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 Abstract 

Epidemiological application of chaos theory methods have uncovered the existence of 

chaotic markers in SARS-CoV-2’s epidemiological data, including low dimensional 

attractors with positive Lyapunov exponents, and evidence markers of a dynamics that is 

close to the onset of chaos for different regions. We expand on these previous works, 

performing a comparative study of United States of America (USA) and Canada’s 

COVID-19 daily hospital occupancy cases, applying a combination of chaos theory, 

machine learning and topological data analysis methods. Both countries show markers of 

low dimensional chaos for the COVID-19 hospitalization data, with a high predictability 

for adaptive artificial intelligence systems exploiting the recurrence structure of these 

attractors, with more than 95% R2 scores for up to 42 days ahead prediction. The evidence 

is favorable to the USA’s hospitalizations being closer to the onset of chaos and more 

predictable than Canada, the reasons for this higher predictability are accounted for by 

using topological data analysis methods. 

Keywords: SARS-CoV-2; COVID-19; Chaos Theory; Recurrence Analysis; Persistent 

Homology; Machine Learning; Adaptive A.I.; Epidemiology; Healthcare Management.  
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1. Introduction 

Epidemiological applications of chaos theory methods to the SARS-CoV-2/COVID-19 

pandemic [1-5] have uncovered evidence of chaotic markers in the pandemics’ dynamics. 

In [5] we found evidence of stochastic chaos with emergent low dimensional attractors 

for the COVID-19 regional data at the level of the number of new positive cases per 

million and the number of new deaths per million, in particular, the type of dynamics 

identified was a power law chaos dynamics also called color chaos [5-7], characterized 

by power law signatures in the frequency spectrum, this dynamics occurred for Asia, 

Africa and Europe, while in North and South America, for the new cases per million, the 

decay in the frequency spectrum of the signal was faster than power law, except for the 

number of new deaths per million in the case of South America [5]. For Oceania we found 

the occurrence of a bifurcation in both series’ dynamics [5]. 

Another major finding was that all regions except Oceania showed evidence of 

being near a bifurcation point between a periodic window and a chaotic dynamics, also 

called onset of chaos [5]. Near the onset of chaos, chaotic attractors are characterized by 

low maximum Lyapunov exponents and can exhibit recurrences associated with close 

proximity to periodic or even quasiperiodic orbits, which become like “ghost trails” that 

are recurrently visited [5], leading to long evenly or unevenly spaced diagonals in 

recurrence matrices with 100% recurrence that only show up for a sufficiently high radius, 

diagonals that are intermixed with broken diagonals and isolated points which are 

characteristic of chaotic dynamics [5, 8]. 

In the case of COVID-19, the proximity of the epidemiological dynamics to a 

bifurcation point opens up the possibility of bifurcations occurring in the system’s 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.22283069doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.04.22283069
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

dynamics with the loss of attractor stability, this occurred specifically in Oceania, as 

stated above, and was linked to the emergence of new variants [5]. 

In the present work, we expand on the work we developed in [5], combining chaos 

theory, machine learning and topological data analysis to address the daily hospital 

occupancy from COVID-19, the study compares USA with Canada, using the dataset 

available from Our Word in Data for the country-specific daily hospital occupancies from 

COVID-19 from the first available datapoint up until 2022-09-30. The methodologies 

applied are easily extensible to any other country. The data available for the USA includes 

the period from 2020-07-15 to 2022-09-30, while for Canada the period is from 2020-03-

09 to 2022-09-30. 

The focus on the daily hospital occupancy is relevant from a healthcare 

management standpoint, since the ability to use chaos theory methods to predict hospital 

occupancies from a pandemic, such as the SARS-CoV-2/COVID-19 pandemic, that 

drains/overloads hospital resources leading to deaths due to lack of resources for disease 

treatment, makes the prediction of hospital occupancies a critical healthcare management 

variable.  

Secondly, from an epidemiological standpoint, hospitalizations identified as 

positive cases of COVID-19 are an important indicator of a double factor dynamics: viral 

spread among the population (the contagion) and the associated disease risk. In this way, 

analyzing the hospitalization dynamics from COVID-19 in terms of possible attractor 

properties and predictability is a pertinent and relevant research from both healthcare 

management and epidemiological standpoints. 
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Our findings show that both the USA and Canada show evidence of a stochastic 

chaotic dynamics characterized by power law chaos, with the USA attractor being nearer 

the onset of chaos than Canada. 

Both countries’ attractors’ topological structure, which we characterize using 

topological data analysis, show strong enough recurrences to allow a high prediction 

performance from a forward looking adaptive A.I. system that uses topological 

information on these attractors and a sliding learning window, this performance does not 

drop significantly for multiple periods ahead prediction, indeed, the artificial agent is able 

to use the attractors’ recurrence structure to predict up to 6 weeks ahead with an R2 score 

that does not drop below 96% for the USA and 95% for Canada. 

