1	TI	TLE
2	Ext	ernal validation and updating of clinical severity scores to guide referral of young children
3	wit	h acute respiratory infections in resource-limited primary care settings
4		
5		
6	AU	THORS
7	Arj	un Chandna, ^{1,2} Lazaro Mwandigha, ³ Constantinos Koshiaris, ³ Direk
8	Lin	nmathurotsakul, ^{2,4,5} Francois Nosten, ^{2,6} Yoel Lubell, ^{2,4} Rafael Perera-Salazar, ³ Claudia
9	Tur	mer, ^{1,2} and Paul Turner ^{1,2}
10		
11		
12	AF	FILIATIONS
13	1.	Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap,
14		Cambodia
15	2.	Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United
16		Kingdom
17	3.	Department of Primary Care Health Sciences, University of Oxford, Oxford, United
18		Kingdom
19	4.	Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine,
20		Mahidol University, Bangkok, Thailand
21	5.	Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University,
22		Bangkok, Thailand
23	6.	Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae
24		Sot, Thailand
25		

26 CORRESPONDING AUTHOR

- 27 Dr. Arjun Chandna
- 28 Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap,
- 29 Cambodia
- 30 Email: <u>arjun@tropmedres.ac</u>
- 31 Telephone: +855-85-712-586
- 32
- 33

34 SHORT TITLE

- 35 Risk stratification of paediatric acute respiratory infections
- 36
- 37

38 KEY WORDS

- 39 Acute respiratory infection; paediatrics; risk stratification; triage; referral; primary care; low-
- 40 and middle-income country
- 41

- 43 ABBREVIATIONS
- 44 **ARI** = acute respiratory infection
- 45 **AUC** = area under the receiver operating characteristic curve
- 46 **AVPU** = Alert Voice Pain Unresponsive
- 47 **CI** = confidence interval
- 48 **EPP** = events per parameter
- 49 **GCS** = Glasgow Coma Scale
- 50 **iCCM** = integrated Community Case Management

- **IMCI** = Integrated Management of Childhood Illnesses
- **IQR** = interquartile range
- **LAZ** = length-for-age z-score
- **LMIC** = low- and middle-income country
- **LqSOFA** = Liverpool quick Sequential Organ Failure Assessment
- **LRT** = likelihood ratio test
- **MAZ** = MUAC-for-age z-score
- **mSIRS** = modified Systematic Inflammatory Response Syndrome
- **MICE** = multiple imputation with chained equations
- **MUAC** = mid-upper arm circumference
- **NNR** = number needed to refer
- **OxTREC** = Oxford Tropical Research Ethics Committe
- **PICU** = Paediatric Intensive Care Unit
- **qPELOD-2** = quick Pediatric Logistic Organ Dysfunction-2
- **qSOFA** = quick Sequential Organ Failure Assessment
- **SBP** = systolic blood pressure
- SpO_2 = peripheral oxygen saturation
- **TMEC** = Tropical Medicine Ethics Committee
- **TRIPOD** = Transparent Reporting of a multivariable prediction model for Individual
- 70 Prognosis Or Diagnosis
- 71 WAZ = weight-for-age z-score
- 72 WLZ = weight-for-length z-score

76 ABSTRACT

77

78 Background

79	Accurate and reliable guidelines for referral of children from resource-limited primary care
80	settings are lacking. We identified three practicable paediatric severity scores (Liverpool
81	quick Sequential Organ Failure Assessment [LqSOFA], quick Pediatric Logistic Organ
82	Dysfunction-2 [qPELOD-2], and the modified Systemic Inflammatory Response Syndrome
83	[mSIRS]) and externally validated their performance in young children presenting with acute
84	respiratory infections to a primary care clinic located within a refugee camp on the Thailand-
85	Myanmar border.
86	
87	Methods
88	This secondary analysis of data from a longitudinal birth cohort study consisted of 3,010
89	acute respiratory infections in children aged ≤ 24 months. The primary outcome was receipt
90	of supplemental oxygen. We externally validated the discrimination, calibration, and net-
91	benefit of the scores, and quantified gains in performance that might be expected if they were
92	deployed as simple clinical prediction models, and updated to include nutritional status and
93	respiratory distress.
94	
95	Results
96	104/3,010 (3.5%) presentations met the primary outcome. The LqSOFA score demonstrated
97	the best discrimination (AUC 0.84; 95% CI 0.79-0.89) and achieved a sensitivity and
98	specificity > 0.80 . Converting the scores into clinical prediction models improved
99	performance, resulting in ~20% fewer unnecessary referrals and ~30-60% fewer children

100 incorrectly managed in the community.

101 *Conclusions*

- 102 The LqSOFA score is a promising triage tool for young children presenting with acute
- 103 respiratory infections in resource-limited primary care settings. Where feasible, deploying the
- score as a simple clinical prediction model might enable more accurate and nuanced risk
- 105 stratification, increasing applicability across a wider range of contexts.

- 107
- 108
- 109

110 **INTRODUCTION**

111

112 Acute respiratory infections (ARIs) are the leading reason for unscheduled childhood medical consultations worldwide.^{1,2} Primary care workers function as gatekeepers to the formal health 113 114 system, aiming to distinguish the minority of ARIs requiring onward referral from those suitable for community-based care.³ 115 116 117 In rural regions of many low- and middle-income countries (LMICs) poorly functioning 118 infrastructure, as well as geographic, climatic, socioeconomic, and cultural factors, can 119 complicate referral mechanisms. Particularly in humanitarian and conflict settings referral can entail risks for both patients and providers.⁴ Consequently, there can be substantial inter-120 121 and intra-health system variation in referral thresholds. 122 123 Existing tools to support community healthcare providers in their assessment of unwell 124 children, such as the World Health Organization's Integrated Management of Childhood 125 Illnesses (IMCI) and Integrated Community Case Management (iCCM) guidelines, recommend certain 'Danger Signs' to guide referrals.^{5,6} However, these lack sensitivity and 126 specificity, and suffer from considerable interobserver variability.^{7,8} A systematic review of 127 128 paediatric triage tools concluded that none would be reliable in resource-constrained settings 129 and that lack of follow-up data on children managed in the community rendered the validity 130 of existing tools questionable.⁹ 131 132 In this study we identified paediatric severity scores suitable for use in resource-limited 133 primary care settings and externally validated their ability to guide referral of young children

134 presenting with ARIs.¹⁰ We characterised the improvement in performance that might be

- 135 expected if the scores were deployed as simple clinical prediction models and updated to
- 136 include variables relevant to children presenting with ARIs in rural LMIC settings.
- 137
- 138
- 139
- 140

141 METHODS

142

143 *Study population*

144	Data were collected during a prospective birth cohort study at a medical clinic for refugees
145	and internally displaced people on the Thailand-Myanmar border. ¹⁰ Between September 2007
146	and September 2008 pregnant women receiving antenatal care at the clinic were invited to
147	participate. Children of consenting women were reviewed at birth and followed-up each
148	month (routine visit) and during any intercurrent illness (illness visit) until 24 months of age.
149	The local circumstances (inability of the population to move freely out of the camp and lack
150	of other medical providers) contributed to low attrition rates and capture of the majority of
151	acute illnesses for which care was sought.
152	
153	All ARI illness visits were included in this secondary analysis. An ARI was defined as (A) a
153 154	All ARI illness visits were included in this secondary analysis. An ARI was defined as (A) a presentation with rhinorrhoea, nasal congestion, cough, respiratory distress (chest indrawing,
154	presentation with rhinorrhoea, nasal congestion, cough, respiratory distress (chest indrawing,
154 155	presentation with rhinorrhoea, nasal congestion, cough, respiratory distress (chest indrawing, nasal flaring, grunting, tracheal tug, and/or head bobbing), stridor, and/or abnormal lung
154 155 156	presentation with rhinorrhoea, nasal congestion, cough, respiratory distress (chest indrawing, nasal flaring, grunting, tracheal tug, and/or head bobbing), stridor, and/or abnormal lung auscultation (crepitations and/or wheeze), and (B) a compatible contemporaneous syndromic
154 155 156 157	presentation with rhinorrhoea, nasal congestion, cough, respiratory distress (chest indrawing, nasal flaring, grunting, tracheal tug, and/or head bobbing), stridor, and/or abnormal lung auscultation (crepitations and/or wheeze), and (B) a compatible contemporaneous syndromic diagnosis (rhinitis, croup, bronchiolitis, influenza-like illness, pneumonia, viral infection
154 155 156 157 158	presentation with rhinorrhoea, nasal congestion, cough, respiratory distress (chest indrawing, nasal flaring, grunting, tracheal tug, and/or head bobbing), stridor, and/or abnormal lung auscultation (crepitations and/or wheeze), and (B) a compatible contemporaneous syndromic diagnosis (rhinitis, croup, bronchiolitis, influenza-like illness, pneumonia, viral infection

