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Abstract : 

The spatio-temporal course of an epidemic (such as Covid-19) can be significantly affected by 
non-pharmaceutical interventions (NPIs), such as full or partial lockdowns. Bayesian 
Susceptible-Infected-Removed (SIR) models can be applied to the spatio-temporal spread of 
infectious disease (STIF) (such as Covid-19). In causal inference it is classically of interest to 
investigate counterfactuals. In the context of STIF it is possible to use nowcasting to assess the 
possible counterfactual realization of disease in incidence that would have been evidenced with 
no NPI.  Classic lagged dependency spatio-temporal IF models will be discussed and the 
importance of the ST component in nowcasting will be assessed. The real example of 
lockdowns for Covid-19 in two US states during 2020 and 2021 is provided. The degeneracy in 
prediction in longer time periods is highlighted and the wide confidence intervals characterize 
the forecasts. 
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1) Introduction 

 

During the Covid-19 pandemic period of 2020 many countries worldwide enacted lockdowns to 
try to  control the spread of the virus. These lockdowns are examples of non-pharmaceutical 
interventions (NPIs) and were used mainly prior to the availability of vaccination.   

The CDC notes that:  

Nonpharmaceutical Interventions (NPIs)  are actions, apart from getting vaccinated and taking 
medicine, that people and communities can take to help slow the spread of illnesses like 
pandemic influenza (flu). NPIs are also known as community mitigation strategies. When a new 
flu virus spreads among people, causing illness worldwide, it is called pandemic flu. Because a 
pandemic flu virus is new, the human population has little or no immunity against it. This allows 
the virus to spread quickly from person to person worldwide. NPIs are among the best ways of 
controlling pandemic flu when vaccines are not yet available.  
https://www.cdc.gov/nonpharmaceutical-interventions/  

NPIs can take various forms and can extend for different time periods. In the US many 
southern states enacted lockdowns for only a few weeks, whereas northern states lockdowns 
were longer. In some cases only partial lockdowns were observed, whereby some businesses 
remained open but e. g. schools were shut. In the US state of South Carolina (SC) initial case 
reports in early March 2020, followed by the pandemic declaration by WHO (March 12th), led to 
state of emergency declaration on March 13th and school closures on March 15th, restaurants 
closed on March 17th and on March 19th non-essential state employees and colleges to shelter 
in place. 

Not until April 1st did the state authorize closure of non -essential businesses. April 3rd saw the 
introduction of travel restrictions, and on April 7th a full lockdown with non-essential travel 
banned and work at home ordered.  

By April 21st retail stores were allowed to reopen and by May 4th the home and work order was 
lifted and outdoor dining allowed.  Finally, by June 11th  all restrictions lifted. In effect the main 
full lockdown lasted only 2 weeks.  

Figure 1 displays the case count time profiles for Charleston and Richland counties in SC during 
the first part of the pandemic, for 353 days up to end of February 2021. Listed are early dates 
related to lockdowns in 2020. It is notable that following the full lifting of lockdowns in June 2020 
there are significant increases in case counts leading into the large summer wave. Whether the 
partial or full lockdowns were effective in controlling early spread is difficult to ascertain.  
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Figure 1  Case count profiles for two South Carolina counties during the first 353 days of the pandemic. The early lockdown 
dates are shown only. 

 

Assessing the effects of NP Interventions  

It is clear that NPIs have to be compared to situations where interventions have not been 
introduced. This leads to a difficulty in that finding a suitably matched location or time period 
with null conditions which can be used as a comparator is crucial. With time series it is possible 
forecast future outcomes based on currently observed data. As an extension to this it is 
sometimes useful to make predictions based on lagged observations when current data or 
recent data is lacking. This prediction is termed nowcasting1,2. It has been applied extensively in 
economic research and is now being adopted in infectious disease epidemiology for making 
health outcome predictions3.. More recently, during the Covid-19 pandemic, the use of 
nowcasting has been proposed to generate predictions for modifications of social mobility during 
NPIs4. An area which has not been examined is the use of nowcasting to make counterfactual 
predictions of health outcome events. In particular, the use of observed case count data to 
predict case counts which are altered by NPIs could be a useful approach in understanding the 
effect of such interventions.  