We also find that while the prediction performance is very high for both countries, 

showing that there is a strong deterministic pattern that can be captured for the 

reconstructed attractors, the USA series has a higher predictability than Canada, we 

explain this higher predictability through the application of both signal and topological 

data analysis which are convergent on the hypothesis that the USA has an attractor for 

the daily hospital occupancy series that is nearer the onset of chaos, which leaves a 

stronger periodicity topological skeleton that can be exploited by the forward looking 

adaptive A.I. system. 

The work is divided as follows: in section 2, we review the main methods 

employed here, in section 3, we provide for the main results, in section 4, we provide for 

a final discussion on the results. 

2. Main Methods 

The main methods are divided into five main parts: 
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1. Signal analysis, which includes spectral analysis and signal recurrence analysis. 

2. Embedding dimension estimation which will employ machine learning to choose 

the optimal dimension from within a dimension set. 

3. Maximum Lyapunov exponent’s estimation, which will allow us to identify 

possible presence of chaotic dynamics. 

4. Prediction performance for an adaptive A.I. system using the attractor’s 

recurrences for different prediction horizons, the main goal of this analysis is to 

evaluate the degree to which the recurrence structures contain information that 

can be exploited to predict the target series several periods ahead, at the same time 

this provides an indicator of the strength of the deterministic component. 

5. Topological data analysis, which will involve k-nearest neighbors’ graph analysis, 

persistent homology analysis and recurrence analysis, which will allow us to 

further characterize the attractors’ topological structure. 

We now describe each of these methods and their role in the work. 

2.1. Signal Analysis Methods 

The signal analysis methods that we employ are aimed at characterizing periodicities in 

the main series. Spectral analysis will be employed in order to find possible markers of 

power law dynamics, the type of memory and possible markers of high frequency 

periodicities that may be linked to dynamics close to the onset of chaos, this type of 

analysis was already employed in [5] and it proved useful for the characterization of the 

SARS-CoV-2’s epidemiological dynamics. 

Another method is signal recurrences, in this case, we use recurrence analysis 

techniques applied not to the embedded series but to the original signal, this is aimed at 

identifying signal periodicities and possible persistent dynamics. In this case, we calculate 
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the Euclidean distance matrix S for the signal xt with matrix entries given by the Euclidean 

distance: St,s = [(xt – xs)
2]1/2 = |xt – xs|. From this matrix we can calculate the r-recurrence 

matrix Br, for which an entry is equal to 0 if St,s > r and 0 otherwise. We calculate these 

r-recurrence matrices for different radii and, for each radii, calculate two metrics [5]: the 

average recurrence strength and the conditional 100% recurrence probability.   

The average recurrence strength is defined as the sum of the number of points that 

fall within a distance no greater than the radius, in each diagonal below the main diagonal 

of the distance matrix S, divided by the total number of diagonals with recurrence below 

the main diagonal, this measure evaluates how strong on average the recurrence is [5, 8]. 

The conditional 100% recurrence probability is, in turn, defined as the probability 

that a randomly chosen diagonal line with recurrence has 100% recurrence, for the radius 

chosen [5, 8]. If all lines with recurrence had 100% recurrence, for the radius chosen, then 

this number would be equal to 1, the lower this metric is, that is, the closer to zero it is, 

the more interrupted the diagonals are, which occurs for stochastic dynamics and also for 

deterministic chaotic dynamics, as discussed in [5, 8]. 

These two metrics allow us to further characterize a signal’s periodicities and how 

strong recurrences are, becoming a signal topological analysis tool complementary to the 

spectral analysis. This analysis also allows us to select possible radii for the machine 

learning component. 

2.2. Delay Embedding and Largest Lyapunov Exponent Estimation 

Delay embedding involves embedding a time series in a point cloud in a multidimensional 

Euclidean phase space, the resulting embedded trajectory can be research upon, including 

the possibility of presence of a dynamical attractor [5, 9, 10]. The use of delay embedding 

as an attractor reconstruction method working from a time series xt may be able to recover 
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the main properties of the attractor, a point that comes from Takens’ theorem [10], delay 

embedding can also be employed as a feature space for time series prediction [5, 9]. Using 

an appropriate time delay  and embedding dimension d in Euclidean space, the delay 

embedding involves building a sequence of d-dimensional tuples from the time series: 

𝐱𝑡  = (𝑥𝑡 – (𝑑 – 1)𝜏, … , 𝑥𝑡 – 2𝜏, 𝑥𝑡−𝜏, 𝑥𝑡) (1) 

The resulting trajectory of the phase point xt may contain topological regularities, 

using the Euclidean topology, that can be exploited by machine learning algorithms to 

predict the target series, an approach that was employed in [5] to predict with success the 

COVID-19’s new cases per million and new deaths per million series, both in cases where 

there was evidence of an attractor and in the Oceania case, for which a bifurcation 

occurred [5]. For a delay embedding, the delay choice should be linked to the memory 

and characteristics of the dynamics. As argued in [5], in epidemiological contexts, we can 

use incubation period data and possible quarantine windows, if a quarantine period is 

established or recommended by healthcare authorities and implemented by governments, 

in this case, the first day after a recommended quarantine period allows for the embedding 

to account for quarantine effects, this point was addressed and argued in [5] in regards to 

SARS-CoV-2, where the World Health Organization (WHO) recommended quarantine 

period is 14, leading to a 15 day period lag, so that the 15 day lag is the number of days 

between the start and the end of the recommended 14 day quarantine period [5]. 