162 Drawing on the results of two recent systematic reviews, we longlisted 16 severity scores that

163 might risk stratify young children presenting from the community with acute respiratory

164 infections (Supplementary Table 1).^{11,12} After considering reliability, validity, and feasibility

165 for implementation we excluded eight scores that required specialist equipment and/or

166	laboratory tests unlikely to be practical for the assessment of young children in busy LMIC
167	primary care settings. ¹³⁻²⁰ Four others were excluded as $\geq 25\%$ of the constituent variables
168	were unavailable in the primary dataset. ²¹⁻²⁴ Two of the remaining scores (quick Sequential
169	Organ Failure Assessment [qSOFA] and quick Pediatric Logistic Organ Dysfunction-2
170	[qPELOD-2]) contained blood pressure. ^{25,26} Hypotension is a late sign in paediatric sepsis
171	and not suitable for early recognition of impending serious illness at the community level. ²⁷
172	Furthermore, accurate use and maintenance of sphygmomanometers and stethoscopes may
173	not be feasible in resource-limited settings. ²⁸ Recently, Romaine et al. replaced systolic blood
174	pressure (SBP) with alternate signs of circulatory compromise (heart rate and capillary refill
175	time) to develop the Liverpool-qSOFA (LqSOFA) score, and demonstrated superior
176	performance compared to qSOFA in febrile children presenting from the community. ²⁹
177	Hence, we elected to evaluate the LqSOFA score in preference to qSOFA and to evaluate an
178	adapted qPELOD-2 score (replacing SBP with capillary refill time and assessing mental
179	status using the simpler Alert Voice Pain Unresponsive [AVPU] scale rather than the
180	Glasgow Coma Scale [GCS]). The three scores shortlisted for evaluation were the LqSOFA,
181	qPELOD-2, and modified Systemic Inflammatory Response Syndrome (mSIRS) scores
182	(Table 1). ^{26,29,30}
183	

184

185 Selection of variables for model updating

186 To update and improve model performance, additional predictors relevant for children

187 presenting with ARIs in LMIC primary care settings were considered for inclusion.

188 Nutritional status (weight-for-age z-score [WAZ]) and presence of respiratory distress were

189 selected a priori, after considering resource constraints, reliability, validity, biological

- 190 plausibility, availability of data in the primary dataset, and sample size (Supplementary Table
- 191 2).²⁸
- 192
- 193
- 194 *Data collection*

405	
195	All data were measured by study staff and entered on to structured case report forms. With
196	the exception of anthropometric data, all clinical data were collected at the time of
197	presentation. Core (rectal) temperature was measured for neonates and infants and adjusted to
198	axillary temperature by subtracting 0.5°C. ⁶ Mental status was assessed using the AVPU scale.
199	Capillary refill time was measured centrally. For children admitted to the clinic, weight was
200	measured at the time of presentation (seca scale; precision $\pm 5g$ for neonates or $\pm 50g$ after
201	birth). In addition, all children had their mid-upper arm circumference (MUAC), weight, and
202	height measured at each monthly routine visit. For the purposes of these analyses, age-
203	adjusted z-scores (R package: $z \ scorer$) ³¹ were calculated using the closest anthropometric
204	data to the illness visit within the following window periods: height \leq 28 days; MUAC \leq 28
205	days without intervening admission; weight ≤ 14 days without intervening admission. Median
206	time between the index illness visit and each anthropometric measurement is reported.
207	
208	

209 *Primary outcome*

The primary outcome was receipt of supplemental oxygen during the illness visit. Study staff were unaware which baseline variables were to be used as candidate predictors at the time of ascertaining outcome status. Clinic treatment protocols specified that peripheral oxygen saturation (SpO₂) must be checked prior to initiation of supplemental oxygen, with therapy

214	only indicated if SpO_2 was < 90%. All staff were trained on the treatment protocols prior to
215	study commencement.
216	
217	
218	Missing data
219	616 presentations were missing data on one or more candidate predictors (616/3,010; 20.5%)
220	with capillary refill time containing the highest proportion of missingness (442/3,010; 14.7%;
221	Supplementary Table 3). Under a missing-at-random assumption (Supplementary Figure 1),
222	we used multiple imputation with chained equations (MICE) to deal with missing data (R
223	package: mice). ³² Analyses were done in each of 100 imputed datasets and results pooled.
224	Variables included in the imputation model are reported in Supplementary Table 4.
225	
226	
227	Statistical methods
228	We assessed discrimination and calibration of each score by quantifying the area under the
229	receiver operating characteristic curve (AUC) and plotting model scores against observed
230	outcome proportions. We examined predicted classifications at each of the scores' cut-offs.
231	
232	Prior to model building we explored the relationship between continuous predictors and the
233	primary outcome using locally-weighted smoothing to identify non-linear patterns.
234	Accordingly, temperature was modelled using restricted cubic splines (R package: rms) ³³
235	with three knots placed at locations based on percentiles (5 th and 95 th) and recognised
236	physiological thresholds (36°C). ^{34,35} We used logistic regression to derive the models and
237	tested for important interactions using likelihood ratio tests (LRT). Random-effects were not
238	modelled as 22% (169/756) of children presented only once. All predictors were prespecified

239	and no n	redictor of	selection	was performe	d during	model deve	elonment	Internal	validation	was
233	and no p		selection	was benonne	a aaning	model deve	elopment.	miemai	vanuation	was

- 240 performed using 100 bootstrap samples with replacement and optimism-adjusted
- 241 discrimination and calibration reported (R package: *rms*).³³
- 242
- 243 Finally, the models were updated by including respiratory distress and WAZ as additional
- 244 candidate predictors. Penalised (lasso) logistic regression was used for model updating,
- 245 variable selection, and shrinkage to minimise overfitting (R package: *glmnet*).³⁶ A sensitivity
- analysis confirmed that median imputation grouped by outcome status produced similar
- 247 results to MICE and hence to avoid conflicts in variable selection across multiply imputed
- 248 datasets we used this approach to address missing data for model updating (Supplementary
- Table 5). We assessed discrimination and calibration of the updated models, examined
- 250 predicted classifications at clinically-relevant referral thresholds, and compared their clinical
- 251 utility (net-benefit) to the best-performing points-based severity score using decision curve
- 252 analysis (R package: *dcurves*).³⁷ A sensitivity analysis was performed excluding children who
- 253 were hypoxic at the time of presentation.
- 254

All analyses were done in R, version 4.0.2.³⁸

256

257

258 Sample size

No formal sample size calculation for external validation of the existing severity scores was
performed. All available data were used to maximise power and generalisability. Of the 3,010
eligible ARI presentations, 104 met the primary outcome, ensuring sufficient outcome events
for a robust external validation.³⁹ For derivation and updating of the clinical prediction
models we followed the methods of Riley et al. and assumed a conservative R² Nagelkerke of

- $264 \quad 0.15^{40}$ At an outcome prevalence of 3.5% (104/3,010) we estimated that up to 13 candidate
- 265 predictors (events per parameter [EPP] = 8) could be used to build the prediction models
- whilst minimising the risk of overfitting (R package: *pmsampsize*).⁴¹
- 267
- 268
- 269 *Ethics and reporting*
- 270 Ethical approvals were provided by the Mahidol University Ethics Committee (TMEC 21-
- 271 023) and Oxford Tropical Research Ethics Committee (OxTREC 511-21). The study is
- 272 reported in accordance with the Transparent Reporting of a multivariable prediction model
- 273 for Individual Prognosis Or Diagnosis (TRIPOD) guidelines (Supplementary Table 6).⁴²
- 274
- 275
- 276
- 277

