each
participant. ns: p > 0.05, ∗ : 0.01 ≤ p ≤ 0.05, ∗∗ : 0.001 ≤ p ≤ 0.01, ∗ ∗ ∗ : 0.0001 ≤ p ≤
0.001.

Part of the trust and willingness to use AI data did not pass the sphericity and

normality assumption test for ANOVA. Therefore, we used the non-parametric Fried-

man test instead. Results showed a statistically significant difference among the three

time points for both trust in AI (χ2
F (2) = 16.97, p = .0002), and willingness to use AI

(χ2
F (2) = 8.09, p = .018). We conducted post-hoc analysis using Wilcoxon signed-rank

tests with Bonferroni correction to identify the statistically different pairs. For the level

of trust in the AI system, participants rated a statistically higher trust after viewing

AI’s performance metrics compared with the initial baseline (Z = 4.0, p = .0004); and a

statistically higher trust after using AI’s predictions and explanations for the 25 MRIs

compared with the initial baseline (Z = 58.0, p = .025); but there was no statistically

difference between the trust level after viewing AI’s performance metrics, and after using

AI’s predictions and explanations for the 25 MRIs. For the level of willingness to use

AI, participants only rated a statistically higher willingness to use AI after viewing AI’s

performance metrics compared with the initial baseline (Z = 29.5, p = .012); and the

rest pairwise test did not show a statistically significant difference. The statistical test

results are visualized in Fig. 4.



4.5 Clinical usage scenarios for AI explanation

Physicians’ behavior of seeking explanation is usually to support their subsequent clinical

sub-tasks. We summarized such potential explanation goals from literature [24], and

asked participants to select and rank them. The results are shown in Table 4. The

top-rated explanation goals are related to the critical nature of the clinical task, and the

explanation is useful mainly to safeguard the clinical decision.

Explanation goal Selected
times

Rankings

To build and calibrate my trust in this AI 18 1 (7), 2 (4), 3 (3), 4
(3), 5 (1),

When I doubt about the prediction from AI 15 1 (8), 2 (1), 3 (3), 4
(3),

To verify AI’s decisions 16 1 (2), 2 (6), 3 (3), 4
(2), 5 (1), 6 (2),

To ensure the safety use of the AI 11 1 (2), 2 (2), 3 (4), 4
(3),

For a difficult case, when I am not certain 10 1 (1), 2 (3), 3 (1), 4
(2), 5 (2), 7 (1),

To learn from AI 7 2 (1), 3 (1), 4 (2), 6
(2), 8 (1),

To improve my patients’ outcomes 5 1 (3), 4 (1), 5 (1),
To ensure fairness and no biases in the AI model 5 2 (1), 3 (2), 5 (1), 9

(1),
When I am trading off among multiple objectives
for my patient

2 2 (1), 3 (1),

To meet the ethical requirements 2 2 (1), 5 (1),
To make Differential Diagnosis 3 3 (1), 5 (1), 10 (1),
To make new medical discovery 3 5 (1), 6 (1), 7 (1),
Before discussion with my colleagues 1 5 (1),
To meet the legal requirements 1 6 (1),
To generate report or patient chart 0

Table 4: Ranking of explanation goals. We report under heading “Selected times” the
number of times each goal was selected by participants, and “Rankings” shows partici-
pants’ individual ranking (in bold) and times of such ranking (in parentheses).

In addition to the above general explanation goal in a clinical setting, for each MRI

case, we asked a yes/no question on whether the participant needs to check the AI’s

explanation (need explanation). We calculated each participant’s need explanation degree

(0: no need for explanation, and 1: need for explanation for all cases) by the ratio of

”yes” answers out of all the recorded responses among the 25 MRI cases. The trend of

need explanation shows polarization, with 66% (23/35) of the participants had a need ex-

planation degree of less than 0.3, and 20% (7/35) had a need explanation degree of above

0.7. In particular, 14% (5/35) participants completely did not need any explanation for



all cases (need explanation degree = 0), and 9% (3/35) of participants needed explanation

for every case (need explanation degree = 1). We further conducted a chi-square test of

independence on whether need explanation is associated with decision agreement, and

there is a significant relationship between the two variables, χ2(1) = 62.7, p < 0.001.

When there is a decision disagreement between AI and physicians’ initial judgment,

physicians are more likely to check the explanation.