In this paper we employ nowcasting with Bayesian spatio-temporal models in application to the 
evaluation of the performance of lockdown NPIs at county level in two contrasting states in the 
US: South Carolina (SC) and New Jersey (NJ). Our choice of state to examine is based on the 
contrast between the population structure and political structure of the respective states during 
the pandemic. SC is a southern state which had a Republican governor and a small mainly rural 
or semi-rural  population ( 5.2 million), whereas NJ is a northern state with a Democrat governor 
and a large highly urban population (8.88 million). In each state different PIs were adopted and 
it is our aim to ascertain how effective these were. Our focus is on the case count data only and 
we do not examine the mortality counterfactuals although these could also be a focus. 

In the next section we outline the models evaluated in this study, the generation of 
counterfactuals and their comparative evaluation using differential metrics.  The data used was 
made available from the NYT GitHUB repository (https://github.com/nytimes/covid-19-data ) 
which has recorded cumulative case and death counts from state departments of health (cases) 
and national center for health statistics (NCHS) (deaths) during the course of the pandemic.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282938doi: medRxiv preprint 

https://github.com/nytimes/covid-19-data
https://doi.org/10.1101/2022.11.30.22282938
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

The data used here is in the form of daily case and death counts for the period of 353 days from 
6th March 2020 to 21st February 2021. Death counts are used only for updating the susceptible 
population within the case count models, and are not themselves modeled. 

 

The Bayesian spatiotemporal case model 

Lawson and Kim (2021) 5 proposed a Bayesian spatio-temporal Covid-19 case count model and 
was evaluated on the first 88 days of the pandemic in SC. Subsequently this model was 
extended and updated for the analysis of 353 days6. The later analysis of the three waves 
included a wide range of potential models and modeling strategies.  Our models for 
counterfactuals are based on the retrospective analysis results found. 

Define the case count ijy in the i th area and j th time period. In our example the areas are 
counties and time period is days. For SC the number of counties is m 46 , and for NJ it is 
m 22 . The total time period is T = 353 days.  

As the spread of infection is an important component of infectious disease modeling we assume 
a susceptible – infected – removed (SIR) model for the process. Essentially, 

ij ij

r
ij ij i , j

y Pois( )

S .exp( p )



  1



 

where ijS is the susceptible population in the i,j th unit and r
i , jp 1  is a propagator which allows 

transmission as a function of previous counts and related factors.  

An example of a simple propagator could be   r
i , j i , j ip log( y ) v   1 0 1 1  

where there is a constant intercept, acting as a log transmission rate, a dependence on the 
previous infection count in the given county and a final random effect term iv  which allows for 
extra variation. 

Different specifications of r
i , jp 1  leads to a range of possible models. In these models the 

susceptible pool evolves over time based on an accounting equation: 

 i , j i , j i , j i , jS S I R    1 1 1  

where  i , jI 1 is the true infective count at the previous time, which is a function of i , jy 1  

The relationship between the true infective count and the observed count depends on the level 
of undetected cases. This could be related to testing frequency and also to unobserved 
asymptomatic transmission. Previous studies have noted a variety of asymptomatic rates during 
the pandemic.[e.g. 7,8]  We assumed a rate of 20% which is a reasonable compromise between 
the previous levels reported for different population groups. 8  Hence we assume that true 
infective count is a scaled version of observed count: i , j i , jI y  1 1 .  The removal term can also 
be specified as a function of infective numbers.  IT is also a function of mortality  and so the total 
removal can specified as i , j i , j i , jR I d    where i , jd  is the current death count. The scaling 
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parameter (  ) can be fixed. In this case it was assumed to be 0.1. However a range of 
values has been examined for this parameter and the resulting analysis was not 
affected by this choice. 

In previous work6,  it was found that, out of a range of potential models, for South Carolina 
counties the model with propagator  

+  
i

r t
i , j i , j k, j i i

k

p log( y ) log( y ) v x  


    1 0 1 1 2 1 (SC1) 

had the lowest WAIC. In this model the 
i

k, j
k

y 

 1 term represents a neighborhood effect (sum of 

previous count over the neighborhood set i , while t
ix   is a linear predictor involving county -

level SES predictors (% under the poverty line, % black population, multidimensional deprivation 
index for 2017 (https://www.census.gov/library/publications/2019/acs/acs-40.html )).  In the case 
of New Jersey, a similar modeling strategy led to the choice of the propagator 

+ +  
i

r t
i , j i , j k, j i i i

k

p log( y ) log( y ) v u x  


    1 0 1 1 2 1 (NJ1) 

where the term iu   is a spatially correlated effect and t
ix   is a linear predictor as above. 