278 **RESULTS**

279

279	
280	From September 2007 to September 2008, 999 pregnant women were enrolled, with 965
281	children born into the cohort. Amongst 4,061 acute illness presentations, 3,064 were for
282	ARIs. Fifty-four ARI presentations were excluded as information on oxygen therapy was not
283	available in the study database, leaving 3,010 presentations from 756 individual children for
284	the primary analysis (Supplementary Figure 2).
285	
286	Baseline characteristics of the cohort are summarised (Table 2; Supplementary Table 7). The
287	majority of children were managed in the community (72.3%; 2,175/3,010). Median length of
288	stay for the 835 admissions was 3 days (IQR 2 to 4 days). One hundred and four (3.5%;
289	104/3,010) presentations met the primary outcome, with those with signs of respiratory
290	distress, age-adjusted tachycardia and/or tachypnoea, lower baseline SpO ₂ , prolonged
291	capillary refill times, altered mental status, and lower WAZ more likely to require
292	supplemental oxygen (p < 0.001 to 0.014; Table 2).
293	
294	
295	LqSOFA and qPELOD-2 scores outperform the mSIRS score for risk stratification of ARIs
296	Discrimination and calibration of the LqSOFA (AUC = 0.84; 95% confidence interval [CI] =
297	0.79 to 0.89) and qPELOD-2 (AUC = 0.79; 95% CI = 0.74 to 0.84) scores were considerably
298	better than the mSIRS score (AUC = 0.57 ; 95% CI = 0.51 to 0.63; Figure 1; Supplementary
299	Table 8; Supplementary Figure 3). At a cut-off of ≥ 1 the LqSOFA score demonstrated a
300	sensitivity of 0.80 (95% $CI = 0.72$ to 0.89) and specificity of 0.86 (95% $CI = 0.85$ to 0.88);
301	neither the mSIRS nor qPELOD-2 scores achieved a sensitivity and specificity > 0.70 at any
302	cut-off (Table 3).

303 Improved performance of clinical severity scores when deployed as clinical prediction

304 models

305	Relationships between continuous predictors and the primary outcome are illustrated
306	(Supplementary Figure 4). There was no evidence of interaction between heart rate (LRT =

- 2.09; p = 0.35) or respiratory rate (LRT = 0.77; p = 0.68) and age. Optimism-adjusted
- discrimination of the three models ranged from 0.81 to 0.90, with the LqSOFA model
- appearing most promising (AUC = 0.90; 95% CI = 0.86 to 0.94; Figure 2; Supplementary
- Figure 5). Calibration of the qPELOD-2 model was good. The LqSOFA and mSIRS models
- 311 overestimated risk at higher predicted probabilities.
- 312

313 Discrimination of all three updated models containing respiratory distress and WAZ

improved (AUCs = 0.93 to 0.95). Calibration of the updated LqSOFA and qPELOD-2

models was good, whereas the updated mSIRS model underestimated risk at higher predicted

316 probabilities (Figure 3). The full models are reported in Supplementary Table 9.

317

318

319 Promising clinical utility of the LqSOFA and qPELOD-2 models to guide referrals from

320 primary care

321 We recognised that the relative value of correct and incorrect referrals is highly context-

322 dependent, reflecting resource availability, practicalities of referral, and capacity for follow-

323 up. Decision curve analyses accounting for differing circumstances suggest that the updated

324 models could provide greater utility (net-benefit) compared to the best points-based score (the

325 LqSOFA score), with the LqSOFA and qPELOD-2 models appearing most promising over a

326 wide range of plausible referral thresholds (Figure 4).

328	The ability of each updated model to guide referrals at thresholds ranging from 1% to 40% is
329	shown (Table 4). A referral threshold of 5% reflects a strategy whereby any child with a
330	predicted probability of requiring oxygen $\geq 5\%$ is referred. At this cut off, the models would
331	suggest referral in ~15% of all presentations, correctly identifying ~86-87% of children
332	requiring referral, at a cost of also recommending referral in ~12-13% of children not
333	requiring referral; i.e., a number needed to refer (NNR; the number of children referred to
334	identify one child who would require oxygen) of five. In contrast, at a similar threshold the
335	LqSOFA score using a cut-off ≥ 1 would suggest referral in a similar proportion of
336	presentations but result in a ~25% increase in incorrect referrals (a NNR of six) and a ~30-
337	60% increase in the number of children incorrectly identified for community-based
338	management.
339	
340	
340 341	Sensitivity analysis
	Sensitivity analysis The WHO recommend that pulse oximetry should be universally available at first-level health
341	
341 342	The WHO recommend that pulse oximetry should be universally available at first-level health
341 342 343	The WHO recommend that pulse oximetry should be universally available at first-level health facilities. ^{6,43} Although many barriers exist to realising this laudable goal, to account for the
341 342 343 344	The WHO recommend that pulse oximetry should be universally available at first-level health facilities. ^{6,43} Although many barriers exist to realising this laudable goal, to account for the fact that in such contexts a severity score would not be required to guide referral for children
341 342 343 344 345	The WHO recommend that pulse oximetry should be universally available at first-level health facilities. ^{6,43} Although many barriers exist to realising this laudable goal, to account for the fact that in such contexts a severity score would not be required to guide referral for children who are already hypoxic at the time of presentation, we performed a sensitivity analysis
341 342 343 344 345 346	The WHO recommend that pulse oximetry should be universally available at first-level health facilities. ^{6,43} Although many barriers exist to realising this laudable goal, to account for the fact that in such contexts a severity score would not be required to guide referral for children who are already hypoxic at the time of presentation, we performed a sensitivity analysis excluding presentations with $SpO_2 < 90\%$ at enrolment. Discrimination remained comparable
341 342 343 344 345 346 347	The WHO recommend that pulse oximetry should be universally available at first-level health facilities. ^{6,43} Although many barriers exist to realising this laudable goal, to account for the fact that in such contexts a severity score would not be required to guide referral for children who are already hypoxic at the time of presentation, we performed a sensitivity analysis excluding presentations with $SpO_2 < 90\%$ at enrolment. Discrimination remained comparable but clinical utility of the models reduced slightly, with higher NNRs at the lowest referral
341 342 343 344 345 346 347 348	The WHO recommend that pulse oximetry should be universally available at first-level health facilities. ^{6,43} Although many barriers exist to realising this laudable goal, to account for the fact that in such contexts a severity score would not be required to guide referral for children who are already hypoxic at the time of presentation, we performed a sensitivity analysis excluding presentations with $SpO_2 < 90\%$ at enrolment. Discrimination remained comparable but clinical utility of the models reduced slightly, with higher NNRs at the lowest referral
341 342 343 344 345 346 347 348 349	The WHO recommend that pulse oximetry should be universally available at first-level health facilities. ^{6,43} Although many barriers exist to realising this laudable goal, to account for the fact that in such contexts a severity score would not be required to guide referral for children who are already hypoxic at the time of presentation, we performed a sensitivity analysis excluding presentations with $SpO_2 < 90\%$ at enrolment. Discrimination remained comparable but clinical utility of the models reduced slightly, with higher NNRs at the lowest referral

353 **DISCUSSION**

354

377

355	We report the external validation of three pre-existing severity scores amongst young
356	children presenting with ARIs to a medical clinic on the Thailand-Myanmar border. Unlike
357	other studies which investigated the scores' prognostic accuracy in hospital settings, ^{17,25} we
358	evaluated their performance at the community level and demonstrate that the LqSOFA and
359	qPELOD-2 scores could support early recognition of children requiring referral or closer
360	follow-up in settings with limited resources. In keeping with previous literature, we found
361	that the mSIRS score was poorly discriminative, not well calibrated, and led to substantial
362	misclassification. ¹⁷
363	
364	An LqSOFA score ≥ 1 yielded a sensitivity and specificity $> 80\%$. Encouragingly, this is
365	remarkably consistent with the performance reported in the original LqSOFA development
366	study and may reflect similarities in the use-case (febrile children presenting from the
367	community) and severity of the cohorts (outcome prevalence 1.1% vs. 3.5%; admission rate
368	12.1% vs. 27.7%), albeit despite obvious demographic differences. ²⁹ In contrast to qPELOD-
369	2, LqSOFA contains age-adjusted tachypnoea, which may have improved performance in
370	children with respiratory illnesses. Furthermore, the performance of LqSOFA (or qSOFA)
371	has been shown to improve outside of the PICU, when used to predict more proximal
372	outcomes (e.g. critical care admission rather than mortality), and if the AVPU scale (vs.
373	GCS) is employed to assess mental status. ⁴⁴ These all apply to our cohort.
374	
375	We demonstrated improvement in performance when the severity scores were deployed as
376	clinical prediction models and when nutritional status and respiratory distress were included
277	and distance we distance. With the discussion of all dense and data data data 1.1.1.1.1.1.1.

as additional predictors. Whilst discrimination of all three updated models was good, the

AUC is a summary measure of model performance and does not necessarily reflect clinical
utility.⁴⁵⁻⁴⁷ Decision curve analyses illustrate the superiority of the LqSOFA and qPELOD-2
models compared with the mSIRS model across a range of clinically-relevant referral
thresholds.

