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Abstract 9 

During the COVID-19 pandemic, wastewater-based surveillance has been used alongside 10 

diagnostic testing to monitor infection rates. With the decline in cases reported to public health 11 

departments due to at-home testing, wastewater data may serve as the primary input for 12 

epidemiological models, but training these models is not straightforward. We explored factors 13 

affecting noise and bias in the ratio between wastewater and case data collected in 26 14 

sewersheds in California from October 2020 to March 2022. The strength of the relationship 15 

between wastewater and case data appeared dependent on sampling frequency and population 16 

size, but was not increased by wastewater normalization to flow rate or case count normalization 17 

to testing rates. Additionally, the lead and lag times between wastewater and case data varied 18 

over time and space, and the ratio of log-transformed individual cases to wastewater 19 

concentrations changed over time. This ratio increased sequentially in the Epsilon/Alpha, Delta, 20 

and Omicron BA.1 variant surges of COVID-19 and was also related to the diagnostic testing rate. 21 

Based on this analysis, we present a framework of scenarios describing the dynamics of the case 22 

to wastewater ratio to aid in data handling decisions for ongoing modeling efforts. 23 

 24 

Keywords 25 

Wastewater-based epidemiology (WBE), COVID-19, SARS-CoV-2, variants 26 

 27 

1. Introduction 28 

The COVID-19 pandemic stimulated worldwide research on how wastewater-based surveillance 29 

of SARS-CoV-2 RNA can be used to monitor infections at the population level. Many studies have 30 

found strong correlations between SARS-CoV-2 wastewater RNA samples and COVID-19 cases 31 

via diagnostic testing [1–4], and routine wastewater surveillance has supported decision-makers 32 

in choosing appropriate public health responses [5–7]. With the widespread availability of at-home 33 
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tests and decreased severity of disease due to vaccination and/or prior infection, the reliability of 34 

reported case data has decreased substantially since December 2021 [8]. To prepare for new 35 

surges due to emerging variants or waning immunity there is a need to build forecasting and 36 

nowcasting models that use wastewater data as a main input [9,10]. For training, these models 37 

require high-quality paired retrospective wastewater and diagnostic testing data. However, both 38 

the wastewater and case count data in these retrospective datasets are imperfect, necessitating 39 

careful consideration of factors contributing to noise and bias prior to modeling. 40 

1.1 Causes of inaccuracies in wastewater data 41 

Concentration of SARS-CoV-2 in wastewater is affected by the number of infected individuals, 42 

but also by precipitation events, infiltration and inflow [11], industrial flow contributions, and many 43 

other factors [12]. Flow rates at wastewater sampling sites can be used to adjust for dilution, but 44 

flow data is not always available, especially for samples collected from manholes or small 45 

wastewater treatment facilities where no flow meter is present. Additionally, the heterogeneity of 46 

sewage samples and the degradation of SARS-CoV-2 in sewers [13] cannot be accounted for by 47 

flow normalization. To address these sources of variability many studies measure cross-assembly 48 

phage (crAssphage) or Pepper Mild Mottle Virus (PMMoV) as biological human fecal indicators 49 

[3,14,15]. Physicochemical parameters such as total nitrogen, ammonia, conductivity, total 50 

suspended solids (TSS), and biological oxygen demand [16,17] can also be used to account for 51 

variation in wastewater strength, but they may be substantially affected by industrial inputs [18]). 52 

Although the US CDC has published recommendations on the wastewater sampling process and 53 

established a reporting database [19], there is currently no overall standard for wastewater SARS-54 

