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Abstract
Antibiotic resistance is one of the leading issues in modern healthcare due to the inability to treat common infections
with available antibiotics. Many of the mechanisms of resistance have been caused by the inappropriate prescription of
antibiotics to treat illnesses such as the cold or flu or the over-prescription of broad-spectrum antibiotics. Epitomizing
this problem is the Staphylococcus bacteria where certain strains have become resistant to penicillin-related drugs
and Vancomycin, one of the treatments for MRSA. To address this, we developed machine learning models to predict
antibiotic activity and susceptibility using a patient’s entire available electronic health record. We selected patients
who were suspected of having a staph infection from the Medical Information Mart for Intensive Care III (MIMIC-III)
data set and utilized their microbiological culture results to identify the number of patients that were prescribed an
inappropriate antibiotic and then propose suitable alternatives. In our test set, we identified that empiric prescriptions
had an efficiency rate of 40 percent (the rate at which an antibiotic that would provide activity was prescribed), and
the other 60 percent of cases were not susceptible to the prescribed antibiotic or the antibiotic that they were given was
not tested for susceptibility against their infection. Our best models identified antibiotic susceptibility with AUROCs
up to 0.9 and raw specificity up to 0.7. The models were also able to propose suitable alternatives in all but 10 cases.
Overall these results demonstrate the need for implementing clinical decision support systems advising clinicians during
the prescription process, and our further work will address this issue.
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1. Introduction

The emergence and spread of drug-resistant pathogens threaten
global health by affecting our ability to treat common infec-
tions. 1 Although genetic changes can induce the develop-
ment of antimicrobial resistance over time, the rapid devel-

opment of the mechanisms of resistance can be attributed
to the inappropriate use of common and broad-spectrum
antibiotics.2−5 For decades, doctors have prescribed antibi-
otics to treat colds, the flu, and other viral infections that
don’t respond to antibiotics, and even when used properly,
many organisms are capable of rapid evolution to gain resis-
tance to these drugs. Despite past achievements in minimiz-
ing the development and spread of drug-resistant organisms,
the inappropriate over-prescription of antibiotics during the
coronavirus 2019 pandemic (COVID-19) has resulted in a
significant increase in hospitalizations due to multi-drug-
resistant organisms, and, by 2050, the World Health Organi-
zation (WHO) estimates that antibiotic-resistant infections
will cause of more than 10 million deaths per year.6−7

To combat the spread of resistance, the Centers for Dis-
ease Control and Prevention (CDC) have stated that the most
important action is improving antibiotic prescription through
antibiotic stewardship. 8 Common strategies involve reduc-
ing the amount and the duration of unnecessary antibiotic
treatment. Yet, despite these initiatives, it is estimated that
up to 60 percent of clinicians still prescribe antibiotics in
situations where their use is either unnecessary, the incorrect
antibiotic was prescribed, or the antibiotic was administered
at the incorrect dose or for the incorrect amount of time.
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Figure 1. Data Collection Overview: Raw Data is taken from the MIMIC-III database. A cohort consisting of adult patients
who tested positive for a staph-related infection and were prescribed an antibiotic was selected. Longitudinal data were then
extracted from their entire electronic health record, and then cleaned and pre-processed for model training and testing.

Figure 2. Prediction Timeline: Here we present the proposed prediction timeline for the classifier. First, a patient is admitted
into the ICU and then the patient develops symptoms of a staph infection. Microbiology and AST cultures are ordered and then
empiric prescriptions are given. Upon the time of antibiotic prescription, we make predictions on antibiotic susceptibility to
guide empiric antibiotic regimens. Then we evaluate the clinician efficiency of prescription in both empiric and specific
antibiotic regimens.

9−10

There is also growing concern over a certain class of
antibiotic-resistant infections known as “Superbugs”. These
multi and pan-resistant bacteria no longer respond to treat-
ment with available antibiotics and the looming threat is
more bacterial organisms will follow.11 One of the “Super-
bugs”, methicillin-resistant Staphylococcus aureus (MRSA),
is a strain of Staphylococcus aureus (S. aureus) that has de-
veloped resistance to many of the antibiotics frequently used
to treat staph infections. In the last year, MRSA directly
caused the death of over 100,000 people and is gaining resis-
tance to other forms of treatment.12,13,14 If this phenomenon
persists, routine medical practices and procedures will be
crippled, drastically increasing infection-related mortality
and treatment costs.