382

383	With growing access to smartphones there may be contexts where the increased accuracy
384	afforded by a clinical prediction model outweighs the simplicity and practicality of points-
385	based scoring systems. At a 5% referral threshold, the updated LqSOFA model identified a
386	similar proportion of presentations for referral as the LqSOFA score at a cut-off of ≥ 1
387	(14.1% vs. 16.1%), however use of the model would have resulted in ~25% fewer incorrect
388	referrals and a ~30% decrease in the number of presentations incorrectly recommended for
389	community-based management. In addition to greater accuracy, prediction models permit
390	more nuanced evaluation of risk; referral thresholds can be adjusted to the needs of an
391	individual patient and/or health system and this flexibility may be particularly impactful in
392	the heterogeneous environments commonplace in many LMIC primary care contexts. For
393	example, in locations where community follow-up is feasible (e.g. via a telephone call or
394	return clinic visit) and/or referral carries great cost (to the patient or system), a higher referral
395	threshold (lower NNR) may be acceptable, compared with settings where safety-netting is
396	impractical and/or access to secondary care is less challenging.

397

We followed the latest guidelines in prediction model building and used bootstrap internal validation, penalised regression, placed knots at predefined locations, and limited the number of candidate predictors to avoid overfitting the models.^{40,42,48,49} Nevertheless, they require validation on new data to assess generalisability and provide a fairer comparison with the pre-

402 existing points-based scores. We have published our full models to encourage independent403 validation.

404

405	As others have highlighted, a limitation of many studies evaluating community-based triage
406	tools in low-resource settings is the lack of follow-up data for patients categorised as low
407	risk; ⁹ 72.3% (2,175/3,010) of our cohort were sent away from the clinic without admission.
408	As acute illness visits were nested within the longitudinal birth cohort, we were able to
409	confirm that 1.4% (30/2,083) of presentations sent away from the clinic without admission
410	received supplemental oxygen within the next 28 days, although it is unknown whether this
411	related to the index ARI or a new illness. A sensitivity analysis conservatively classifying
412	these 30 presentations as meeting the primary outcome (i.e. assuming the oxygen therapy
413	related to the index ARI) resulted in a decrease in the sensitivity of all three models
414	(Supplementary Tables 12 & 13). Prospective research with dedicated outpatient follow-up is
415	ongoing to investigate this issue further. ⁵⁰
416	
417	We selected supplemental oxygen therapy as the primary outcome as this reflects a clinically-
418	meaningful endpoint for ARIs and a pragmatic referral threshold for many resource-limited
419	primary care settings. Oxygen was a scarce resource during the study (cylinders were
420	transported in each week from ~60km away) and oxygen therapy was protocolised; hence
421	outcome misclassification is less likely.
422	

For those who met the primary outcome, the time of oxygen initiation was not available in the primary dataset. Although no patient had met the outcome when baseline predictors were measured, some may have done so shortly after. Nevertheless, the sensitivity analysis excluding presentations with baseline $SpO_2 < 90\%$ (the qualifying criterion for supplemental

427	oxygen) produced similar results. Furthermore, median length of stay was three days and
428	hence the time horizon for all those who met the primary outcome is likely to have been
429	relatively comparable.

- 430
- 431 We externally validated three severity scores that could guide assessment of young children
- 432 presenting with ARIs in resource-limited primary care settings to identify those in need of
- 433 referral or closer follow-up. Performance of the LqSOFA score was encouraging and
- 434 comparable to that in the original derivation setting.²⁹ Converting the LqSOFA score into a
- 435 clinical prediction model and including additional variables relevant to resource-constrained
- 436 LMIC settings improved accuracy and might permit application across a wider range of
- 437 contexts with differing referral thresholds.
- 438
- 439
- 440

441 CONFLICT OF INTEREST DISCLOSURES

- 442 The authors have no conflicts of interest relevant to this article to disclose.
- 443
- 444

445 FUNDING/SUPPORT

- 446 This research was funded by the UK Wellcome Trust [219644/Z/19/Z]. RPS acknowledges
- 447 part support from the NIHR Applied Research Collaboration Oxford & Thames Valley, the
- 448 NIHR Oxford Medtech and In-Vitro Diagnostics Co-operative and the Oxford Martin School.
- 449 CK is supported by a Wellcome Trust/Royal Society Sir Henry Dale Fellowship
- 450 [211182/Z/18/Z]. For the purpose of open access, the author has applied a CC BY public
- 451 copyright license to any Author Accepted Manuscript version arising from this submission.

452

453

454 DATA SHARING

455 De-identified, individual participant data from this study will be available to researchers

456 whose proposed purpose of use is approved by the data access committees at the Mahidol-

- 457 Oxford Tropical Medicine Research Unit. Inquiries or requests for the data may be sent to
- 458 datasharing@tropmedres.ac.