CoV-2 sampling and analysis. Thus, the causes of noise need to be considered individually for 55 

each dataset. 56 

1.2 Causes of inaccuracies in diagnostic testing data 57 

Diagnostic testing data also includes uncertainty, which may stem from biased allocation of and 58 

access to tests across the population, variation in reporting date assigned to each case (e.g. 59 

symptom onset, testing date, or date of positive test result), underreporting of at-home test results, 60 

and fluctuations in testing rates across time and space [20]. In 2020, the WHO recommended a 61 

threshold of 5% test positivity as a metric of sufficient testing. However, this threshold is only valid 62 

under certain conditions of contact tracing and sufficient testing of symptomatic individuals, and 63 

may only reflect the beginning stages of the pandemic [21]. Generally, case data may be less 64 

reliable when testing rates are low, and as of May 26, 2022, Noh & Danuser (2021) estimated a 65 

total rate of undetected cases of approximately 55% for California [20]. Modeling testing bias was 66 

shown to improve case data accuracy when compared to seroprevalence [22], but normalization 67 

in wastewater testing studies is typically focused only on accounting for wastewater strength. 68 

Although the importance of assessing testing rates prior to modeling was demonstrated in a 69 

recent study [23], to our knowledge, few wastewater studies have directly addressed bias in 70 

diagnostic testing data. 71 
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1.3 Correlation and the ratio between wastewater and case data  72 

Prior research has used correlation between wastewater and case data as a readout for the 73 

effectiveness of normalization methods, for determination of lead/lag times between datasets, 74 

and as a means to state the value of wastewater monitoring in general [3,4,24–26]. However, 75 

statistical caveats of this analysis are often ignored – for example the fact that the correlation of 76 

two variables that measure the same phenomenon in a time series is inflated due to 77 

autocorrelation [27,28]. Critically, the correlation coefficient reflects the global relationship 78 

between the diagnostic testing and wastewater surveillance data and does not offer an insight 79 

into the development of this relationship over time. For this purpose, the ratio of log-scaled 80 

COVID-19 cases over log-scaled wastewater RNA concentrations may be more appropriate. This 81 

ratio should be representative of shedding per person assuming perfect diagnostic testing and 82 

accurate wastewater data (not accounting for SARS-CoV-2 RNA decay in the sewer). Log-scaling 83 

reduces extreme values in the datasets and mimics a linear relationship between the variables, 84 

as they are not normally distributed [7]. Several studies have proposed using this ratio for analysis, 85 

and have reported values between 0.24 and 0.39, or up to 0.67 after flow normalization [28–31]. 86 

However, time series analysis of this ratio has not been performed on real-world data. 87 

1.4 Study objectives 88 

The goal of this study was to investigate the nature of the relationship between wastewater and 89 

case data over space and time to provide a basis for future modeling efforts. We present a large, 90 

curated dataset with wastewater and case data collected in California during the first two years of 91 

the COVID-19 pandemic, when case data quality was high. Our analyses reveal the instability of 92 

the relationship between wastewater and case counts and identify three main variables that could 93 

affect models for predicting cases from wastewater: dynamic lead/lag, changes in fecal shedding 94 

due to viral variants, and changes in reporting of individual cases to public health departments. 95 

2. Materials & Methods 96 

2.1 Wastewater sample collection and analysis 97 

Raw wastewater samples (n=2480) were collected via 24-hour flow- or time-weighted composite 98 

samplers from 26 sewersheds in California between 1 to 5 times per week (Table S1, Table S2). 99 

All sewer systems had separate storm sewers, with the exception of system D, where wastewater 100 

and storm sewers were combined. Sampling dates ranged between October 2, 2020 and June 101 

29, 2022, although not all sewersheds were sampled for the full time period. Sample collection 102 

points were at wastewater treatment plant influent (“sewersheds”) and at pump stations and 103 

manholes (“sub-sewersheds”). Samples were aliquoted (40 mL) into tubes containing the 4S 104 

method lysis mixture, shipped overnight to UC Berkeley, and analyzed according to the laboratory 105 

procedure described by Kantor et al. [32]. Analysis used the 4S method for total RNA extraction 106 

[33] followed by RT-qPCR for SARS-CoV-2 CDC N1, Pepper Mild Mottle Virus, and Bovine 107 

Coronavirus [3]. Quality controls included extraction negative controls, duplicate extractions, 108 

extraction spike-in controls (Bovine Coronavirus), triplicate RT-qPCR reactions, no-template 109 

controls, and standard curves, as described in Kantor et al. [32]. Data not passing quality control 110 

were removed and were replaced with repeated analyses wherever possible.  111 
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2.2 Wastewater data preparation 112 