The spatially correlated term was assumed to follow an ICAR prior distribution9, and the 
uncorrelated effect iv  has a zero mean Gaussian distribution:  

i i

i v

i k k i u

v N( , )

u |{ u } N( u , / n )




  





1

1

0



 

Where 
i

u  is the mean of u  in the neighborhood of the i th county. The model with this iu  term 
was not selected in the SC example, which suggest that there is more heterogeneity present in 
the NJ case. 

Death count modeling  

Death counts are also observed, and these are usually related to case numbers  either current 
or lagged. It is unlikely that deaths for Covid19 could arise without there being a case reported  
(at least in the main epidemic period) and so dependence on lagged case counts is a 
reasonable assumption. The current death count is defined to be i , jd and once again we 

assume a Poisson data model so that d
i , j i , jd Pois( ) . Here the mean death count is 

parameterized as  

       DC1

 

d d d d d
ij j i , j j i , j i

ij i ,k
k : j

log( ) log( y ) log(T ) v

where T y .




    

 
0 1 2 1

1

 

The form of the dependence relies on the need to make the deaths dependent on counts but 
with a potential lag of undefined length. Hence it is assumed that cumulative case counts should 
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be include as well as  the current case number. This model form has been found to provide a 
good fit to mortality data in the pandemic. 6,10 

Nowcasting and Counterfactuals  

Nowcasting is often used in situations where infectious disease is being monitored but a 
reporting delay occurs.11,12 This delay can lead to bias such as underreporting or mis-attribution. 
To alleviate this delay bias,  a form of forecasting is used whereby projections of case numbers 
are made from existing data up to the current time. Once updated data is available, then the 
count is adjusted. The process is continued until the final time point on study.  

This form of missing data forecasting can be applied in other situations. Non-pharmaceutical 
interventions (NPIs) are often implemented during epidemic periods to try to reduce the spread 
of disease. These interventions  often require spatial restrictions, such as social distancing and 
mobility constraints such as travel/work bans, or ‘work at home’ mandates and business 
closures. These are often referred to as lockdowns. During the early part of 2020, many places 
around the globe implemented lockdowns of various forms to reduce Covid-19 spread. These 
usually tool the form of gradual business and school closures and final travel bans.  

In this paper we examine the use of nowcasting to try to predict the effect of lockdown, or their 
lifting, on the Covid-19 experience in two contrasting US states: South Carolina (SC) and New 
Jersey (NJ). SC is a southern state with a small population (~ 5M) and only small urban centers 
(Charleston, Columbia, Greenville and Spartanburg). NJ is an urbanized state with a much 
larger population (~ 9m) and has (partly) suburban population centers of Trenton, Newark, 
Jersey City  and Atlantic City, bordering the city of New York. We examine the county level case 
counts of Covid-19 during the lockdown periods relevant to SC and NJ. These periods differ as 
the state governors decided to implement different types and periods of lockdown. For SC the 
lockdown started on March 13th  and partial lifting of lockdown happened on March 31st (18 
days). Final lifting occurred on May 13th, but many activities were resumed before this date. For 
NJ, the lockdown was prolonged until June 9th (80 days), following a partial lockdown from 
March 9th until March 21st . The use of counterfactual generation for Covid-19 NPIs was 
proposed for employment data previously.4 The application of counterfactual generation to 
spatio-temporal Covid-19 modeling has not been reported before. 

Counterfactual Generation  

Consider historical case count data, and assume a good model is known, for these data. We will 
return to the definition of a good or ‘best’ model at a later stage. For that good model at  fixed 
time (T), a prediction from the model is made. For a spatio-temporal model this prediction is 
made for all regions under study: in this case counties. Unsupervised prediction for K time units 
is used to assess what the effect of continuation under a pre T model has compared to the 
actual observed count over the K time periods. The difference between the observed and 
counterfactual (predicted) count are then summarized and a comparison is made between SC 
and NJ state level responses. 

The algorithm steps are: 

1) Retrospectively fit the ‘best’ model for data up to and including time T.  
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2) Essentially, we use MCMC sampling from the converged posterior up to T . A large 
parameter sample is then taken and the SIR count model is allowed to evolve to time 
T+K,  so that a set of predicted counts p p

i ,T i ,T Ky ........y 1  is generated using  

}+ { }

{} denoes the sampled parameter set 
 is the neighborhood set of the  th region

i

p
i ,k i ,k i ,k

p p t
i ,k i ,k l ,k i i

l

i

{ y } ~ Pois({ S .exp( p )})

{ p } { } { }log( y ) { }log( y ) {v x

i

 


       



0 1 1 2 1

 

This is essentially generating predictions from SC1. For NJ1, an added ICAR term is 
included. Note that death counts must also be generated, as the case predictions will be a 
function of the accounting equation which is a function of the concurrent death count. These 
are generated from the ‘best’ death count model. In this case it is assumed to be DC1.  