459 **REFERENCES**

460		
461	1.	Bigio J, MacLean E, Vasquez NA, et al. Most common reasons for primary care visits in low- and middle-
462		income countries: A systematic review. PLOS Global Public Health 2022; 2(5).
463	2.	Finley CR, Chan DS, Garrison S, et al. What are the most common conditions in primary care? Can Fam Phys
464		2018; 64 (11): 832-40.
465	3.	Buntinx F, Mant D, Van den Bruel A, Donner-Banzhof N, Dinant GJ. Dealing with low-incidence serious
466		diseases in general practice. Br J Gen Pract 2011; 61 (582): 43-6.
467	4.	Debarre A. Hard to Reach: Providing Healthcare in Armed Conflict: International Peace Institute, 2018.
468	5.	World Health Organization. Integrated Community Case Management. Geneva, Switzerland; 2012.
469	6.	World Health Organization. Integrated Management of Childhood Illnesses. Geneva, Switzerland; 2014.
470	7.	Keitel K, Kilowoko M, Kyungu E, Genton B, D'Acremont V. Performance of prediction rules and guidelines in
471		detecting serious bacterial infections among Tanzanian febrile children. BMC Infect Dis 2019; 19(1): 769.
472	8.	Izudi J, Anyigu S, Ndungutse D. Adherence to Integrated Management of Childhood Illnesses Guideline in
473		Treating South Sudanese Children with Cough or Difficulty in Breathing. Int J Pediatr 2017; 2017: 5173416.
474	9.	Hansoti B, Jenson A, Keefe D, et al. Reliability and validity of pediatric triage tools evaluated in Low
475		resource settings: a systematic review. BMC Pediatr 2017; 17(1): 37.
476	10	Turner C, Turner P, Carrara V, et al. High rates of pneumonia in children under two years of age in a South
477		East Asian refugee population. <i>PLoS One</i> 2013; 8 (1): e54026.
478	11	Chandna A, Tan R, Carter M, et al. Predictors of disease severity in children presenting from the community
479		with febrile illnesses: a systematic review of prognostic studies. BMJ Glob Health 2021; 6(1).
480	12	Deardorff KV, McCollum ED, Ginsburg AS. Pneumonia Risk Stratification Scores for Children in Low-
481		Resource Settings: A Systematic Literature Review. Pediatr Infect Dis J 2018; 37(8): 743-8.
482	13	Olson D, Davis NL, Milazi R, et al. Development of a severity of illness scoring system (inpatient triage,
483		assessment and treatment) for resource-constrained hospitals in developing countries. Trop Med Int Health
484		2013; 18 (7): 871-8.
485	14.	Hooli S, Colbourn T, Lufesi N, et al. Predicting Hospitalised Paediatric Pneumonia Mortality Risk: An External
486		Validation of RISC and mRISC, and Local Tool Development (RISC-Malawi) from Malawi. PLoS One 2016;
487		11 (12): e0168126.
488	15.	Reed C, Madhi SA, Klugman KP, et al. Development of the Respiratory Index of Severity in Children (RISC)
489		score among young children with respiratory infections in South Africa. <i>PLoS One</i> 2012; 7 (1): e27793.
490	16.	Pollack MM, Holubkov R, Funai T, et al. The Pediatric Risk of Mortality Score: Update 2015. Pediatr Crit Care
491		Med 2016; 17 (1): 2-9.
492	17.	van Nassau SC, van Beek RH, Driessen GJ, Hazelzet JA, van Wering HM, Boeddha NP. Translating Sepsis-3
493		Criteria in Children: Prognostic Accuracy of Age-Adjusted Quick SOFA Score in Children Visiting the
494		Emergency Department With Suspected Bacterial Infection. Front Pediatr 2018; 6: 266.
495	18.	Goldstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric S. International
496		pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. <i>Pediatr</i>
497		Crit Care Med 2005; 6(1): 2-8.
498	19.	Egdell P, Finlay L, Pedley DK. The PAWS score: validation of an early warning scoring system for the initial
499	~ ~	assessment of children in the emergency department. <i>Emerg Med J</i> 2008; 25 (11): 745-9.
500	20.	Parshuram CS, Hutchison J, Middaugh K. Development and initial validation of the Bedside Paediatric Early
501	~ 4	Warning System score. Crit Care 2009; 13 (4): R135.
502	21.	George EC, Walker AS, Kiguli S, et al. Predicting mortality in sick African children: the FEAST Paediatric
503	~~	Emergency Triage (PET) Score. <i>BMC Med</i> 2015; 13 : 174.
504	22.	Emukule GO, McMorrow M, Ulloa C, et al. Predicting mortality among hospitalized children with
505	~~	respiratory illness in Western Kenya, 2009-2012. <i>PLoS One</i> 2014; 9 (3): e92968.
506	23.	Berkley JA, Ross A, Wangi I, et al. Prognostic indicators of early and late death in children admitted to
507	~ 4	district hospital in Kenya: cohort study. <i>BMJ</i> 2003; 326 (361).
508 509	24.	Helbok R, Kendjo E, Issifou S, et al. The Lambarene Organ Dysfunction Score (LODS) is a simple clinical
	າຕ	predictor of fatal malaria in African children. <i>J Infect Dis</i> 2009; 200 (12): 1834-41.
510 511	25.	Schlapbach LJ, Straney L, Bellomo R, MacLaren G, Pilcher D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the
512		intensive care unit. Intensive Care Med 2018; 44 (2): 179-88.
777		mensive care unit. <i>Intensive cure ivieu</i> 2010, 44(2). 173-00.

513 26. Leclerc F, Duhamel A, Deken V, Grandbastien B, Leteurtre S, Groupe Francophone de Reanimation et 514 Urgences P. Can the Pediatric Logistic Organ Dysfunction-2 Score on Day 1 Be Used in Clinical Criteria for 515 Sepsis in Children? Pediatr Crit Care Med 2017; 18(8): 758-63. 516 27. Brierley J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric 517 and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 518 2009; 37(2): 666-88. 519 28. Fung JST, Akech S, Kissoon N, Wiens MO, English M, Ansermino JM. Determining predictors of sepsis at 520 triage among children under 5 years of age in resource-limited settings: A modified Delphi process. PLoS 521 One 2019; 14(1): e0211274. 522 29. Romaine S.T, Potter J, Khanijau A, et al. Accuracy of a Modified qSOFA Score for Predicting Critical Care 523 Admission in Febrile Children. Pediatrics 2020; 146(4): e20200782. 524 30. Beane A, Silva AP, Munasinghe S, et al. Comparison of Quick Sequential Organ Failure Assessment and 525 Modified Systemic Inflammatory Response Syndrome Criteria in a Lower Middle Income Setting. J Acute 526 Med 2017; 7(4): 141-8. 527 31. Myatt M, Guevarra E. zscorer: Child Anthropometry z-Score Calculator. R package version 0.3.1. 2019. 528 32. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. Journal of 529 Statistical Software 2011; **45**(3): 1-67. 530 33. Harrell FE, Jr. rms: Regression Modeling Strategies. R package version 6.2-0. 2021. 531 34. UK National Institute for Health and Care Excellence. Algorithm for managing suspected sepsis in children 532 aged under 5 years outside an acute hospital setting. United Kingdom; 2017. 533 35. World Health Organization. Pocket book of hospital care for children: guidelines for the management of 534 common childhood illnesses. Geneva, Switzerland; 2013. 535 36. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate 536 Descent. Journal of Statistical Software 2010; 33(1): 1-22. 537 37. Sjoberg DD. dcurves: Decision Curve Analysis for Model Evaluation. R package version 0.3.0. 2022. 538 38. R Core Team. R: A language and environment for statistical computing. Vlenna, Austria: R Foundation for 539 Statistical Computing; 2020. 540 39. Vergouwe Y, Steyerberg EW, Eijkemans MJ, Habbema JD. Substantial effective sample sizes were required 541 for external validation studies of predictive logistic regression models. J Clin Epidemiol 2005; **58**(5): 475-83. 542 40. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction 543 model. BMJ 2020; 368: m441. 544 41. Ensor J, Martin EC, Riley RD. pmsampsize: Calculates the Minimum Sample Size Required for Developing a 545 Multivariable Prediction Model. R package version 1.1.1. R; 2021. 546 42. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model 547 for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 2015; 162(1): 55-63. 548 43. World Health Organization. Interagency List of Priority Medical Devices for Essential Interventions for 549 Reproductive, Maternal, Newborn and Child Health. Geneva, Switzerland, 2016. 550 44. Eun S, Kim H, Kim HY, et al. Age-adjusted quick Sequential Organ Failure Assessment score for predicting 551 mortality and disease severity in children with infection: a systematic review and meta-analysis. Sci Rep 552 2021; **11**(1): 21699. 553 45. Fackler JC, Rehman M, Winslow RL. Please Welcome the New Team Member: The Algorithm. Pediatr Crit 554 Care Med 2019; 20(12): 1200-1. 555 46. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, 556 molecular markers, and diagnostic tests. BMJ 2016; 352: i6. 557 47. de Hond AAH, Steyerberg EW, van Calster B. Interpreting area under the receiver operating characteristic 558 curve. Lancet Digit Health 2022; **0**(0). 559 48. Steverberg EW. Clinical Prediction Models: Springer International Publishing; 2019. 560 49. Harrell FE, Jr. Regression Modeling Strategies: Springer International Publishing; 2006. 561 50. Chandna A, Aderie EM, Ahmad R, et al. Prediction of disease severity in young children presenting with 562 acute febrile illness in resource-limited settings: a protocol for a prospective observational study. BMJ Open 563 2021; **11**(1): e045826. 564

565 **TABLE 1. Shortlisted paediatric severity scores and comparison between original and study populations.** bpm = beats or breaths per

566 minute; ED = emergency department; ICU = intensive care unit; PICU = paediatric intensive care unit.