Now, to obtain a phase space embedding that provides predictable features for a 

target series we can use a machine learning method to select the embedding dimension, 

this method was employed in [5] to deal with the case of Oceania, where a bifurcation 

occurred, for which no stable attractor assumptions associated with traditional phase 

space embedding selection methods apply [9]. In this case, in [5], we calibrated the 
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embedding dimension from a set of alternative dimensions to the one that gave the best 

result in the prediction of the target series.  

This method can also be employed when the dynamics is in an attractor. In this 

case, using a nearest neighbors’ machine learning algorithm, either a radius learner or a 

k-nearest neighbors’ learner, we can build a prospective prediction A.I. system that uses 

the topological regularities in the embedded trajectory to predict the target series. We can 

then select, from a set of alternative embedding dimensions, the one that leads to the best 

prediction performance. In this way, we make sure that we have an embedding that 

captures the most of the predictable topological structure of an attractor, when an attractor 

is present, allowing us to further study the topological properties of the attractor using 

topological data analysis methods, a point that, as shown in [5], also applies to the cases 

where dynamical changes are present, for which the embedding that leads to the highest 

results in prediction can be used as a base embedding to study the topological changes 

that occurred. 

The adaptive A.I. technology that we use is based on a sliding window prospective 

machine learning model which, as stated, has been successfully applied in 

epidemiological prediction including SARS-CoV-2 [5, 11]. Since we will be using 

topological data analysis based on the Euclidean distance matrix, we use a Euclidean 

radius learner for the A.I.’s adaptive processing, employing Python’s machine learning’s 

library’s scikit-learn’s radius learner. 

In the case of the series studied in the present article, there are no identifiable 

bifurcations, so this method is able to find an embedding dimension, from a set of 

dimensions, that provides for the best prediction results, so that, when we apply the 

topological data analysis, we are applying it to the embedding that leads to the highest 

exploitable topological information for the target series prediction, and, in this way, we 
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are not only assured that we have the embedding dimension that leads to the highest 

amount of topological information from the studied set of alternative embeddings, we can 

also link the topological analysis directly to the predictability of the target series, which 

from an epidemiological and healthcare management standpoint is a key advantage. 

Following the approach addressed above and also employed in [5], we perform 

different embeddings and, for each embedding dimension d, we use an Euclidean radius-

based learner with a sliding learning window of size w, to perform the single period 

prediction: 

�̂�𝑡+1 = 𝑓𝒘(𝐱𝑡 ), (2) 

using as training data the sliding window feature set {x𝑡−𝑤−1, … , x𝑡−1} and sliding 

window target {𝑥𝑡−𝑤, … , 𝑥𝑡}. We employ sciki-learn’s radius neighbor regressor using 

the Euclidean metric, in order to test within a set of dimensions d0, d1,…,dN which 

embedded dynamics leads to the best prediction performance of the target series. In this 

case, we use the R2 score as a metric for selecting the dimension, this dimension leads to 

the embedding for which a radius learner is able to extract the most information from the 

topological structure of the embedded trajectory to predict the target series, having 

obtained such an embedding, we apply Rosenstein et al.’s method for the estimation of 

the largest Lyapunov exponent, a positive largest Lyapunov exponent being a marker of 

chaotic dynamics [5].  

A positive largest Lyapunov exponent indicates the presence of sensitive 

dependence upon initial conditions, in the case of stochastic chaos with a low dimensional 

attractor, the higher the value of this exponent is, the more sensitive is the dynamics to 

small noise fluctuations and the lower is the prediction horizon [5,6]. In the case of SARS-

CoV-2, in [5], we found that the new cases per million series and the new deaths per 
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million series, for the regional data where an attractor emerged, were characterized by 

low values of the largest Lyapunov exponents, consistent with a dynamics close to the 

onset of chaos. 

Low values of the largest Lyapunov exponents, coupled with color chaos 

signatures with long range persistent dynamics leads to a strong long-range predictability 

that can be exploited by forward looking adaptive A.I. algorithms, such as the one we use 

here, taking advantage of the recurrence structures associated with these attractors [5]. 

Furthermore, color chaos dynamics close to bifurcation points near periodic windows 

(onset of chaos) have recurrence signatures associated with a close proximity of cycles 

that make these dynamics more predictable in the long range, which leads us to the next 

point which is the test of the prediction performance on multiple prediction horizons, an 

analysis which is of relevance for healthcare management since it addresses how A.I. 

solutions can be deployed for early warning systems on healthcare resource usage, also, 

from an epidemiological standpoint, it provides for relevant insights since a high long 

term predictability, in the case of hospitalization data, provides information on the virus’ 

infectiousness patterns. 