Wastewater data were preprocessed as previously described [32]. Briefly, RT-qPCR outliers were 113 

removed, Cq values were converted to gene copy numbers using an aggregated standard curve, 114 

RT-qPCR replicates were combined by taking the geometric mean, and sample weight was used 115 

to calculate the gene copies per milliliter of wastewater. Extraction replicates were combined by 116 

taking the geometric mean. Five outliers that could be directly attributed to changes in plant 117 

operations or autosampler failures were manually removed. 118 

The wastewater concentration was normalized by flow to reduce the effects of dilution by 119 

precipitation, groundwater infiltration, and industrial wastewater. Precipitation data for the years 120 

2020-2022 were downloaded from the NOAA (National Oceanic and Atmospheric Administration) 121 

website for each county [34]. Using this dataset, we calculated the median dry flow for each 122 

sewershed by taking the median of daily flow rates for all days that were recorded as dry 123 

(precipitation < 0.2 inches) within the county. We then used this median dry flow to recalculate 124 

the SARS-CoV-2 RNA concentration in the wastewater and removed the industrial proportion of 125 

flow estimated by the wastewater agencies from the daily flow, as in Eq. 1 (Method 1). A second 126 

variation on this method (Method 2) entailed normalizing values only for days on which 127 

precipitation occurred. For Method 2, values were normalized according to Eq. 1 to offset a 128 

potential dilution and remove the industrial flow proportion, and all other values were normalized 129 

according to Eq. 2 to remove only the industrial flow proportion. We tested different time frames 130 

of up to three days after rain events to account for potential delays in the effect of precipitation on 131 

the dilution of the signal, however, including only the day of the rain event resulted in the highest 132 

correlations (not shown). 133 

𝒄(𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅) =  
𝒄(𝒓𝒂𝒘)

𝟏𝟎𝟎 % −  𝒇𝒊𝒏𝒅𝒖𝒔𝒕𝒓𝒊𝒂𝒍
∗ 

𝒒

𝒒𝒅𝒓𝒚 𝒎𝒆𝒅𝒊𝒂𝒏
 Eq. 1 

𝑐(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) =  
𝑐(𝑟𝑎𝑤)

100 % −  𝑓𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙
 Eq. 2 

Where c(normalized) is the flow-normalized RNA concentration (gc/mL), c(raw) is the measured 134 

SARS-CoV-2 RNA concentration (gc/mL), q is the daily flow (MGD), qdry median is the median dry 135 

flow (MGD), findustrial is the percentage of total flow estimated to come from industrial sources. 136 

Normalization with PMMoV, TSS and conductivity was performed according to the 137 

following Eq. 3. 138 

𝒄(𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅) = 𝒄(𝒓𝒂𝒘) ∗ 
𝒏𝒑(𝒓𝒂𝒘)

𝒏𝒑(𝒎𝒆𝒅𝒊𝒂𝒏)
 Eq. 3 

Where c(normalized) is the normalized SARS-CoV-2 RNA concentration (gc/mL), c(raw) is the 139 

measured SARS-CoV-2 RNA concentration (gc/mL), np(raw) is the concentration of the 140 

normalization parameter, and np(median) is the median concentration of the normalization 141 

parameter. 142 
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Previous studies recommend applying a 7-day or 10-day moving average to the 143 

wastewater data [23]. However, as the sampling frequencies in our dataset varied over time and 144 

space, lowess smoothing and interpolation was chosen for analysis of lag and lead times and for 145 

data visualization [3]. The smoothing coefficient alpha was defined as alpha = X/n, where n was 146 

the total number of data points at a given site. We note that because lowess smoothing depends 147 

on the total number and density of data points, it may have led to slightly different effects on data 148 

from different sites. Unless stated, other analyses were performed on the original wastewater 149 

dataset to maintain the integrity of the recorded data. 150 

2.3 COVID-19 case data collection and preparation 151 

Masked daily case counts per sewershed were provided by the California Department of Public 152 