Score	Constituent variables	Population	Outcome
LqSOFA ²⁹	 Capillary refill time > 2 seconds Mental status < alert on AVPU scale Heart rate > age-adjusted threshold Respiratory rate > age-adjusted threshold <i>Each variable allocated one point to give score of 0-4</i> 	Derivation: 1,121 febrile children < 16y attending the ED and requiring a blood test at a specialist paediatric hospital in the United Kingdom.Validation: 12,241 febrile children < 16y attending the ED at a specialist paediatric hospital in the United Kingdom.	Critical care admission within 48h of ED attendance. <u>Prevalence</u> : 4.2% (derivation) and 1.1% (validation).
mSIRS ³⁰	 Core temperature > 38.5°C or < 36°C Heart rate > or < age-adjusted threshold Respiratory rate > age-adjusted threshold <i>Each variable allocated one point to give score of 0-3</i> 	Derivation:expert consensus (original SIRS score). $\underline{\text{Validation}}$:1,184 adults > 18y admitted to a hospital in SriLanka with suspected infection.	In-hospital mortality, cardiac arrest of autority of a
qPELOD-2 ²⁶	 Mental status < 11 on GCS Heart rate > age-adjusted threshold Blood pressure < age-adjusted threshold <i>Each variable allocated one point to give score of 0-3</i> 	 <u>Derivation</u>: 862 children < 18y admitted to nine European PICUs with suspected infection. <u>Validation</u>: 545 children < 18y admitted to a hospital in the Netherlands with suspected bacterial infection.¹⁷ 	Prevalence:3.6% (validation).In-PICU mortality (derivation) or PICU admission and/or mortality (validation).Prevalence:Prevalence:7.0% (derivation) and 3.3% (validation).Prevalence:
This study	 Capillary refill time > 2 seconds Mental status < alert on AVPU scale Heart rate > age-adjusted threshold Respiratory rate > age-adjusted threshold Axillary temperature > 38°C or < 35.5°C 	3,010 ARI presentations from 756 children < 2y presenting to a primary care clinic on the Thai-Myanmar border.	Supplemental oxygen therapy. <u>Prevalence</u> : 3.5%.

TABLE 2. Baseline characteristics of the cohort stratified by primary outcome status. ^aRespiratory distress defined as head bobbing, tracheal tug, grunting and/or chest indrawing; ^babnormal chest auscultation defined as crepitations and/or wheeze; ^crectal temperature converted to axillary temperature for neonates and infants. [†]Median interval between anthropometric measurement and index illness presentation: length = 8 days (IQR 4-12 days); MUAC = 9 days (IQR 4-13 days); weight = 4 days (IQR 0-10 days). ^{*}Missing data: gestation = 5; birthweight = 14; comorbidity = 10; symptom duration = 21; unwell family member = 10; fever = 5; runny nose = 2; noisy breathing = 6; stridor = 1; respiratory distress = 1; head bobbing = 1; tracheal tug = 1; grunting = 1; chest indrawing = 1; abnormal lung auscultation = 59; lung crepitations = 69; wheeze = 79; dehydration = 7; colour = 50; heart rate = 9; respiratory rate = 8; temperature = 3; oxygen saturation = 1,645; capillary refill time =

574 442; mental status = 37; WLZ = 158; WAZ = 147; MAZ = 682; LAZ = 14.

	Overall	Supplemen					
Characteristic	$N = 3,010^{1}$	No $N = 2,906^{1}$	Yes $N = 104^{1}$	p-value ²			
Demographics							
Age (months)	8.1 (3.7, 13.7)	8.2 (3.8, 13.8)	7.3 (3.4, 12.7)	0.40			
Male sex	1,592 / 3,010 (53%)	1,541 / 2,906 (53%)	51 / 104 (49%)	0.40			
Birth history	Birth history						
Gestation (weeks)*	39.1 (38.1, 40.0)	39.2 (38.2, 40.0)	38.4 (37.3, 39.7)	0.001			
Birthweight (kg) [*]	2.9 (2.6, 3.2)	2.9 (2.6, 3.2)	2.6 (2.0, 3.0)	< 0.001			
Previous medical history			*.				
Number of previous illness visits	3.0 (2.0, 6.0)	3.0 (2.0, 6.0)	4.0 (2.0, 9.0)	0.043			

	Overall	Supplemen		
Characteristic	$N = 3,010^{1}$	No $N = 2,906^{1}$	Yes $N = 104^{1}$	p-value ²
Time since last illness visit (days)	29.0 (3.0, 81.0)	31.0 (3.0, 82.0)	11.0 (2.0, 36.5)	< 0.001
Number of previous ARI visits	3.0 (2.0, 5.0)	3.0 (2.0, 5.0)	3.5 (2.0, 8.0)	0.006
Known comorbidity [*]	53 / 3,000 (1.8%)	39 / 2,898 (1.3%)	14 / 102 (14%)	< 0.001
History of current illness				
Duration of symptoms (days)*	3.0 (2.0, 5.0)	3.0 (2.0, 5.0)	3.0 (2.0, 5.0)	0.30
Antibiotics prior to presentation	145 / 3,010 (4.8%)	125 / 2,906 (4.3%)	20 / 104 (19%)	< 0.001
Family member unwell [*]	287 / 3,000 (9.6%)	276 / 2,898 (9.5%)	11 / 102 (11%)	0.70
Presenting symptoms and signs				
Fever [*]	1,958 / 3,005 (65%)	1,885 / 2,901 (65%)	73 / 104 (70%)	0.30
Cough	2,767 / 3,010 (92%)	2,667 / 2,906 (92%)	100 / 104 (96%)	0.11
Runny nose [*]	2,565 / 3,008 (85%)	2,491 / 2,904 (86%)	74 / 104 (71%)	< 0.001
Noisy breathing [*]	447 / 3,004 (15%)	430 / 2,901 (15%)	17 / 103 (17%)	0.60
Stridor [*]	6 / 3,009 (0.2%)	6 / 2,905 (0.2%)	0 / 104 (0%)	>0.90
Respiratory distress ^{a*}	508 / 3,009 (17%)	416 / 2,905 (14%)	92 / 104 (88%)	< 0.001
Head bobbing [*]	52/3,009 (1.7%)	27 / 2,905 (0.9%)	25 / 104 (24%)	< 0.001

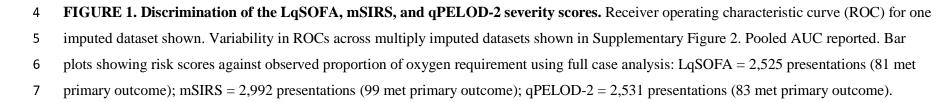
	Overall	Supplemen		
Characteristic	$N = 3,010^{1}$	No $N = 2,906^{1}$	Yes $N = 104^{1}$	p-value ²
Tracheal tug [*]	134 / 3,009 (4.5%)	96 / 2,905 (3.3%)	38 / 104 (37%)	< 0.001
Grunting [*]	26 / 3,009 (0.9%)	11 / 2,905 (0.4%)	15 / 104 (14%)	< 0.001
Chest indrawing [*]	493 / 3,009 (16%)	402 / 2,905 (14%)	91 / 104 (88%)	< 0.001
Abnormal lung auscultation ^{b*}	1,455 / 2,951 (49%)	1,372 / 2,852 (48%)	83 / 99 (84%)	< 0.001
Crepitations [*]	1,158 / 2,941 (39%)	1,085 / 2,844 (38%)	73 / 97 (75%)	< 0.001
Wheeze*	794 / 2,931 (27%)	751 / 2,833 (27%)	43 / 98 (44%)	< 0.001
Dehydration [*]	127 / 3,003 (4.2%)	121 / 2,899 (4.2%)	6 / 104 (5.8%)	0.40
Pale, mottled or cyanosed [*]	107 / 2,960 (3.6%)	91 / 2,862 (3.2%)	16/98 (16%)	< 0.001
Vital signs			, 	
Heart rate (bpm)*				
Neonate	140.0 (132.0, 150.0)	140.0 (132.0, 148.0)	150.0 (140.0, 165.0)	0.014
Infant	138.0 (128.0, 144.0)	136.0 (128.0, 144.0)	147.0 (136.5, 154.0)	< 0.001
Child	128.0 (120.0, 140.0)	128.0 (120.0, 140.0)	140.0 (127.5, 149.0)	0.002
Respiratory rate (bpm)*				
Neonate	48.0 (45.0, 56.0)	48.0 (44.2, 54.0)	64.5 (54.0, 77.0)	0.008