2.3. Prediction Performance for Multiple Prediction Horizons 

We begin by analyzing the prediction performance of the forward looking adaptive A.I. 

system, reviewed above, on a one-day ahead prediction horizon, reporting the following 

as main metrics [5]: 

1. The linear correlation between the A.I. predictions and the target signal, which 

allows us to evaluate how much the A.I. predictions match the fluctuations in the 

target variable, a score that should be positive and high for a well performing 

prediction technology; 
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2. The root mean squared error divided by the total data amplitude, which provides 

for a relative error measure and thus gives a relative scale on error; 

3. The explained variance score, which is one of the main metrics providing for the 

degree to which the variability in the target is explained by the A.I.’s predictions; 

4. The coefficient of determination (R2) score, which is similar to the explained 

variance score, but accounts for systematic offsets in prediction, in this way, being 

preferred to the explained variance score. 

The above metrics, when calculated for an adaptive A.I. system, with a sliding 

window radius learning unit, can be used to characterize the degree to which the 

topological structure of the attractor, in terms of recurrences, can be exploited to predict 

the target variable, providing for a more detailed picture of the prediction performance, 

in this way, it can also be employed to evaluate the level of regularities in the recurrence 

structure of the reconstructed attractor that contains information on the next period value 

of the target series. 

Going beyond the one-day ahead prediction horizon, we calculate the R2 score on 

multiple prediction horizons where the A.I., instead of being tasked to learn to predict the 

target one day ahead, is tasked with predicting the target several days ahead, using the 

embedded trajectory [5].  

From an healthcare standpoint, when dealing with hospital occupancy from 

COVID-19 as target of interest, a multiple periods ahead prediction is a key analysis, 

since, if the performance is good, we can use the reconstructed attractor to predict 

hospitalizations several days/weeks ahead offering for a foresight that can be used by 

hospital management for planning, it also offers a country’s healthcare authorities a 

foresight into possible hospital resources’ pressure that can guide healthcare planning and 

response, finally, from an epidemiological standpoint, it offers insight into how the virus 
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is behaving in terms of morbidity, offering insights into patterns associated with 

topological regularities that occur in the dynamics of a possible chaotic attractor 

associated with the hospitalizations themselves. 

2.4. Topological Data Analysis 

The topological data analysis methods complement the previous analyses. The first 

analysis that we perform is based on k-nearest neighbors, in this case, we test, first, a 

similar A.I. for the one-day ahead prediction to that of the previous subsection but 

replacing the radius learner by a k-nearest neighbors’ learner, evaluating, for different 

values of k and a sliding learning window, the value of the R2 score, this serves a double 

purpose, one is to assess the degree to which the k-nearest neighbors of an embedded 

trajectory contain information that may help such an adaptive forward looking A.I. system 

to predict the future value of the target series, the second purpose is to select the best 

value of k to analyze the k-nearest neighbors’ graph N for the reconstructed attractor, this 

method was successfully employed in [5] to analyze the reconstructed attractors for the 

regional series of the number of new positive cases per million and the number of new 

deaths per million from COVID-19. 

The k-nearest neighbors’ graph N is an undirected graph with the vertices 

corresponding to each phase point and the edges corresponding to the k nearest neighbors. 

From the graph N, one can extract the set of degree values 𝐽, and the degree distribution, 

calculating the relative frequencies 𝑝𝑗 associated with each degree value 𝑗 ∈ 𝐽, from this 

distribution, the degree (relative) entropy can be calculated as [5]: 

𝐻𝑑𝑒𝑔(𝐺) = −
∑ 𝑝𝑗 log2 𝑝𝑗𝑗∈𝐽

log2 #𝐽
 

(3) 

This relative entropy measure has a value between 0 and 1, in the special case of 

a graph where the relative frequencies associated with each degree coincide 𝑝𝑗 = 1/#𝐽, 
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𝐻𝑑𝑒𝑔(𝐺) = 1, which is the maximum entropy value, in the case of a graph where each 

node has the same degree we get 𝐻𝑑𝑒𝑔(𝐺) = 0, which is the lowest entropy value. The 

closer to 1 this degree entropy measure is, the closer the graph is to a maximum degree 

entropy. 

The Kolmogorov-Sinai (K-S) entropy is the second graph entropy measure that 

we calculate for the k-nearest neighbors’ graph, this entropy measure is an information 

measure for a Markov process with a transition matrix extracted from the graph. For an 

unweighted graph, which is our case, this entropy coincides with the logarithm of the 

dominant eigenvalue of the transition matrix 𝜇+, expressing it in bits, leads to the 

following information measure [5,12]: 

𝐻𝐾𝑆(𝐺) = log2 𝜇+ (4) 

The last topological data analysis method that we employ is persistent homology 

[5, 13, 14], worked from the Euclidean distance matrix S, calculated on the embedded 

series, which includes all the Euclidean distances between the embedded points in d-

dimensional Euclidean space, allowing one to find relevant topological features in the 

embedded trajectory and analyze how the homology changes over a Vietoris-Rips 

filtration calculated on the embedded series [5]. In this case we look at the 0, 1 and 2-

homology classes. The 0-homology class (H0) corresponds to components connected by 

a line, therefore having a zero dimensional boundary, a 1-homology class (H1) 

corresponds to a loop, finally the 2-homology class (H2), correspond to voids, that is, 

simplexes with faces but no interior [5, 13, 14]. 