Health, based on sewershed boundaries provided by wastewater agencies. Cases were attributed 153 

to the earlier of 1) the date of diagnostic testing or 2) the reported date of first symptoms, when 154 

both dates were available. Sewershed population estimates were based on reports by the 155 

wastewater agencies and, if unavailable, government census data (Table S1). Daily case counts 156 

were masked below 3 cases for sewersheds representing populations of 200,000 or less, and 157 

below 5 cases for populations of 50,000 or less, but instances of zero cases were reported as 158 

zero. During data preparation, masked values were filled with the mean of the masked ranges 159 

(Table S3). Case counts and testing rates were normalized to a population of 100,000 and a 160 

centered 7-day moving average value was calculated to smooth weekly periodicity. For log-scaled 161 

analyses, days with zero average cases were dropped prior to analysis. 162 

2.4 Normalization of case data to account for diagnostic testing rates 163 

County-level diagnostic testing rate data were acquired from publicly available sources [35]. In 164 

order to compensate for fluctuations in how accurately the case count data reflected the true 165 

incidence of infection, we adjusted the reported cases to the diagnostic testing rates according to 166 

the following equations. Equation 4 linearly inflates the daily cases according to the fraction of 167 

utilized testing capacity on a given day. Equation 5 compensates for a positivity rate bias as 168 

defined by Chiu and Ndeffo-Mbah, 2021 [22]. 169 

 170 

𝒏𝒄
′ = 𝒏𝒄

𝒏𝒕 𝒎𝒂𝒙

𝒏𝒕
 Eq. 4 

𝑛𝑐
′ =

𝑝

𝑛𝑡
−0.5 ∗ 100, where 𝑝 =

𝑛𝑐

𝑛𝑡
 Eq. 5 

Where nc’ is the adjusted number of cases, nc is the original number of cases, nt is the number of 171 

tests, nt max is the maximum number of tests ever reported on a single day within the study period, 172 

and p is the test positivity rate. As described in Section 2.3, all values are normalized by 173 

sewershed population size. 174 
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2.5 Data analysis 175 

The data analysis pipeline was created in Python 3.7 using the Pandas v1.3.5 and Numpy v1.21.6 176 

libraries. The rank correlation of smoothed daily cases with raw and normalized wastewater 177 

sampling data was quantified for each sewershed using the Kendall’s Tau b coefficient (SciPy 178 

v1.7.3) [3]. Autocorrelation and lowess smoothing were calculated using Statsmodels v0.10.2, 179 

and data visualization was performed using Plotnine v0.9.0.  180 

For analyses of individual surges, the following timeframes were used: the first major 181 

surge we observed (including Epsilon, Alpha, and other minor variants) was defined from the start 182 

of the time series (October 2020) to April 15, 2021, the Delta surge from April 16 to November 183 

26, 2021, and the Omicron BA.1 surge from November 27 to March 15, 2022 based on California 184 

Department of Public Health [36] and COVID-CG [37] and our wastewater sequencing data 185 

(unpublished).  186 

To assess the stability of the relationship of log-scaled COVID-19 cases and log-scaled 187 

wastewater SARS-CoV-2 concentrations, we implemented a linear regression model with Scikit-188 

Learn v1.13 using these inputs during the Epsilon/Alpha variant surge for sewersheds D1, D2, K, 189 

L, and M. This model was then applied to the subsequent Delta and Omicron variant surges and 190 

evaluated using the R2 goodness-of-fit parameter (Table S4). The data analysis pipeline and all 191 

necessary datasets are available at GitHub (github.com/RebeccaSchill/WBE). 192 

3. Results and Discussion 193 

We analyzed the SARS-CoV-2 RNA concentration in 2480 wastewater samples from 26 194 

sewersheds sampled between 1-5 times per week from approximately October 2020 - April 2022. 195 