	Overall	Supplemen		
Characteristic	$N = 3,010^{1}$	No $N = 2,906^{1}$	Yes $N = 104^{1}$	p-value ²
Infant	48.0 (42.0, 56.0)	48.0 (42.0, 56.0)	58.0 (54.0, 66.0)	< 0.001
Child	45.0 (38.0, 52.0)	44.0 (38.0, 52.0)	57.0 (46.5, 62.0)	< 0.001
Axillary temperature (°C) ^{c*}	36.6 (36.0, 37.5)	36.6 (36.0, 37.4)	36.8 (36.2, 37.8)	0.040
Oxygen saturation (%)*	95.0 (93.0, 96.0)	95.0 (93.0, 96.0)	88.0 (85.0, 93.0)	< 0.001
Capillary refill time > 2 secs [*]	36 / 2,568 (1.4%)	27 / 2,476 (1.1%)	9 / 92 (9.8%)	< 0.001
Not alert [*]	372 / 2,973 (13%)	306 / 2,875 (11%)	66 / 98 (67%)	< 0.001
Anthropometrics			,	
Weight-for-length z-score (WLZ) ^{$*^{\dagger}$}	0.0 (-0.8, 0.8)	0.0 (-0.8, 0.8)	-0.5 (-1.8, 0.7)	< 0.001
Weight-for-age z-score $(WAZ)^{*\dagger}$	-0.9 (-1.6, -0.2)	-0.9 (-1.6, -0.2)	-1.9 (-3.4, -0.8)	< 0.001
MUAC-for-age z-score (MAZ)* [†]	0.2 (-0.4, 0.8)	0.2 (-0.4, 0.8)	-0.7 (-1.9, 0.6)	< 0.001
Length-for-age z-score $(LAZ)^{*\dagger}$	-1.5 (-2.3, -0.7)	-1.4 (-2.2, -0.7)	-2.4 (-3.4, -1.4)	< 0.001

¹Median (IQR); n / N (%)

²Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test

	(81 met pri	mary outcome);	mSIRS = 2,992 p	presentations (99	met primary out	come); qPELOD-2	= 2,531 preser	ntations (83 met	primary	
	outcome).									
Cut Off	Sensitivity (95% CI)	Specificity (95% CI)	Negative Predictive Value (95% CI)	Positive Predictive Value (95% CI)	Negative Likelihood Ratio (95% CI)	Positive Likelihood Ratio (95% CI)	Cases referred (%)	Cases managed in community (%)	Ratio of Incorrect to Correct referrals	Ratio o Correct Incorre cases manageo commun
qSOF	'A						_			ſ
1	0.80 (0.72 to 0.89)	0.86 (0.85 to 0.88)	0.99 (0.99 to 1.00)	0.16 (0.13 to 0.20)	0.23 (0.15 to 0.36)	5.89 (5.08 to 6.82)	407 (16.1%)	2118 (83.9%)	5 to 1	131 to
2	0.23 (0.14 to 0.33)	0.98 (0.98 to 0.99)	0.98 (0.97 to 0.98)	0.34 (0.22 to 0.46)	0.78 (0.69 to 0.88)	15.49 (9.33 to 25.72)	68 (2.7%)	2457 (97.3%)	3 to 1	39 to 1
3	0.01 (-0.01 to 0.04)	1.00 (1.00 to 1.00)	0.97 (0.96 to 0.98)	0.33 (-0.20 to 0.87)	0.99 (0.96 to 1.01)	15.09 (1.38 to 164.69)	1 (< 0.01%)	2524 (> 99.9%)	0 to 1	31 to 1
SIRS										
1	0.99 (0.97 to 1.00)	0.05 (0.04 to 0.05)	0.99 (0.98 to 1.01)	0.03 (0.03 to 0.04)	0.22 (0.03 to 1.54)	1.04 (1.02 to 1.06)	2846 (95.1%)	146 (4.9%)	28 to 1	145 to
2	0.22 (0.14 to 0.30)	0.88 (0.86 to 0.89)	0.97 (0.96 to 0.98)	0.06 (0.03 to 0.08)	0.89 (0.80 to 0.99)	1.79 (1.22 to 2.61)	369 (12.3%)	2623 (87.7%)	16 to 1	33 to 1
3	0.01 (-0.01 to 0.03)	1.00 (1.00 to 1.00)	0.97 (0.96 to 0.97)	0.50 (-0.19 to 1.19)	0.99 (0.97 to 1.01)	29.22 (1.84 to 463.84)	1 (< 0.1%)	2991 (> 99.9%)	0 to 1	30 to 1
PELC	DD-2									
1	0.68 (0.57 to 0.78)	0.90 (0.88 to 0.91)	0.99 (0.98 to 0.99)	0.18 (0.14 to 0.22)	0.36 (0.27 to 0.50)	6.40 (5.30 to 7.73)	301 (11.9%)	2230 (88.1%)	4 to 1	82 to 1
2	0.08 (0.03 to 0.14)	0.99 (0.99 to 1.00)	0.97 (0.96 to 0.98)	0.32 (0.12 to 0.51)	0.92 (0.86 to 0.98)	13.76 (5.77 to 32.86)	31 (1.2%)	2500 (98.8%)	3 to 1	32 to


1 TABLE 4. Predicted classifications at different referral thresholds using the updated LqSOFA, qPELOD-2, and mSIRS models. A

2 referral threshold of 5% reflects a management strategy whereby any child with a predicted probability of requiring oxygen \geq 5% is referred.

Model	Sensitivity (95% CI)	Specificity (95% CI)	Negative Predictive Value (95% CI)	Positive Predictive Value (95% CI)	Negative Likelihood Ratio (95% CI)	Positive Likelihood Ratio (95% CI)	Cases referred (%)	Cases managed in community (%)	Ratio of Incorrect to Correct referrals	Ratio of Correct to Incorrect cases managed in community
Referral thre	eshold = 1%									is made
LqSOFA	0.97 (0.93 to 1.00)	0.78 (0.73 to 0.82)	1.00 (1.00 to 1.00)	0.14 (0.11 to 0.17)	0.04 (0.00 to 0.09)	4.48 (3.65 to 5.57)	722 (24.0%)	2288 (76.0%)	6 to 1	762 to 1
qPELOD-2	0.96 (0.93 to 0.99)	0.79 (0.75 to 0.83)	1.00 (1.00 to 1.00)	0.14 (0.12 to 0.17)	0.05 (0.01 to 0.10)	4.55 (3.97 to 5.87)	715 (23.8%)	2295 (76.2%)	6 to 1	573 to 1
mSIRS	0.94 (0.90 to 0.98)	0.78 (0.65 to 0.84)	1.00 (1.00 to 1.00)	0.13 (0.10 to 0.18)	0.08 (0.04 to 0.14)	4.36 (3.00 to 6.21)	737 (24.5%)	2273 (75.5%)	7 to 1	378 to 1
Referral thre	eshold = 5%									.0 Inter
LqSOFA	0.87 (0.78 to 0.93)	0.88 (0.86 to 0.91)	0.99 (0.99 to 1.00)	0.21 (0.18 to 0.25)	0.15 (0.09 to 0.25)	7.40 (6.22 to 9.50)	423 (14.1%)	2587 (85.9%)	4 to 1	171 to 1
qPELOD-2	0.87 (0.78 to 0.93)	0.87 (0.85 to 0.91)	0.99 (0.99 to 1.00)	0.20 (0.16 to 0.23)	0.15 (0.08 to 0.25)	6.79 (5.96 to 8.98)	468 (15.5%)	2542 (84.5%)	4 to 1	181 to 1
mSIRS	0.86 (0.77 to 0.93)	0.87 (0.85 to 0.89)	0.99 (0.99 to 1.00)	0.19 (0.16 to 0.22)	0.16 (0.08 to 0.26)	6.55 (5.80 to 7.74)	470 (15.6%)	2540 (84.4%)	4 to 1	211 to 1
Referral thre	eshold = 10%									
LqSOFA	0.75 (0.66 to 0.83)	0.93 (0.91 to 0.95)	0.99 (0.99 to 0.99)	0.29 (0.24 to 0.36)	0.26 (0.18 to 0.37)	11.76 (9.04 to 16.80)	270 (9.0%)	2740 (91.0%)	3 to 1	100 to 1

medRxiv preprint doi: https://doi.org/10.1101/2022.12.06.22283016; this version posted December 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