Clinical decision support systems present ample opportu-
nity to help clinicians adhere to antibiotic stewardship mea-
sures in practice.15 Historically, these systems have not been
adopted due to the difficulty of integration into clinical work-
flows and their inability to adapt to dynamic local antibiotic

resistance patterns.16 However, modern hospital IT infras-
tructures and electronic health record software (EHR) make
it possible to integrate clinical decision support systems and
utilize continuously integrated and continuously deployed
machine learning models for clinical decision-making. With
these advancements, it is possible to implement clinical
decision-support systems to ensure that clinicians are aware
of antibiotic stewardship measures when prescribing antibi-
otics to treat staph and other bacterial infections.17

Electronic Health Records present the means by which
we can survey past events in order to evaluate the quality
of care and help improve future practices. There have been
extensive studies using EHR data to deliver precision care
through clinical decision support systems, and, among these,
many have focused on utilizing microbial culture results
found in electronic health records to improve antibiotic stew-
ardship measures in clinical settings.18,19,20

Here, we seek to investigate the use of machine learning-
driven approaches for predicting antibiotic susceptibility to
aid in empiric antibiotic therapy to one of the most preva-
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Figure 3. The longitudinal data is extracted such that we create a table consisting of the subject and hospital admission
identifiers, the time of data collection, and then the type of data (corresponding to label) and the value of that label. This allows
us to select all relevant patient information by specifying the patient, the time, and the type of information.

lent drug-resistant organisms in hospitals around the world.
Specifically, we seek to predict whether an antibiotic will
provide activity against the bacterial staph infection, eval-
uate hospital performance in prescribing appropriate and
effective antibiotics to treat the infection, and then identify
relevant predictors of activity in the tested antibiotics. Us-
ing Electronic health record data, we can tailor antibiotic
therapy toward individual patients to prescribe the most ef-
fective and specific antibiotics. We hope that this method
will result in an actionable solution for promoting antibiotic
stewardship among patients admitted with staph infections
to improve treatment and reduce the opportunity for more
resistant strains to develop.

2. Materials and Methods

2.1 Data Sources
The data used in this analysis was extracted from the Medical
Information Mart for Intensive Care III (MIMIC-III). The
MIMIC-III database contains deidentified health-related data
associated with over forty thousand patients who were ad-
mitted to the critical care units of the Beth Israel Deaconess
Medical Center between 2001 and 2012. The data mart was
deidentified and structured in accordance with Health Insur-
ance Portability and Accountability Act (HIPAA) standards
containing patient demographics, comorbidities, procedures,
medications, laboratory test results, vital signs, microbiology
data, discharge summaries, and International Classification
of Disease, 9th Edition (ICD-9) codes. 21

2.2 Cohort Definition
Patients who were assumed to have staph infections met
the inclusion criteria for this study. The exact phenotype
required for inclusion in the study was any microbiological
culture that returned positive for a staph-related organism
obtained from any of the following: blood, urine, cerebral
spinal fluid, pleural cavity, or joint, and the prescription of
an antibiotic that was subsequently tested for susceptibility.
Staph infections, including Staph aureus positive, Staphylo-
coccus Coagulase-negative, and MRSA present identifiable
phenotypes such as painful red bumps on the skin and fever-
ish conditions - among many others.22,23Due to these visible
and identifiable phenotypes, we make the assumption that

the clinician has a high suspicion that the identity of the
bacterial infection is staph related, the microbiology test
will return positive for a staph-related organism, and empiric
therapy will be oriented towards staph-related treatments.
Moreover, patients with multiple ICU admissions that met
the study criteria were analyzed independently and assigned
to the same train/test split to prevent test set contamination.
Figures 2 and 1illustrates the flow chart of the data collection
and the prediction timeline.

2.3 Feature Engineering
We developed a single data structure that was used for all
of the predictions instead of manually curating datasets for
each susceptibility profile. The data was extracted in a long
format and organized by the respective table, patient id, and
time of data. Namely, we extract the subject id, the hospital
admission id, the time of the event, the type of event, and
the value of the event. An example from the chart events
table is presented in 3.