For the quality of the specific explanation content, we collected 744 ratings on the

heatmap explanation quality on a 0-10 point scale, and obtained an average quality rating

of 6.12±2.92 (mean±std). Each heatmap explanation received ratings with large standard

deviations ranging from 2.39 to 3.04. The rating for each of the 25 AI explanations is

listed in Supplemental S2 Table 2, and we visualized the explanation with the highest

and lowest average rating in Supplemental S2 Fig.2.

5 Discussion

5.1 The clinical utility of AI prediction

In our study focusing on the glioma grading clinical task, physician’s initial task per-

formance was lower than AI’s performance. With AI assistance, physicians’ task per-

formance significantly increased to be equivalent to AI’s performance. The result aligns

with prior phase II clinical evaluation of AI on medical image analysis tasks to diagnose

knee lesions [9], diabetic retinopathy [37], and pulmonary adenocarcinoma [29], where

physicians exhibited better task performance with the assistance of a superior AI (the AI

that outperformed physicians); but diverge from the similar phase II study in psychiatry

on medical record data [23], where a superior AI assistance did not improve clinicians’

treatment selection accuracy. These divergent results indicate the variability in the effect

of AI assistance in clinical settings, and suggest the importance of conducting clinical

studies to validate the clinical utility of AI assistance on specific clinical tasks.

Our clinical study validates AI’s clinical utility as a physician performance booster in

the glioma grading task. Such quantitative result are echoed by the qualitative results

(Supplemental S1 Section 1) wherein physicians regard AI as a “second opinion” (N2),

or “another level of evidence” (N5). Quantitative results showed that such performance

improvement is more prominent for junior physicians (residents and fellows, Supplemental

S2 Section 2.2). Qualitative results further showed junior physicians benefit from AI in

time-sensitive cases and hard cases; and can improve junior physicians’ learning and

problem-solving skills by “reaffirming what you’re learning” (N2).

By further analyzing the decision change pattern, the observed physicians’ task per-

formance improvements with AI prediction assistant were mainly due to the fact that

physicians’ decision patterns converges to be more similar to AI’s decision, as physicians’



only switched their decisions during decision disagreement (Fig. 3). The decision disagree-

ment between physicians and AI caused physicians “to pause and then go through the

images ... to understand the disagreement” (N5). But since in this condition, physicians

only assisted by AI prediction alone, they could not get access to more information to

resolve disagreement, and one of the expected utilities of an AI explanation is to provide

such information to facilitate physicians’ decision-making.

In addition, our study also inspected factors that influence physicians’ adoption of AI

for decision support, including their trust and willingness to use AI. We noticed that after

viewing AI’s performance metrics, physicians’ trust and willingness to use AI significantly

increased compared to the baseline. However, when used the AI on 25 cases with the

assistant of AI’s prediction and explanation, physicians’ trust and willingness to use AI

diverged, and the average ratings of trust and willingness to use AI did not show statistical

difference compared with the ones after only viewing AI’s performance metrics. This

indicates physicians may perceive different messages from AI prediction and explanation

information, and construct different mental models of AI [7] accordingly to calibrate their

trust and willingness to use AI. Such hypothesis is evidenced by physicians’ positive and

negative comments for AI’s explanation from qualitative data (detailed in Section 5.2).

Furthermore, qualitative results showed that to establish trust, some physicians request

more information beyond the model performance metrics alone, such as information on

model confidence and dataset (Supplemental S1 Section 3.3).

5.2 The clinical utility of AI explanation

In the study, with the additional assistance of AI explanation, physicians’ task perfor-

mance did not show statistical difference compared to the performance with AI predic-

tion assistance only. The finding aligns with a similar phase II clinical study involving

AI heatmap explanation in diabetic retinopathy [37], and other similar AI-supported

decision-making experiments involving laypersons on an age prediction task [15], and

on a criminal justice decision support [2], where presenting AI prediction alone would

improve human accuracy, but there was no additional performance boost with the as-

sistance of feature attribution (i.e. heatmap) explanation. This indicates that existing

explanation failed to indicate for physicians when to rely on AI’s recommendations, and

when not to. Otherwise, physicians’ assisted performance would have been higher than

either AI or a solo physician. Indeed, by looking into their fine-grained decision change

pattern, physicians had initiated both correct and incorrect decision changes that were

relatively equivalent in amount, which explains the source of the statistically insignifi-

cant difference of accuracies between AI prediction and additional explanation assistance.