qPELOD-2	0.73 (0.61 to 0.82)	0.93 (0.90 to 0.95)	0.99 (0.99 to 0.99)	0.29 (0.23 to 0.37)	0.29 (0.20 to 0.41)	11.57 (8.21 to 17.02)	264 (8.8%)	2764 (91.2%)	3 to 1	94 to 1
mSIRS	0.76 (0.63 to 0.86)	0.91 (0.88 to 0.93)	0.99 (0.99 to 0.99)	0.23 (0.19 to 0.27)	0.27 (0.16 to 0.41)	8.22 (6.83 to 10.18)	344 (11.4%)	2666 (88.6%)	3 to 1	120 to 1
Referral thr	eshold = 20%									by peer
LqSOFA	0.59 (0.45 to 0.69)	0.97 (0.96 to 0.97)	0.99 (0.98 to 0.99)	0.39 (0.32 to 0.45)	0.42 (0.32 to 0.56)	17.82 (13.83 to 23.17)	161 (5.3%)	2849 (94.7%)	2 to 1	68 to 1
qPELOD-2	0.56 (0.41 to 0.65)	0.97 (0.96 to 0.97)	0.98 (0.98 to 0.99)	0.37 (0.30 to 0.44)	0.46 (0.36 to 0.60)	16.81 (12.98 to 22.87)	153 (5.1%)	2857 (94.9%)	2 to 1	ade avail 59 to 1 avail
mSIRS	0.49 (0.37 to 0.61)	0.96 (0.95 to 0.97)	0.98 (0.98 to 0.99)	0.31 (0.26 to 0.38)	0.53 (0.40 to 0.65)	12.97 (9.85 to 19.44)	165 (5.5%)	2845 (94.5%)	2 to 1	68 to 1 It is made available 59 to 1 51 to 1
Referral thre	eshold = 40%									r a CC-BY
LqSOFA	0.28 (0.16 to 0.41)	0.99 (0.98 to 1.00)	0.97 (0.97 to 0.98)	0.49 (0.36 to 0.62)	0.73 (0.60 to 0.85)	27.50 (17.38 to 56.63)	62 (2.1%)	2948 (97.9%)	1 to 1	38 to 1 50 m
qPELOD-2	0.28 (0.13 to 0.41)	0.99 (0.98 to 0.99)	0.97 (0.97 to 0.98)	0.49 (0.35 to 0.59)	0.73 (0.59 to 0.87)	27.90 (16.46 to 47.56)	62 (2.1%)	2948 (97.9%)	1 to 1	38 to 1 ^{4.0} International
mSIRS	0.21 (0.09 to 0.35)	1.00 (0.99 to 1.00)	0.97 (0.97 to 0.98)	0.61 (0.47 to 0.90)	0.80 (0.66 to 0.91)	Inf	20 (0.7%)	2990 (99.3%)	0 to 1	35 to 1
		*	*	•	•	·	-			· 07

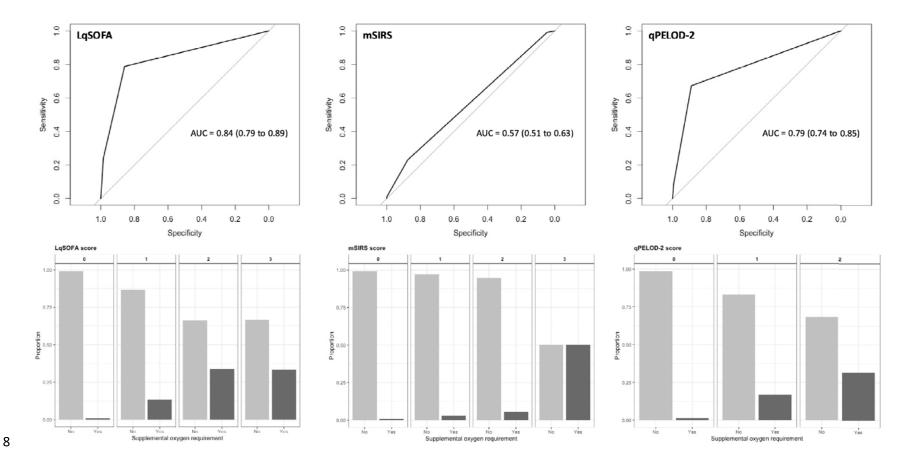


FIGURE 2. Discrimination and calibration of the LqSOFA, mSIRS, and qPELOD-2 models. Receiver operating characteristic curve
 (ROC) and calibration slope for one imputed dataset shown. Variability in ROCs and calibration slopes across multiply imputed datasets shown
 in Supplementary Figure 5. Pooled optimism-adjusted AUCs and calibration slopes reported (100 bootstrap samples). On calibration plots, red
 line indicates perfect calibration; black dashed line indicates calibration slope for that particular model; blue rug plots indicate distribution of
 predicted risks for participants who did (top) and did not (bottom) meet the primary outcome.

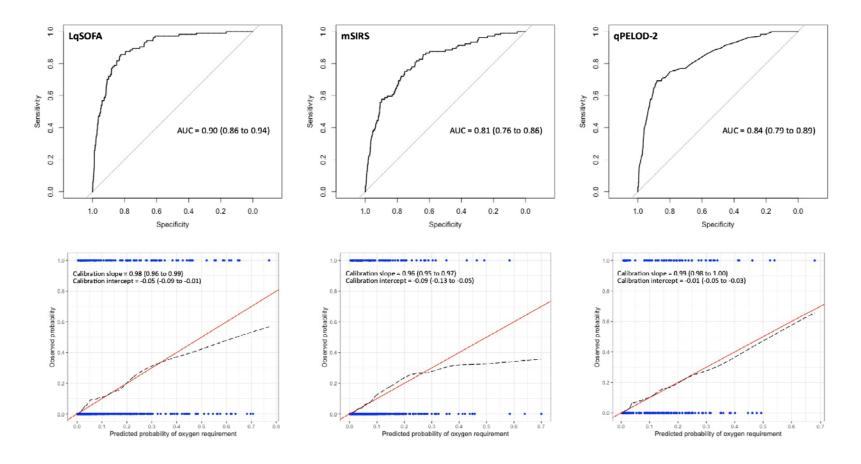


FIGURE 3. Discrimination and calibration of updated LqSOFA, mSIRS, and qPELOD-2 models. On calibration plots, red line indicates
 perfect calibration; black dashed line indicates calibration slope for that particular model; blue rug plots indicate distribution of predicted risks
 for participants who did (top) and did not (bottom) meet the primary outcome.

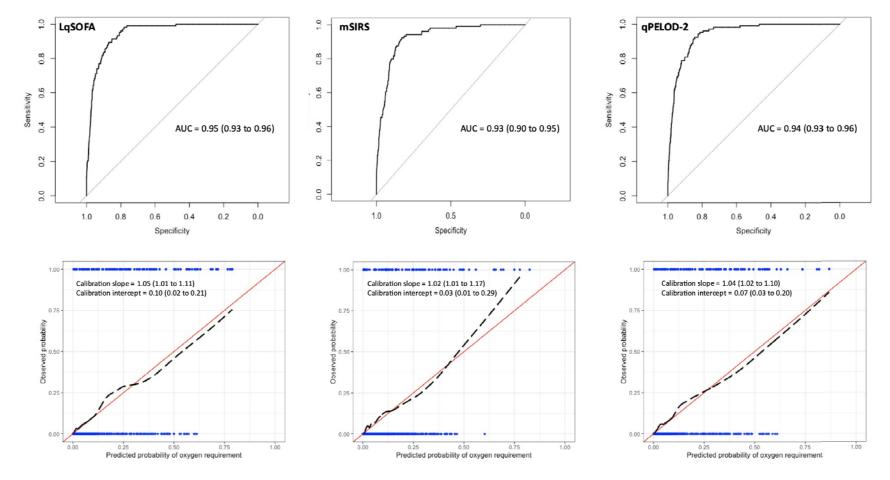



FIGURE 4. Decision curve analysis of the updated LqSOFA, mSIRS, and qPELOD-2 models. The net benefit of the updated models (green 20 [LqSOFA], turquoise [qPELOD-2], and blue [mSIRS] lines) and original LqSOFA score (pink line), are compared to a "refer-all" (red line) and 21 "refer-none" (brown line) approach. A threshold probability of 5% indicates a management strategy whereby any child with $a \ge 5\%$ probability 22 23 of requiring oxygen is referred (i.e., a scenario where the value of one correct referral is equivalent to 19 incorrect referrals or a NNR of 20).