Persistent homology, can be used to count the number of structures in each 

simplicial complex in a Vietoris-Rips filtration for each homology dimension, including 

the birth and death of homology classes as the radius is increased. The homology classes’ 
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birth and death can be calculated in the following way, given a filtration of simplicial 

complexes 𝐶𝑟1
⊆ 𝐶𝑟2

⊆ ⋯, we get a sequence of maps for the homology dimension s, 

𝐻𝑠(𝐶𝑟1
) → 𝐻𝑠(𝐶𝑟2

) → ⋯, a homology class is born at n if it is in 𝐻𝑠(𝐶𝑟𝑛
) but not in the 

image of the map 𝐻𝑠(𝐶𝑟𝑛−1
) → 𝐻𝑠(𝐶𝑟𝑛

) and dies at m if it is in 𝐻𝑠(𝐶𝑟𝑚
) but not in 

𝐻𝑠(𝐶𝑟𝑚+1
) [13]. 

Persistent structures (long lived classes) are large scale structures in the embedded 

trajectory, if that trajectory is in an attractor, they correspond to large scale structures of 

the attractor, structures with lower persistence may be indicative of the presence of noise 

or of a stronger chaotic dynamics [5]. A persistence diagram D can be calculated for 

different homology dimensions with each point for each dimension giving the lifetime 

for a structure, in this case, following the methodology employed in [5], we define 𝐷𝑠 as 

the persistence sub-diagram for the homology dimension s, each point in the sub-diagram 

corresponds to an ordered pair of birth and death times in the filtration. 

The lifetime or persistence of a class at dimension s, thus, corresponds to the 

difference between the death and birth times, therefore, given a dimension s and the 

ordered pairs of the sub-diagram (𝑛𝐵, 𝑛𝐷) ∈ 𝐷𝑠, where 𝑛𝐵 is the “filtration birth time” 

and 𝑛𝐷 is the “filtration death time”, with the death happening after birth, we can calculate 

the persistence metric as [5,13]:  

𝑝𝑒𝑟𝑠(𝑝) = 𝑛𝐷 − 𝑛𝐵 (5) 

Structures that live through the full filtration have 𝑛𝐷 = ∞ and, therefore, we get 

𝑝𝑒𝑟𝑠(𝑝) = ∞. Now, to better characterize the attractor’s topology we apply the same 

methodology applied in [5] and calculate the following metrics for each homology 

dimension (that is, for each sub-diagram 𝐷𝑠):  
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• The number of classes with 𝑝𝑒𝑟𝑠(𝑝) < ∞, which allows us to identify which 

dimension is predominant in terms of number of homology classes with lifetimes 

shorter than ∞; 

• The number of classes with 𝑝𝑒𝑟𝑠(𝑝) = ∞, which  allows us to identify the 

homology dimensions that have structures that persist throughout the whole 

filtration, constituting very large scale structures; 

• The maximum persistence which allows us to characterize which dimensions have 

the most persistent structures; 

• The mean persistence: this metric allows us to characterize each homology 

dimension in terms of its mean persistence. 

With these metrics calculated for the different sub-diagrams we get a picture of 

an attractor’s structure at multiple dimensions and the dominant features, an approach 

that was applied in [5]. 

A final analysis that we perform is again to calculate the average recurrence 

strength and the conditional probability of 100% recurrence but on the Euclidean distance 

matrix calculated for the embedded series in d-dimensional Euclidean space, the same 

matrix used for the persistent homology analysis. 

3. Results 

In figure 1 we show the USA and Canada’s hospital occupancy numbers from COVID-

19, for the periods from 2020-07-15 to 2022-09-30 and from 2020-03-09 to 2022-09-30, 

respectively.  

In figure 2, we show the power spectrum for both countries, in both cases we find 

the presence of a power law decay in the spectrum with an estimated exponent of 

4.469975 for the USA, with an associated p-value of 3.573819e-29 and an R2 of 0.895767, 
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which implies a strongly persistent spectrum, for Canada the spectrum is also strongly 

persistent but slightly less than the USA, with an estimated exponent of 3.866758, with 

an associated p-value of 4.076911e-24 and R2 of 0.842180. There is a slight rise with a 

peak at the high frequency window for both countries, which is indicative of a high 

frequency signal, this can happen in chaotic attractors near the onset of chaos, where the 

dynamics is near a periodic window, which can lead to high frequency markers [5], such 

a dynamics was found to occur for North America’s COVID-19 new daily positive cases 

per million and new daily deaths per million in [5], which may also explain the daily 

hospital occupancies from COVID-19’s high frequency markers. 