The raw clinical data was then cleaned and formatted
to address data quality issues such as erroneous values and
the disarray of varying units. For example, the units of the
amount of a type of drug given were all converted to mg,
and erroneous values such as “error” in the chart events ta-
ble were encoded as -1 and considered to be missing. We
then construct a feature matrix with the available static and
longitudinal data using the extracted and cleaned clinical
information. Static data includes features such as gender,
ethnicity, language, insurance, and religion. Longitudinal
data includes features from the lab events, chart events, in-
put events (medication), prescriptions (medication), diag-
noses, procedures, and microbiology events tables in the
MIMIC-III database. The data was then encoded to address
the numeric and categorical features. Categorical informa-
tion included ICD 9 codes extracted from the diagnoses
and procedures table, as well as some of the features in the
chart events and lab events tables. These were then encoded
to dummy variables using the one-hot-encoding technique.
Continuous features included values from the input events,
prescriptions, and chart events tables. If a feature was not
present for a patient, the value was encoded as -1 and han-
dled the same way as erroneous data. This allowed us to
encode missing values into our data without needing to uti-
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lize data imputation methods.
The value -1 was chosen instead of 0 because some of the

observations possessed the measured value 0. To construct
the final data frames, we used all of the available patient
data before the time of the prescription and then aggregated
the values by taking the non-filler (-999) mean of each of
the features. In total, there were 4,754 features included in
the final dataset.

2.4 Labeling

We trained 9 binary machine learning models to estimate
the probability that an antibiotic selection would provide
activity against the patient’s infection, namely one model
per antibiotic. We encode our positive class as the ability
of the antibiotic to provide activity against the infection and
encode our negative class as the inability of the antibiotic to
provide activity against the bacterial infection (if the AST
returned intermediate or resistant). If the antibiotic was not
tested against the patient’s infection we assume that the clin-
ician would not consider prescribing that antibiotic and so
we also encode this into our negative class.
The unit of observation in our study is the start of a unique
antibiotic regimen for the patients in our cohort, and we mark
the prediction time to be the first time at which a unique
empiric antibiotic (antibiotics prescribed before AST re-
sults were available) was entered into the patient’s electronic
health record signifying the start of a treatment regimen. We
then retrospectively evaluate the specific antibiotic regimens
(antibiotics prescribed after AST results were available).
The purpose of this is to evaluate hospital performance in
prescribing appropriate antibiotic regimens and to evaluate
the allocation of antibiotics in empiric and post-AST treat-
ment regimens.
An antibiotic regimen was labeled appropriate if it would
provide activity against the bacterial infection, and an an-
tibiotic regimen was said to provide activity if all microbial
organisms that grew in the patient’s culture were susceptible
to the antibiotic. Activity is measured in terms of the min-
imum inhibitory concentrations evaluated in the antibiotic
susceptibility testing procedure. Similarly, an antibiotic regi-
men was labeled inappropriate if the microbiological culture
was labeled as resistant or intermediate to the prescribed an-
tibiotic or if the prescribed antibiotic was not tested against
the patient’s infection. We define efficiency to be the fraction
of appropriate antibiotic prescriptions to the total number of
prescriptions. As our unit of observation is the susceptibility
profile of the antibiotic, we are constrained by the number
of times that an antibiotic was included in a susceptibility
test. So, due to the fact that not all antibiotics that were pre-
scribed were tested for susceptibility, we are limited in the
number of antibiotics for which we can estimate the proba-
bility of activity against the infection. Thus, we only include
antibiotics that were prescribed to the patients in the cohort
and were subsequently tested and found to provide activ-
ity against more than 2.5 percent of the cohort’s infections.

These antibiotics include Levofloxacin, Clindamycin, Van-
comycin, Linezolid, Oxacillin, Gentamicin, Erythromycin,
and Daptomycin.

2.5 Training and Model Selection
The patients that were prescribed an antibiotic before the
results from an antibiotic susceptibility test were included
in the model training and testing procedure. This group was
then split by unique hospital admission identifiers using an
80/20 train test split. This was done to avoid test set con-
tamination where we would include the same patient in the
train and test set if they had been issued two distinct antibi-
otics before their AST results had returned. We selected
two tree-based models to perform the analysis of the data
set: random forest and gradient-boosting trees. This was
done because prior results have demonstrated that tree-based
methods often outperform linear and logistic regression mod-
els due to their ability to model non-linear interactions with
high-dimensional data.18,19The random forest models were
fit using the sci-kit learn python package and the gradient-
boosted tree models were fit using the lightgbm python
package. 24,25 The model training procedure utilized a grid
search over the training set to identify the hyperparameters
that led to the highest mean area under the receiver operating
characteristic curve (AUROC). The binary cross entropy loss
function was used to evaluate the predictions, and the final
model was chosen by selecting the model with the highest
AUROC on the test set.