This data was paired with sewershed-specific COVID-19 daily case counts and county-level 196 

diagnostic testing rates and positivity rates. Populations of the sewersheds ranged from 12,000 197 

to 4 million, and flow rates ranged from 0.2 to 243 million gallons per day (Table S1). Precipitation 198 

was infrequent (0% - 26% of days in the time series for each site), due to a combination of drought 199 

and mediterranean climate in California. 200 

3.1 Denoising via normalization of wastewater and case data 201 

We first compared methods for removing noise from the wastewater and case data. As previously 202 

described, denoising efficacy was evaluated based on changes to Kendall’s tau calculated for the 203 

relationship between wastewater and case data (Table 1) [3,38]. Flow normalization marginally 204 

improved the correlation for 14 sewersheds, but the effect of normalization was minimal, likely 205 

because of infrequent precipitation (Table S5). Normalization of the wastewater data from two 206 

major sewersheds (D1 and D2) to PMMoV, TSS, or conductivity also did not increase correlations 207 

with case data (Table 1, Table S6). Other studies have shown that normalization of wastewater 208 

to PMMoV can decrease noise, but successes have been inconsistent and appear to be 209 

dependent on the laboratory method used for virus concentration and extraction, as well as 210 

sewershed size [39–41], and possible dietary variation. Our laboratory method for RNA extraction 211 

(4S, Whitney et al., 2021) lacked bead-beating and therefore may not have achieved complete 212 

and consistent lysis of PMMoV, required for accurate quantification.  213 

Normalization of the sewershed-level case counts to the county-level diagnostic testing 214 

rate (Eq. 4) reduced the strength of the correlation to wastewater data. Accounting for the test 215 
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positivity rate in addition to testing rate in a bias function (Eq. 5) resulted in a more modest 216 

decrease in correlation (Table 1). This suggests that additional calibration of the testing bias 217 

model (e.g. with regional seroprevalence data) is likely required. 218 

 219 

Table 1. Average Kendall’s correlation of log-scaled values (for all chosen sewersheds) before and after 220 

applying different normalization methods to 7-day moving average case data and unsmoothed 221 

wastewater data.  Averages represent all 26 sewersheds. 222 

 Wastewater data normalization methods 

Case data normalization methods No normalization Flow (Method 1, Eq. 1) Flow (Method 2, Eqs.  1 & 2) PMMoV 

No normalization 0.57 0.58 0.57 0.47 

Normalized by testing capacity 
(Eq. 4) 

0.50 0.50 0.49 0.12 

Normalized by testing bias (Eq. 5) 0.54 0.54 0.53 0.14 

 223 

3.2 The correlations between wastewater and case data differed by sewershed 224 

Flow-normalized Kendall’s tau for wastewater and case data from different sewersheds exhibited 225 

a wide range, from 0.27 to 0.74 (Figure 1). In general, larger treatment plants with more frequent 226 

sampling and less masking of individual case data showed the highest tau values (Table S3). 227 

Meanwhile, smaller sewersheds appeared subject to higher noise, for several possible reasons. 228 

First, when the total absolute number of infected individuals are low, as is often typical in small 229 

sewersheds, each individual contributes a higher fraction of the total wastewater SARS-CoV-2 230 

concentration, and sampling effects (e.g. missing a flush) can create more noise [12]. Additionally, 231 

the effect of mobility (e.g. one infected person entering or leaving the sewershed) is stronger [42].  232 

Second, consistent with recommendations from the US CDC [43], we found that 233 

sewersheds with fewer than 2 samples per week tended to produce weaker correlations, and 234 

these were often smaller treatment facilities. This is in line with reports of lower sampling 235 

capacities at smaller wastewater treatment plants [44]. Many of these small sewersheds also had 236 

fewer than 50 total sampling events (Table S1). Additionally, we note that the time series of 237 

wastewater and case counts were autocorrelated (Durbin-Watson statistic d < 1.5 in all 238 

sewersheds), and autocorrelation may have increased with increasing sampling frequency, 239 

affecting tau values differently in each sewershed. 240 

Third, a larger proportion of daily case data was masked in the smallest sewersheds, with 241 

a median value of 45% of data masked (Table S3). Two sewersheds with a masking proportion 242 