 

Figure 1: Daily hospital occupancy from COVID-19 in USA (left), from 2020-

07-15 to 2022-09-30, and Canada (right), from 2020-03-09 to 2022-09-30. 

 

Figure 2: Power spectra for the daily hospital occupancy from COVID-19 series for the 

USA (left) and Canada (right). 
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The strong persistence of the signal, and the high frequency signatures indicate 

that there may be a recurrence structure that is strong enough for an adaptive A.I. system 

to predict the series, using an appropriate phase space embedding. 

In table 1, we show the average recurrence strengths for different radii in units of 

standard deviation. We find that the USA has, predominantly, a higher average recurrence 

strength than Canada, which is also consistent with the higher persistence found in the 

power law decay in the spectral analysis. With increasing radius, the two countries’ 

average recurrence strengths converge. The conditional 100% recurrence probability for 

the USA is also higher than that of Canada, remaining so with increasing radii, as shown 

in table 2, which reinforces the above results. 

Table 1: Average recurrence strengths with increasing radii in units of standard deviation 

for the original series. 

Radius USA Canada 

1 0.653486 0.470163 

1.5 0.754103 0.656440 

2 0.840627 0.818387 

2.5 0.909904 0.921389 

3 0.961158 0.956449 

3.5 0.989799 0.973040 

4 0.998442 0.985131 

 
Table 2: Conditional 100% recurrence probability calculated for different radii with 

increasing radius in units of standard deviation. 

Radius USA Canada 

1 0.151177 0.001070 

1.5 0.166047 0.002139 

2 0.187113 0.035294 

2.5 0.288724 0.165775 

3 0.394052 0.223529 

3.5 0.583643 0.344385 

4 0.863693 0.473797 
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In this last case, it is noticeable that the USA has a significantly higher value than 

Canada which is indicative of a closer proximity to a periodic or quasiperiodic skeleton 

associated with a periodic or quasiperiodic window, that leaves something like a ghost 

trail in the chaotic dynamics, another indicator favorable to the hypothesis that the USA 

dynamics may be closer to the onset of chaos. 

Considering the predictability of the dynamics, using delay embedding, with a 15 

period lag and a 7-days sliding learning window, as shown in table 3, for embeddings 

varying from 2 to 10 and a radius learner, we find that all the embeddings lead to a high 

value of R2 (higher than 90%), which means that the recurrences contain sufficient 

information for a high predictability of the hospital occupancies from COVID-19, using 

a radius learner, in all applications of machine learning, in the present work, we use a 

brute force algorithm and an Euclidean metric.  

Table 3: R2 scores for the radius adaptive learner, using a 7-days sliding learning window 

and a radius of 4 s.d., with increasing embedding dimensions. 

dE USA Canada 

2 0.964440 0.952165 

3 0.964498 0.952816 

4 0.964381 0.953132 

5 0.964055 0.953183 

6 0.963702 0.953381 

7 0.963603 0.953370 

8 0.963853 0.952805 

9 0.965104 0.951742 

10 0.965092 0.950427 

 

In the case of the USA, we find that the highest R2  (around 96.51%) holds for a 

nine dimensional embedding, while for Canada the highest R2 (around 95.34%) holds for 

a six dimensional embedding. Using these embedding dimensions, 9 for the USA and 6 

for Canada, we find that the corresponding estimated largest Lyapunov exponents are 

both positive, which is a signature of chaos associated with the daily number of hospital 
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occupancies from COVID-19, in this case, given the spectral signatures we find that we 

may be dealing with color chaos,  however, for the hospital occupancy series, while both 

countries show evidence of chaos, the estimated value of the largest Lyapunov exponent 

is smaller for the USA than for Canada, which means that the USA dynamics may be 

closer to the onset of chaos than that of Canada. 

Table 4: Largest Lyapunov exponents estimated for the USA and Canada’s embedded series. 

 dE L1 

USA 9 0.007729 

Canada 6 0.014471 

 

In this way, the evidence is favorable, for both countries, to a hypothesis of a 

chaotic dynamics with a high degree of predictability by an adaptive A.I. system that uses 

the embedded series’ recurrences to predict the daily number of hospital occupancy from 

COVID-19, the associated dynamics is consistent with a form of stochastic chaos 

characterized by a power law decay in the power spectrum (color chaos), with high 

frequency periodic signatures and low values of Lyapunov exponents consistent with the 

chaotic dynamics being close to the onset of chaos, with the USA being characterized by 

a higher dimensional structure than that of Canada, stronger recurrences, higher 

predictability and a Lyapunov exponent that is closer to zero, indicating that the USA’s 

possible chaotic attractor may be closer to the onset of chaos. 

Considering now, the change in predictability with the sliding learning window, 

we find that the R2 values for the radius learner decrease with the window size, in this 

way the sliding 7-day learning window (one week) for the adaptive A.I. system leads to 

the best performance (table 5), which means that the one week learning window should 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.22283069doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.04.22283069
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

be preferred. Similar results were obtain in [5], with the one week learning window also 

leading to a better performance for COVID-19’s new cases and new deaths per million. 