In this way, a counterfactual is generated in each county and each time period, which can 
then be compared with the observed count during the NPI. For SC the best model used was 
that found during a retrospective model search of a wide range of potential models (SC1). A 
similar search for NJ models led to the use of NJ1 as the ‘best ‘ model`.6 

South Carolina counties 

We assumed that the crucial time points for this state, measured from the first case, March 
6th, were T={ 26,42,68}. The first marks the initiation of lockdown, the second the partial 
lifting and third is the final lifting of lockdown (May13th). Examined were counterfactuals of 
length 16, 26 and 40, The final end date was June 22nd.    

Figures 2, 3, 4, and 5 display the results for 4 SC counites at T=26. In these displays the 
counterfactual is denoted by a thin solid purple line. The 95% credible interval for the 
counterfactual is shown in purple shading. The mean squared error of the model fit and 
mean absolute predictive error is also shown. It is notable that for this first period until mid 
April, Richland is below the observed count and Charleston is mostly higher than observed. 
Greenville and Spartanburg show a variable picture with many spikes  of cases followed by 
gaps during this period.  

 

Figure 2 Counterfactual for Richland              Figure 3 Counterfactual for  
county at T=26                                                   Charleston county at T=26 
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Figure 4 Counterfactual for Greenville county T=26 

 

Figure 5 Counterfactual for Spartanburg county at T=26 

 

Figure 6   Counterfactual for                    Figure 7 Counterfactual for 
Richland county T=68                               Charleston county T=68                                                  
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Figure 8   Counterfactual for                                Figure 9 Counterfactual for  
Greenville county T=68                                            Spartanburg county T=68                                                              
Figures 6, 7, 8,and 9 displays the counterfactuals for the same four counties at time T=68, 
which is the end of the lockdown period. We do not display the intermediate case  time point 
here, nor the counterfactuals for deaths, for brevity. While the displays suggest differences 
between counterfactuals and observed counts,  it is more relevant to compute summary 
measures of the differences. In Table 1 we present  results for estimating mean differences 
between counterfactuals and observed counts. Define the difference at time k as 

 

   and the mean difference is 

The MAPE is given by 

and the MSE by 

p
i ,k i ,k i ,k i ,kk

i ,k i ,k

i ,k i ,k

e y y mean( e )

( M )APE abs( e )

( M )SE e .

 



 2

 

These time-based loss measures are shown on the counterfactual figures.  

Table 1   Mean differences between counterfactuals and observed counts averaged over the respective time 
periods. T is time point, and K is extent. Model assumed is SC1. 

Time  Charleston Richland Greenville Spartanburg 
T26K16 -1.68 -11.1 -9.06 -1.37 
T42K26 10.6 2.34 -4.00 6.57 
T68K40 -23.8 -15.3 -48.6 -11.4 

 

In terms of the overall mean levels any negative difference represents a situation where the 
case load is higher than the predicted counterfactual. This suggests that the in the first period 
the prediction was everywhere lower than case counts, as there was limited lockdown. In the 
second period Charleston and Richland achieved positive results as they remained lockdown 
with lower case numbers, whereas Greenville remained negative. In fact Greenville remained 
with a high case load throughout out the periods, and this suggest that compliance was poor in 
this county. Spartanburg had a similar pattern to Richland and  Charleston, however. It is 
important to note that the early lockdowns di not help the case count in the second larger wave 
during the summer of 2020. All the predictions returned negative mean differences during the 
final period. It is notable that the predictions across long lags tend to have wide credible 
intervals and so some degree of uncertainty in these estimates remains. 13 In addition, it is also 
notable that beyond initial step predictions the SIR model leads to almost constant overall risk 
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mean levels. This is typically due to lack of future data support and the need for shocks within a 
SIR model to allow for peak generation. 

New Jersey counties  

We assumed that the crucial time points for this state, measured from March 6th, were 
T={8,16,96}. The first marks the initial restrictions on March 14th, and the second the 22nd  
March when a more restrictive lockdown was imposed. The last time is when the lockdown 
was finally lifted (June 10th). In this case we have examined a 40 day period  beyond the T 
times to examine longer term lockdown effects.  