3. Results

3.1 Cohort
Our selected cohort contains N = 7655 prescriptions from
4734 unique ICU admissions in the MIMIC-III data that met
the inclusion criteria for the study. Of the original N pre-
scription regimes, 5185 (68 percent) were made empirically
to 3795 patients before AST test results were available, and
2470 (32 percent) prescriptions were made to 1968 patients
after AST results were available. There were 1047 patients
who were prescribed an antibiotic before and after their AST
results were available. The train/test split based on the ICU
admission id resulted in a train set containing N = 3635
prescriptions to 2656 patients and a test set containing N
= 1550 prescriptions and 1139 patients. Table 2 summa-
rizes the demographic breakdown of these patients across
the train/test split.

3.2 Model Performance
In 4, we report the performance of the antibiotic susceptibil-
ity classifiers across the test set and show the prevalence (the
fraction of patient infections for which the antibiotic was
listed as susceptible across the test set), the average preci-
sion, and the area under the receiver operating characteristics
(AUROC) for the 9 antibiotics. The best model refers to the
model that achieved the highest AUROC across the test set.
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Figure 4. Here we report the prevalence (the total amount of susceptible antibiotics from the cohort’s cumulative antibiograms),
Area Under the Receiver Operator Characteristic Curve, Precision, and Accuracy for each of the 9 binary antibiotic
susceptibility classifier models.

Figure 5. The demographic information corresponding to
the 80/20 train and test set for our cohort

The Gradient Boosting Tree slightly outperformed the ran-
dom forest classifier across all of the classifiers where the
average precision ranged from 0.55 to 0.98 and the AUROC
ranged from 0.88 to 0.98. In 6, we display the ROC curve
and the Precision-Recall Curve from the Vancomycin Sus-
ceptibility Estimator. We then retroactively compute high
specificity thresholds of 0.95 for each classifier and apply
them to the test set in order to predict the antibiotics that
would provide activity for each patient’s infection.

3.3 Clinical Evaluation and Model Utility
To evaluate the potential utility of our model in the clinical
setting we first sought to evaluate the rate at which clinicians
prescribed appropriate antibiotics - antibiotics that would
provide activity against the staph infection - as well as eval-
uate the allocation of the different antibiotics included in
the study. We retroactively compute the fraction of patients
that were given antibiotics that would provide activity for
their bacterial infection in both our train and test set. We
then examine the allocation of the prescribed antibiotics to
evaluate the hypothesis that empiric antibiotic therapy for
patients with symptoms of a staph infection will be pre-
scribed antibiotics relevant to the treatment of staph. Then,
for our test set, we evaluate the number of available antibi-
otics that our model predicted would provide activity against
bacterial infection using the high specificity threshold. 7
and 8 present the results of the empiric antibiotic therapy
issued to the patient. We define empiric therapy as hav-
ing an antibiotic regimen started before the results from an
antibiotic susceptibility test had returned - the time stamp
for the first issued antibiotic being before the return of the
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Figure 6. Receiver operating characteristic curves and Precision-recall curves for all models. We use different colors to
differentiate the models.

Figure 7. We break down the relative antibiotic allocation, the number of appropriate prescriptions (patient was susceptible
towards the prescribed antibiotic), inappropriate prescriptions, and the efficiency rate of prescriptions for each antibiotic used in
the study. These are the results across the train set which provide a larger data set

antibiotic susceptibility test. These results verify our hy-
pothesis that empiric antibiotic therapy for the treatment of
staph infections will be biased toward drugs known to pro-
vide activity against staph infections - namely Vancomycin
and Levofloxacin which constitute nearly 80 percent of the
total prescribed antibiotics for the cohort. We also report
the efficiency of the clinician performance which we define
as the fraction of appropriate prescriptions from the total
amount of prescriptions per drug. We see that on average,
between the training and the test set, clinician performance
has an average of approximately 41 percent efficiency and
prescribe antibiotics that will provide activity against the
bacterial infection less than half the time.