Table 5: R2 scores for the radius adaptive learner, using a radius of 4 s.d., with increasing 

window sizes. 

Window USA Canada 

7 0.965104 0.953381 

8 0.958129 0.945731 

9 0.950557 0.937400 

10 0.942484 0.928642 

11 0.933947 0.919588 

12 0.924948 0.910263 

13 0.915447 0.900572 

14 0.905456 0.890304 

15 0.894992 0.879485 

 

Going beyond the one-day ahead prediction, we find that the Euclidean recurrence 

structure contains sufficient information to allow the adaptive A.I., equipped with a radius 

neighbor machine learning module, to predict the future hospital occupancies from 

COVID-19 for longer horizons, as shown in figure 3.  

 

Figure 3: R2 scores for prediction windows 1, 7, 14, 21, 28, 35 and 42 days ahead, using 

a 7-days sliding learning window. 

Indeed, counting the weeks in terms of 7-day periods, we find that up to two weeks 

ahead (14 days) the adaptive A.I.’s prediction performance, measured in terms of the R2, 
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does not drop with respect to the single day prediction horizon, only after 14 days do we 

see a break in prediction performance, however, that break is not significant, indeed, up 

to 6 weeks ahead (42 days) we find that the prediction performance for the USA hospital 

occupancy from COVID-19 does not drop below 96%, and for Canada it does not drop 

below 95%. These values show that the recurrence structures for the reconstructed 

attractors allows for the development of of A.I. systems that exploit them in a way that 

can be deployed by healthcare management authorities to predict the future hospital 

occupancies and take appropriate measures. Again, as in the previous analysis, the USA 

series has a higher predictability than Canada. 

 Considering, now, the A.I. equipped with the k-nearest neighbors’ algorithm, we 

find that the performance is higher than that of the radius neighbors’ learner and that it 

decreases with increasing k (table 6), with the best performance obtained for k = 2 nearest 

neighbors, we will thus use this value in the k-nearest neighbors’ topological analysis. 

Once more, the performance for the USA is higher than for Canada.  

Table 6: R2 scores of the k-NN adaptive A.I. for the USA and Canada’s daily hospital 

occupancies from COVID-19 embedded series, using a 7-days sliding learning window. 

k USA Canada 

2 0.989918 0.978189 

3 0.986178 0.974072 

4 0.981870 0.969883 

5 0.976961 0.965221 

6 0.971384 0.960017 

 

The higher prediction performance for the USA than for Canada can be further 

accounted for by employing the k-nearest neighbors’ topological analysis. In figure 4, we 

show the k-nearest neighbors’ graphs, for k = 2, for both countries and the respective 

degree distribution. We find some differences between the two graphs, while, as shown 

in table 7, both graphs exhibit low degree entropy values, the graph for the USA has a 
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lower degree entropy than the graph for Canada, the same is true of the K-S entropy which 

is lower for the USA than for Canada, furthermore, the k-nearest neighbors’ graph for the 

USA is not scale free (power law scaling), while Canada’s graph shows a region of power 

law scaling in the degree distribution, which implies the possible presence of a scale free 

graph in the neighborhood structure. 

 

Figure 4: k-nearest neighbors graphs and respective degree distribution for the USA (left) and 

Canada (right). 

Table 7: Main entropy values for figure 4’s k-NN graphs. 

  USA Canada 

Degree Distribution Entropy 0.047259 0.123603 

K-S Entropy 1.479485 1.781877 

 

The lower entropy values of the graph structure and the non-power law decay for 

the USA’s degree values may be indicative of a lower complexity of the USA’s nearest 

neighbors structure and that the USA’s attractor is closer to a bifurcation point from a 

periodic window to a chaotic dynamics, which is consistent with the previous result from 
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the largest Lyapunov exponent that shows that the USA has an estimated exponent closer 

to zero than Canada. In this way, the evidence is favorable to the USA’s daily hospital 

occupancy from COVID-19’s attractor being closer to the onset of chaos than Canada’s. 

Thus, even though the evidence is favorable for the USA’s attractor having a higher 

dimensionality, the evidence also supports the hypothesis that this attractor is closer to 

the onset of chaos. 

Considering now the persistent homology analysis, we show in figure 5 the 

distance matrices and respective persistence homology diagrams, the distance matrices 

are in color code, where the lighter colors correspond to the smaller distances and the 

darker colors to larger distances. 

 

Figure 5: Distance matrices (top) and respective persistence diagrams (bottom) obtained from 

the embedded series for the USA (left) and Canada (right). 

There is an immediately visible difference between the two countries, the 

homology dimensions 1 and 2 are born much sooner in the filtration for Canada than for 

the USA, however, the similarities and differences between the two countries, with 
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respect to the persistence diagrams, become more visible when we consider the 

persistence metrics extracted from the respective diagrams, as shown in tables 8 and 9. 