Prior human-subject studies in the human-computer interaction field observed similar ef-

fect of AI explanation in decision support: the AI explanation tends to only increase the



chances of human accepting AI’s suggestions, regardless of AI’s correctness [8, 23, 28].

This indicates that additional strategies [16, 34, 30, 20] are needed to carefully craft the

design of explainable AI algorithms and interfaces to reduce such overreliance risk on

AI [10, 11] and achieve its desired clinical impact.

Qualitative results revealed reasons for the failure of AI explanation to boost physician-

AI performance. Physicians had a mixed view of the clinical utility of AI explanation:

they saw the heatmap explanation as a useful tool to help them localize important fea-

tures and easy-to-miss lesions. They also used explanation as a “cross-check” (N3) tool

to verify AI decision, calibrate their trust in AI, and ensure the safe use of AI (N1),

especially during decision disagreement (Supplemental S1 Section 2). However, when

they use AI explanation to verify AI decisions, physicians found that the heatmap ex-

planation only provided limited information on the location of important features, but

failed to give explicit reasons, contexts, or descriptions of the highlighted features (Sup-

plemental S1 Section 3.1). This finding echoes similar feedback from pathologists in a

user study using heatmap explanations [17]. By providing explanation information to the

clinical decision process, our qualitative data analysis further identified that the existing

heatmap explanation is missing critical information to construct a clinically relevant ex-

planation [26]: the heatmap explanation neither provides descriptive information on the

pathology within image features, nor justifies why and how the highlighted regions lead

to the AI’s decisions [19]. Our clinical study revealed the limitations of existing heatmap

explanation, and identified clinical usage gaps to improve XAI techniques and achieve

their expected clinical utilities.

The ranking of explanation goals revealed a wide range of clinical usage scenarios to

use AI explanation in a clinical context. In addition, physicians’ need for explanation

showed polarization and varied from person to person, which indicates the use of ex-

planation could be a highly individual choice, and can be presented personally and on

demand [22, 24].

6 Limitations and future work

Despite the national-scale study, the total number of participants is 35 which is relatively

small. Despite our best recruitment effort, we did not get any enrollment of radiologists.

This limits further statistical analysis such as multivariate regression analysis to identify

variables associated with physicians’ performance improvement. The study is a phase II

evaluation using a simulated clinical task on retrospective clinical data. To fully assess

the clinical utility of AI and its explanation, future work is needed to conduct a phase

III randomized controlled clinical user study on tasks within a real clinical settings, on

either retrospective or prospective clinical data.

Future work may improve the existing XAI methods via the following ways: 1) in



the technical development phase, XAI developers and researchers should seek more clin-

ical input to understand the clinical reasoning and the physicians’ requirements when

incorporating AI assistance in their decision-making process, so that the XAI techniques

can potentially improve the joint physician-AI performance; 2) in the clinical deployment

phase, additional training or tutorial sessions may be developed to enable clinical users

to understand the capability of AI, and incorporate the additional cognitive strategies

while interpreting the AI explanation.

7 Conclusion

As a fast-advancing technology, AI has the potential to transform neuro-oncological prac-

tice and assist physicians in a variety of clinical tasks such as tumor segmentation and

disease prediction. To overcome the clinical translational gap of moving AI from bench

to bedside, we conducted a phase II evaluation on the clinical utility of AI and its expla-

nation, which is analogous to the phase II clinical trial on the primary efficacy of a new

intervention on a small-scale population.

The Canada-wide online survey study recruited 35 neurosurgeons, each of whom read

25 brain MRI from patients with gliomas, and gave their judgment on the glioma grading

without and with the assistance of AI’s prediction and explanation. Results showed

that, compared to physician performing the task alone, when assisted by AI prediction,

physicians’ task performance increased significantly to be equivalent to AI’s performance.

But the extra assistance of AI explanation did not bring an additional performance boost.

In addition, physicians’ trust in the AI system and willingness to use it increased after

viewing AI’s performance metrics compared to the baseline, and such levels did not change

after using AI’s predictions and explanations. The study showed the clinical utility of AI

assistance in improving physicians’ task performance, and revealed limitations of existing

AI explanation techniques.
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