>95% were removed from further analyses. Lastly, within-sewershed fluctuations in diagnostic 243 

testing rates may also have led to differences in wastewater-case correlation between 244 
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sewersheds [45] (see Section 3.6). We were unable to assess disparities in testing rates given 245 

that testing rate data were available at the county level only, which may not be representative of 246 

individual sewersheds. Overall, the collection of high-resolution datasets improves the reliability 247 

of the relationship between case counts and wastewater data and the accuracy of forecasting 248 

models [46]. These findings motivate policy to report detailed diagnostic testing and COVID-19 249 

case data and to provide support for smaller communities to increase wastewater sampling 250 

frequency in locations where case data may be the least accurate [47]. 251 

 252 

253 
Figure 1. The Kendall’s correlation coefficient between log-scaled cases and unsmoothed log-scaled 254 

wastewater SARS-CoV-2 RNA concentrations (y-axis) increased with increasing sewershed population (x-255 

axis) and was affected by weekly sampling frequency (point size) and by the fraction of case data that was 256 

masked (point color). 257 

3.3 Lag between case data and wastewater data was dynamic over time and space 258 

Modeling work may need to take into consideration the lead/lag between case counts and 259 

wastewater data. As previous studies have reported wastewater lead times over case data of 260 

between 0 and 14 days [48], we hypothesized that lead time could vary substantially by 261 

sewershed and over time due to factors such as evolving virus variants, sewage travel distance, 262 

and access to and frequency of diagnostic testing [49]. To assess lead/lag times, we first 263 

smoothed the wastewater data to remove noise (see Methods; Section 2.2), then calculated the 264 

cross-correlation Kendall’s tau-b between the flow-normalized wastewater data and case data 265 

shifted in each direction by 1 to 14 days (see Methods; Figure S1A). A wastewater lag/lead time 266 

between -3 days and +4 days was detected in four of the seven sewersheds that were sampled 267 

throughout the entire time series, but the corresponding increases in Kendall’s tau-b were very 268 

low with a maximum increase of 3%. 269 
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We next examined whether the wastewater lead/lag changed during periods when 270 

different variants predominated. Overall, varying wastewater lead times from +1 to +13 days were 271 

observed in 12 of 17 sewersheds during the Epsilon/Alpha variant-dominated surge. This lead 272 

time was also observed in 14 out of 20 sewersheds during the Delta variant surge but faded during 273 

the Omicron variant surge, where wastewater data lagged and led case data in an equal number 274 

of sewersheds (Figs. S1B, S1C, S1D). The dynamic behavior of the time shift between 275 

wastewater and case data across variants is demonstrated in detail at two sewersheds (D1 and 276 

K) in Figure 2. Notably, during the first surge we observed, the peaks in wastewater and case 277 

data are not aligned, resulting in very long lead times. This is likely due to a combination of testing 278 

fluctuations over the winter holidays and the multiple overlapping surges of different variants 279 

(Epsilon, Alpha, Gamma, and others). The wastewater lead time lessened significantly during the 280 

Delta surge in both sewersheds and disappeared during the Omicron surge. This aligns with 281 

previous reports of reduced wastewater lead times after the Alpha surge [7,50]. 282 

The use of cross-correlation to determine lag/lead times between case data and 283 

wastewater data is based on the assumption that there is a static lag between the two datasets. 284 

Static lag could reasonably stem from near-constant factors such as sewer transit time (constant 285 

within a sewershed) or delay between infection and symptom onset that would trigger diagnostic 286 

testing (assumed constant for each variant). However, our findings of dynamic lag over time and 287 

across sewersheds suggest that other factors are at play. Wastewater sampling frequency, 288 

population-level immunity, or changes in diagnostic testing strategy/availability differed between 289 

surges and locations and likely affected lead times. Previous studies have highlighted that lead 290 

time calculations need to be adapted to different purposes, for example real-time decision-making 291 

versus retrospective data analysis [48]. In this study, due to the applied smoothing methods, lag 292 

calculations do not represent real-time data availability, but instead reveal a potential delay in 293 

measurable signal between wastewater and diagnostic testing. Our findings of dynamic lead times 294 

suggest that cross-correlation, and by extension, simple linear regression models (Table S4), are 295 

therefore insufficient for describing the relationship between case and wastewater data for 296 

retrospective data analysis, and dynamic lead times will affect input data for modeling. 297 
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298 