Our model is able to estimate the probability that the
antibiotic will provide activity against the patient’s staph
infection. In table 6, we report the median of the predicted
number of drugs that could have provided activity when an
inappropriate antibiotic was prescribed. In our test set, we
found there to be 751 total cases of inappropriate empiric an-

tibiotic prescriptions (59 percent of the total prescriptions),
and our model predicted that an average of 3.17 antibiotics
could have provided activity against the infection, compared
to the true average of 3.51 antibiotics. Moreover, there were
only 10 predicted events in which no antibiotic would pro-
vide activity against the bacterial infection. Using our high
specificity threshold, we expect that this model could have
theoretically benefited close to 60 percent of patients. In
9, we conducted a retrospective analysis of clinician per-
formance in efficient antibiotic prescription and allocation
after clinicians had received the antibiotic susceptibility test
results. This was done in order to examine the rate at which
clinicians adhere to antibiotic stewardship guidelines as well
as evaluate the potential impact of making clinicians aware
of antibiotic susceptibility tests each time at which a prescrip-
tion regimen was started. We find that prescription efficiency
does not increase across the board. We find notable improve-
ments in the prescription of Oxacillin and Clindamycin, and
efficiency decreases in Vancomycin. We do see a slightly

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.22282797doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.28.22282797
http://creativecommons.org/licenses/by/4.0/


Machine Learning for Antibiotic Stewardship in the Treatment of Stapholycoccus Bacterial Infections — 7/11

Figure 8. We break down the relative antibiotic allocation, the number of appropriate prescriptions (patient was susceptible
towards the prescribed antibiotic), inappropriate prescriptions, and the efficiency rate of prescriptions for each antibiotic used in
the study. These are the results across the test set. At each time the antibiotic was prescribed, the available active antibiotic
column sums the total number of antibiotics that all of the classifiers predicted would provide activity. Thus, we can view this
column as suitable alternatives in cases where an inappropriate antibiotic was prescribed.

Figure 9. We break down the relative antibiotic allocation, the number of appropriate prescriptions (patient was susceptible
towards the prescribed antibiotic), inappropriate prescriptions, and the efficiency rate of prescriptions for each antibiotic used in
the study. These are the results found from specific antibiotic treatment regimens (post-AST). At each time the antibiotic was
prescribed, the available active antibiotic column sums the total number of antibiotics that would have provided activity found
from the antibiotic susceptibility tests. Thus, we can view this column as suitable alternatives in cases where an inappropriate
antibiotic was prescribed.

better diversification of the prescribed antibiotics with Van-
comycin and Levofloxacin constituting 60 percent of the
total number of regimens. Similarly, we calculate the num-
ber of appropriate antibiotics that could have been prescribed
in place of an inappropriate prescription using the returned
antibiotic susceptibility tests. Similar to the predicted results
in the empiric test set we find that we could have prescribed
a median of 3 antibiotics that would have provided activity
instead of the inappropriately prescribed antibiotic.

After examining the potential room for improvement
of prescription efficiency using our model, we then exam-
ined the features that were most influential in the classifi-
cation process. We calculate Shapley values, the average
marginal contribution of a feature value across all possible
coalitions.26This allows us to examine the feature impor-
tance in high-dimensional and non-linear spaces. We calcu-

late these values for each of our antibiotic classifiers and then
select the most impactful features across each classifier. 10
presents our results. Through these interactions, we are able
to discern that the three categories contributing to suscepti-
bility are the prior antibiotics prescribed to a patient, blood
test-related features, the presence of a prior antimicrobial-
resistant infection (V09), and the age demographics and the
ability of the patient to speak English.

Finally, we evaluate the effect of demographic informa-
tion on the classifier with results in 11. We find notable
decreases in the AUROC of the classifiers when the demo-
graphic information is removed suggesting that factors such
as race, language, and insurance play a role in predicting the
activity of an antibiotic for a patient’s infection.
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Figure 10. Variable Importances for each of the antibiotics found from Shapley Tree based variable importance calculations.