With respect to the number of classes, we already find a difference between the two 

countries, indeed, while both countries have a predominance of classes of homology 

dimension 0, followed by homology dimension 1 and, finally 2, as the more residual 

dimension, Canada’s attractor has a higher number of classes than the USA attractor, also, 

for homology dimension 2, Canada’s attractor has 6 classes while the USA only has 2 

classes. Both countries have one infinity class that holds for homology dimension 0, and 

the maximum persistence, that is not an infinity class, is obtained in both countries for 

homology dimension 1, which indicates that there is a presence of loops in the attractor’s 

larger scale topological structure. 

Table 8: Persistence metrics for the USA attractor. 

  H0 H1 H2 

Number of Classes 688 44 2 

Maximum Persistence 11,115.62 78,518.19 294.5 

Mean Persistence 4,356.412 5,342.618 161.621 

 
Table 9: Persistence metrics for the Canada attractor. 

  H0 H1 H2 

Number of Classes 861 80 6 

Maximum Persistence 1,182.684 5,365.721 186.550 

Mean Persistence 268.919 225.058 48.509 

 

At the mean persistence level, we find the biggest difference between the two 

attractors, indeed, the USA has homology dimension 1 as the predominant in terms of 

persistence structures, which means that loops are larger scale structures for its attractor, 

indicating, again, a possible closer proximity to a periodic window.  
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For Canada, homology dimensions 0 and 1 are close to each other in terms of 

mean persistence, but homology dimension 0 has a higher value in terms of mean 

persistence. 

Table 10: Recurrence metrics using a radius of 4 s.d. for the USA and Canada’s 

embedded series. 

 
USA Canada 

Recurrence Probability 94.7598% 98.0233% 

Average recurrence strength 0.489841 0.676945 

P[100% recurrence|recurrence] 15.5146% 9.9644% 

 

To complement this analysis, considering a radius of 4 s.d., we find that both 

countries have a high recurrence probability (table 10), however, the embedded series for 

Canada has a higher recurrence probability than for the USA, it also has a higher average 

recurrence strength, however, the USA has a higher probability of finding 100% 

recurrence diagonal lines in lines with recurrence (15.5146% probability for the USA, 

against 9.9644% probability for Canada), which again reinforces the hypothesis of a 

closer proximity of the USA to a periodic window, leaving a stronger marker in the 

probability of finding 100% recurrence lines, conditional on these lines being lines with 

recurrence. 

4. Conclusions 

We applied chaos theory and topological data analysis methods combining A.I. with k-

nearest neighbors, persistent homology and recurrence analysis to USA and Canada’s 

daily hospital occupancies from COVID-19. The results show that there is evidence of 

the emergence of a low dimensional attractor for both countries with the best fit in A.I. 

target prediction being obtained, in the case of the USA, for a 9 dimensional embedding 
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and in the case of Canada for a 6 dimensional embedding, out of a tested range of 

dimensions up to 10. 

In both cases, we find that the largest Lyapunov exponent estimated for the 

reconstructed attractor is positive, which is an indicator of a chaotic dynamics at the level 

of the daily hospital occupancies from COVID-19. Furthermore, despite the lower 

dimensionality, Canada’s attractor exhibits a higher Lyapunov exponent and is less 

predictable than the USA attractor, even though both attractors’ recurrences can be 

exploited for a long-range predictability by an adaptive forward looking A.I., which 

means that healthcare authorities can implement A.I. solutions using delay embedding to 

predict hospital occupancies from COVID-19 and plan for healthcare responses. Of 

notice, we found that adaptive A.I. systems that exploit the reconstructed attractor 

recurrences employing epochal learning via a sliding learning window can predict the 

hospitalization numbers for both countries with more than 95% R2 score up to 42 days 

ahead, which means that the attractor reconstruction coupled with such machine learning 

solutions allow the implementation of early warning systems for hospital resource 

utilization associated with hospital occupancies from COVID-19. 

We traced down this predictability to the respective attractors’ topological 

structures. Our analysis supports the hypothesis of a form of noisy power law (color) 

chaos in both the USA and Canada’s daily hospital occupancies from COVID-19, but 

with the USA being closer to the onset of chaos than Canada, this shows up in the 

topological data analysis, spectral analysis, Lyapunov exponents, recurrence metrics (at 

the level of the conditional 100% recurrence probability) and persistent homology 

analysis. 

Canada’s attractor is more chaotic than the USA, so that, while still having strong 

recurrences that can be exploited for prediction, the adaptive A.I. system shows 
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consistently lower performance, the Lyapunov exponent is higher, the power law decay 

in the frequency spectrum of the signal is faster and the k-nearest neighbors graph shows 

a scale free degree distribution, which the USA attractor does not. 

The current findings are convergent with our previous work on the regional data 

for the COVID-19 number of new cases per million and new deaths per million, which 

showed the presence in North America of chaotic attractor structures close to the onset of 

chaos, even though the decay in the frequency spectra was faster than the power law. 

The methods we employed here are scalable for other countries and are also 

adaptable in setting embedding parameters for cases where bifurcations take place, as 

shown in [5] for the case of Oceania’s new cases per million and new deaths per million 

series. The methods can also be employed for other diseases. 
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