 299 

Figure 2. Lag between wastewater and individual case data varied over time and between 300 

sewersheds. Flow-adjusted wastewater SARS-CoV-2 concentrations in gene copies per milliliter 301 

(orange), COVID-19 cases per 100,000 people (blue), including a lowess smoother (alpha=0.05) 302 

are shown for two sewersheds. Sewershed D1 (top) represents a population of 750,000, with high 303 
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sampling frequency, while sewershed K (bottom) represents 480,000 people with intermittently 304 

reduced sampling frequency. Vertical lines indicate minima and maxima of the timeseries of cases 305 

(blue) and wastewater (orange). Labels indicate the wastewater lead time at the surge peak in 306 

days. 307 

3.4 The ratio of cases per wastewater RNA was not constant over time and space 308 

To explore the dynamic nature of the relationship between wastewater and case data, we 309 

calculated the ratio of log(cases) per log(wastewater concentration) (see Figure S2 for example). 310 

For five large sewersheds sampled continuously throughout the analyzed time frame (Figure 3), 311 

we found that the magnitude of the ratio was different at each sewershed, likely affected by the 312 

accuracy of the population estimates. The ratio also changed over time: during the Epsilon/Alpha 313 

surge, the ratio remained stable overall before decreasing to a minimum just before the peak of 314 

the Delta surge. The ratio then recovered and increased to a maximum during the first Omicron 315 

surge. Towards the end of this surge, the ratio decreased once more. These developments were 316 

similar at sewersheds D1, D2, and K, but less pronounced or more stochastic in sewersheds L 317 

and M and others where sampling was less frequent (Figure 3; see Figure S3 for all sewersheds).  318 

 319 

Figure 3. Ratio of log(cases per 100,000) over log(wastewater concentration) at sewersheds D1 320 

(n=262), D2 (n=244), K (n=172), L (n=121), and M (n=131), for three surges (separated by vertical 321 

gray lines). Smoothed lines were generated with lowess (alpha=0.05), and the dashed line 322 

represents the median ratio across all 5 sewersheds (0.55). For each sewershed shown, case 323 
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data masking was below 5% of all data points. Two outliers were removed at sewershed M for 324 

visualization. 325 

3.5 Ratio of cases per wastewater RNA differed by variant  326 

To test for the effect of evolving virus variants on wastewater surveillance data, we calculated 327 

point estimates for the ratios in each sewershed as follows: for each variant surge, we identified 328 

the maximum number of cases per 100,000 people (centered 7-day average) and the maximum 329 

lowess-smoothed wastewater concentration reported. Then, we calculated the ratio by dividing 330 

the log-scaled maximum cases by the log-scaled maximum wastewater concentration. We could 331 

not isolate the Epsilon and Alpha variants, as the surges partially coincided. Although our analysis 332 

was limited to 5 sewersheds, we observed a significant increasing trend in the ratio from the Delta 333 

variant to the Omicron variant (Figure 4). The decrease between the Epsilon/Alpha and Delta 334 

variants could be observed as well but the difference was not statistically significant. The ratio 335 

appears consistently lower for sewershed K but sewershed-specific differences were not 336 

significant (Kruskall-Wallis, p = 0.429) 337 

Additionally, we found that a linear regression model trained to predict case data from 338 

flow-normalized unsmoothed wastewater data for Alpha/Epsilon surge deteriorated in fit during 339 

the Delta and Omicron BA.1 variants (see Table S4). Overall, these findings agree with the reports 340 

of increased fecal and oro-nasopharyngeal viral loads during the Delta surge [51,52] and with 341 

reduced fecal shedding observed with the Omicron variant [53,54]. While SARS-CoV-2 oro-342 

nasopharyngeal viral load was reportedly reduced after vaccination [55–57], more research is 343 

needed to determine potential effects of vaccination and prior infection on fecal shedding rates. 344 

 345 
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 346 

Figure 4. The ratio of log(cases) over log(wastewater RNA) changes for each variant at 347 

sewersheds D1, D2, K, L, and M. The ratio was calculated from the peaks of the three surges 348 

after lowess smoothing (alpha = 5 / total samples). The difference between the Omicron BA.1 349 

variant and the other variants was statistically significant (Mann-Whitney, * p = 0.032, ** p = 350 