4. Discussion

In this study, we develop a novel method to extract raw clin-
ical data and patient features from ICU admissions who are
suspected to have a staph infection and show that we can
apply data-driven methodologies to increase the efficiency
and effectiveness of empiric antibiotic prescription. Our
findings demonstrate that empiric antibiotic regimens have
an efficiency rate of approximately 40 percent and specific
regimens that are supposed to be tailored to address the sus-
ceptibility profile of the bacterial infection have an efficiency
rate of 45 percent. The 9 antibiotic classifiers that we have
constructed are able to utilize a patient’s entire electronic
health record to predict whether an antibiotic will be active
against the bacterial infection with an average accuracy of 85
percent. In all but 10 events (0.01 percent of the data) where
an inappropriate antibiotic was prescribed, our model was
able to identify at least one antibiotic that would have pro-
vided activity against the staph infection with an average of
3.5 antibiotics per inappropriate prescription. We have also
identified that the prior antibiotic history of the patient, rele-
vant blood test results, and demographic information such
as age and language are among the most important features
in the classification of antibiotic susceptibility. Moreover,
we found that demographic information increases the ac-
curacy of the model across all classifiers suggesting that
race, language, and insurance are relevant factors that affect
antibiotic susceptibility.

We believe that the implementation of an antibiotic sus-
ceptibility classifier for staph infections will prove useful
for clinicians due to the identifiable phenotype of staph in-
fections and the rising number of antibiotic-resistant strains.
The process of treating a staph infection begins with identi-
fying the relevant symptoms such as skin rashes, swelling
of the skin, and red painful bumps. Then, the clinicians

will order a microbiology test to identify the bacterial or-
ganism and a susceptibility test to guide therapy. Results
from these tests are available within 76 hours. Although a
quick recovery is anticipated with prompt treatment, there
is a higher risk for severe problems the longer treatment
is delayed - such as sepsis, pneumonia, endocarditis, and
other bloodstream infections. For this reason, the treatment
of staph infections usually begins with an empiric antibi-
otic prescription prior to the availability of lab tests. The
doctor will perform an assessment of the patient’s health
and the severity of the staph infection, and then, relying
on clinical intuition and institution-wide antibiograms that
track the susceptibility of isolated staph infections, they
will most often prescribe Vancomycin, a first-line agent, or
broad spectrum fluoroquinolones such as Ciprofloxacin or
Levofloxacin. 27,28,29,30 However, the over-prescription of
Vancomycin, one of the only drugs that can treat MRSA, has
resulted in the development of Vancomycin-resistant strains
of staph, and due to their overuse, many strains have simi-
larly developed resistance to fluoroquinolones.31 Thus, our
model will aid empiric therapy in order to prescribe more
effective and specific antibiotics - increasing the quality of
care and decreasing antibiotic resistance and staph-related
mortality.

Numerous prior studies have demonstrated the need and
the effectiveness of EHR-based machine learning models
and clinical decision support systems to predict antibiotic
resistance patterns, susceptibility, risk of infection, and con-
ditions such as sepsis and mortality. For example, Kanji-
lal et al built an antibiotic stewardship algorithm to limit
the number of inappropriate first-line antibiotics that were
prescribed in favor of second-line prescriptions that were
predicted to have the same coverage rate. Corbin et al de-
veloped machine-learning models to predict personalized
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Figure 11. The results from the same antibiotic classifier including and withholding demographic information such as ethnicity,
insurance, and language.

antibiograms to aid in precise prescribing for the treatment
of uncomplicated urinary tract infections, and Eickelberg et
al identified patients with a low risk of bacterial infection to
decrease the duration of empiric antibiotic therapy.19,20 Our
study adds to the validity and the body of research surround-
ing EHR-based prediction models and supports the findings
that it is possible to use electronic health records to aid in
specific and effective empiric antibiotic therapy.

There are several limitations of this study. First, the
data that was used was collected for clinical care at a single
medical institution between the years 2001 and 2012 so it
does not reflect current real-world antibiotic susceptibility
patterns or clinician allocations. Moreover, a majority of the
common and advised treatment regimes for staph infections
such as nafcillin and cefazolin were not tested for suscepti-
bility so we were not able to include these in our study.

Our future work will focus on the measures needed for
the implementation of the antibiotic stewardship model in
clinical practices and how to best integrate these clinical
decision support systems into clinical workflows. Moreover,
we will focus on generalizing these results to a broader pa-
tient population and further identify the discrepancies and
trends with the various social determinants of health in our
model in order to address health disparities and decrease
the bias in our models. Moreover, to explore the longitu-
dinal and temporal trends in the data we will investigate
the use of deep learning models such as LSTM and GRU
which are able to incorporate time-based information into
the classification process.

Glossary

• EHR : Electronic Health Record

• MRSA : Methicillin-Resistant Staphylococcus Au-
reus

• MIMIC− III : Medical Information Mart for Inten-
sive Care III dataset
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