Figures 10 – 21 display the results of fitting the model NJ1 and the posterior expected 
counterfactuals for the counties of Gloucester, Bergen, Hunterdon and Middlesex.  

 

Figure 9     Counterfactual for                           Figure 10 Counterfactual for 
Gloucester county    T=8                                        Bergen county T=8                                                      

 

 

Figure 12     Counterfactual for                           Figure 13 Counterfactual for 
Hunterdon county    T=8                                        Middlesex county T=8                                                      

 

Table 2 Mean differences in counterfactuals and observed counts for four NJ counties 
based on the assumed best model NJ1. 

Time  Bergen Gloucester Hunterdon Middlesex 
T8K40 -338.6 -21.4 -10.9 -225.1 
T16K40 -306.2 -29.2 -10.8 -258.8 
T96K40 172.2 17.0 7.8 147.4 
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Figure 11 Counterfactual for 
Middlesex county  T=16 

 

 

            Figure 12       Counterfactual for                   Figure 13  Counterfactual for   Figure 20 Counterfactual for  
               Gloucester county T=96                               Bergen county T=96                   Hunterdon county T=96                                      

Figure 14     Counterfactual for                         Figure 15 Counterfactual for                    Figure 16 Counterfactual for 
Gloucester county    T=16                                       Bergen county T=16                                Hunterdon county T=16 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282938doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282938
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

 

Figure 14 Counterfactual for  
Middlesex county T=96 
 

At T=8, it is clear that the nowcasts under report the observed case counts considerably. 
However at T=16 the situation improved with higher prediction although still mainly 
below the observed case count. By T=96 the observed cases are below the 
counterfactual. This is clearly reflected in Table 2 where the differentials become highly 
positive by T=96. This suggests that at this point the case load has been reduced 
significantly. 
 
Discussion  
The counterfactual generation pursued in this paper has a number of drawbacks. First, 
long term prediction has been shown to demonstrate very wide credible intervals (see 
e.g. Figures  2-5.) This means that predictions are potentially variable and do not have 
high confidence. This would appear to be in part because of the SIR model form, but 
also as data support is limited the further in the future prediction is made. A second 
issue that arises with SIR model predictions is that the overall risk level becomes 
relatively constant over time. This is due to the lack of jumps in risk based on the final 
observed data point. 13 Although random effects are commonly used in Bayesian disease 
mapping as a way to deal with extra variation, there is a trade off as they might not be 
well estimated when the information fed in the system is too diffused particularly for new 
emerging diseases. Nonetheless, this work has proposed an extension of SIR Bayesian 
disease mapping framework to account for uncertainty in infectious surveillance. In 
addition, the range of prediction should be further examined to find the optimal predictive 
interval, since this could have an effect on both accuracy and computing resources of 
surveillance activities in which timeliness is a key.12 

 

 
Conclusions 
The approach proposed here highlights the differentials between both counterfactuals 
and observed (confirmed) case counts, as well as between regions and states. 
With respect to the county differences, there is strong evidence for major differences in 
response to the interventions between counties in SC.  Greenville county in particular 
shows continual case spread during the lockdowns. In other analysis this the continued 
existence of clusters of case counts in that county supports the conclusion that non -
compliance was common there.  The particular difference that is clear appears in the 
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second period after T=26 when Charleston and Richland had reduced case loading 
whereas Greenville remained above the counterfactual throughout the three periods. 
In the case of New Jersey, the clear trend was for some success during the middle 
period and then positive differentials after T=96 across all counties which suggests that 
suppression was achieved. 
While the comparison of states is marred by the fact that the lockdowns were of different 
kinds and durations. It is quite remarkable that the patterns of compliance are markedly 
different both between states and within the states. SC did not succeed in locking down 
adequately and had no NPI in place for the second wave during the summer of 2020. In 
addition the large difference remained between counties within that state. Whereas, New 
Jersey maintained their lockdowns and achieved a degree of suppression with similar 
pattern across counties.   
Finally, we note that the approach described here could have sensitivity to choice of T. 
However, the choice of T is usually defined by policy decisions and so there is only 
limited possibility to alter these times. Sensitivity to the choice of K could be apparent but 
we believe that the due to averaging effects across time spans this is limited. 
 
An advantage of this method, is the fact that confidence intervals could be derived for 
differentials and functions of differentials of various kinds. Here we present basic 
averages that highlight differences between states and regions.  In future work we plan 
to refine our summarization of the differentials to better reflect the variability. In addition 
we would examine the use of different data assimilation approaches to improve 
predictions. 
 
 
 
 
 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282938doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.30.22282938
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

 

References  

[1] Johansson MA, Powers AM, Pesik N, Cohen NJ, Staples JE (2014) Nowcasting the Spread 
of Chikungunya Virus in the Americas. PLOS ONE 9(8): e104915. 
https://doi.org/10.1371/journal.pone.0104915 

[2] Carriero, A., Clark, T. E., & Marcellino, M. (2022). Nowcasting tail risk to economic activity at 
a weekly frequency. Journal of Applied Econometrics, 37( 5), 843– 866. 
https://doi.org/10.1002/jae.2903  

[3] McGough SF, Johansson MA, Lipsitch M, Menzies NA (2020) Nowcasting by Bayesian 
Smoothing: A flexible, generalizable model for real-time epidemic tracking. PLOS Computational 
Biology 16(4): e1007735. https://doi.org/10.1371/journal.pcbi.1007735 

[4] T.,J., B., N., Middleton, T. (2021) Modeling the Economic and Societal Impact of Non-
Pharmaceutical Interventions During the COVID-19 Pandemic. Chance, 34,2, 
https://doi.org/10.1080/09332480.2021.1915028 

[5] Lawson and Kim (2021) Space-time Covid-19 Bayesian SIR modeling in South 
Carolina. PlosOne https://doi.org/10.1371/journal.pone.0242777 
 
[6] Lawson and Kim (2022) Bayesian Space-time SIR modeling of Covid-19 in two US states 
during the 2020-2021 pandemic. PlosOne (accepted) 

[7] Sah, P., Fitzpatrick, M., Zimmer, C,. et al (2021) Asymptomatic SARS-CoV-2 infection: A 
systematic review and meta-analysis. Proceedings of the National Academy of Sciences, 118 
(34) e2109229118; DOI: 10.1073/pnas.2109229118  
  
[8] Ma Q, Liu J, Liu Q, et al.(2021)  Global Percentage of Asymptomatic SARS-CoV-2 
Infections Among the Tested Population and Individuals With Confirmed COVID-19 
Diagnosis: A Systematic Review and Meta-analysis. JAMA Netw 
Open.;4(12):e2137257. doi:10.1001/jamanetworkopen.2021.37257 
 
[9] Lawson, A. B. (2018) Bayesian Bayesian Disease Mapping: hierarchical modeling in spatial 
epidemiology  CRC Press , New York  3rd  Ed 
 
[10] Lawson, A. B. (2022) Evaluation of Predictive capability of Bayesian Spatio-
temporal models for Covid-19 spread Research Square https://doi.org/10.21203/rs.3.rs-
1870683/v1  
 
[11] McGough SF, Johansson MA, Lipsitch M, Menzies NA (2020) Nowcasting by 
Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking. 
PLOS Computational Biology 16(4): e1007735. 
https://doi.org/10.1371/journal.pcbi.1007735 

[12] Rotejanaprasert, C., Ekapirat, N., Areechokchai, D. et al. Bayesian spatiotemporal 
modeling with sliding windows to correct reporting delays for real-time dengue 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282938doi: medRxiv preprint 

https://doi.org/10.1371/journal.pone.0104915
https://doi.org/10.1002/jae.2903
https://doi.org/10.1371/journal.pcbi.1007735
https://doi.org/10.1080/09332480.2021.1915028
https://doi.org/10.1371/journal.pone.0242777
https://doi.org/10.21203/rs.3.rs-1870683/v1
https://doi.org/10.21203/rs.3.rs-1870683/v1
https://doi.org/10.1371/journal.pcbi.1007735
https://doi.org/10.1101/2022.11.30.22282938
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

surveillance in Thailand. Int J Health Geogr 19, 4 (2020). 
https://doi.org/10.1186/s12942-020-00199-0  

[13] Daza-Torres, M., Capistrán, M., Capella, A., Christen, J., (2022) 

Bayesian sequential data assimilation for COVID-19 forecasting, 

Epidemics, 39, 100564 

 https://doi.org/10.1016/j.epidem.2022.100564 . 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.11.30.22282938doi: medRxiv preprint 

https://doi.org/10.1186/s12942-020-00199-0
https://doi.org/10.1016/j.epidem.2022.100564
https://doi.org/10.1101/2022.11.30.22282938
http://creativecommons.org/licenses/by-nd/4.0/