0.008), while the difference between the Epsilon/Alpha and other variants to the Delta variant was 351 

not (p = 0.421). 352 

3.6 Diagnostic testing rates influenced the cases-to-wastewater RNA ratio 353 

Given the drop in the cases-to-wastewater RNA ratio during the pre-Delta period, we 354 

hypothesized that changes in diagnostic testing dynamics might influence this ratio. Indeed, we 355 

observed that low testing rates corresponded with low ratios throughout the time series, including 356 

during the pre-Delta trough (Figure 5). Correlations between cases-to-wastewater ratios and 357 

diagnostic testing rates over time were significant in several sewersheds (Table S7). Notably, the 358 

strengths of these relationships differed for sewersheds in the same county (Table S7), 359 

suggesting that sewershed-level testing rates differed from those at the county level or the quality 360 

of wastewater data differed for sewersheds in the same county. Additionally, the measurement 361 

uncertainty was likely higher during periods of low case counts and low wastewater 362 
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concentrations, which could also have contributed to the change in the ratio observed during 363 

these periods. 364 

Although low diagnostic testing rates may partially explain low ratios between surges, we 365 

note that the cases-to-wastewater RNA ratio recovers more quickly than the testing rates, 366 

suggesting that undertesting cannot be the only cause of lower ratios (Figure 5). This is 367 

underlined by the fact that normalizing by testing rates (via Eq. 4 and 5) did not completely flatten 368 

the cases-to-wastewater ratio over time (Figure S4). Critically, differences in the slopes of the 369 

case and wastewater curves may also have affected the ratio between them. As has been shown 370 

in previous studies [23], we suggest that proportionally more cases remained undetected at the 371 

very beginning of a surge until the diagnostic testing rates adapted, as the case curves increased 372 

more steeply than the wastewater curves before the peak of each surge (Figure S5). This affected 373 

the ratio as well (Table 2). After the peak of each surge, the decline in wastewater RNA 374 

concentrations was more gradual than the decline in cases, perhaps due to prolonged fecal 375 

shedding [58]. We echo the suggestion by Daza-Torres (2022), that input data for modeling 376 

should be drawn from time periods with adequate testing. Future work could assess testing 377 

behavior and the distribution of tests across the population (e.g. symptomatic vs. asymptomatic, 378 

retesting, etc.), to further adjust case data. 379 

 380 

Figure 5. Time series from 5 sewersheds (D1, D2, K, L, M) of the median weekly COVID-19 381 

cases per day (top), median weekly flow-adjusted wastewater SARS-CoV-2 RNA (gc/mL) 382 

(middle) and the ratio between them (bottom). For each sewershed, for a given week, a minimum 383 

of two data points was required for a weekly median to be shown. The color of the data points 384 

represents the daily diagnostic testing rate per 100,000 people, and the shape indicates the 385 

county in which the sewershed is located. 386 
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4. Conclusions 387 

Based on our observations, we define a framework of key factors that may affect the cases-to-388 

wastewater SARS-CoV-2 RNA ratio over time, encompassing variation in diagnostic testing rates, 389 

changes to fecal shedding, and fluctuations in the temporal off-set between wastewater 390 

surveillance and case count data (Table 2). Future efforts could model these factors to come to 391 

a more accurate understanding of the ground truth case counts. Additional work could also 392 

incorporate hospitalization [7], vaccination, mobility and other data types that were not considered 393 

here. Importantly, modeling work should ensure that the case data used to train a predictive model 394 

are drawn from a period(s) when testing was adequate [23]. Additionally, we found that within our 395 

dataset, wastewater data varied in quality, and our analysis was limited by the changing frequency 396 

of wastewater sample collection throughout each time series. Thus, wastewater data to be used 397 

for modeling requires careful curation and potentially smoothing. However, we observed that 398 

smoothing led to the loss of extreme values, many of which were important maxima and minima. 399 

Smoothing can hide or delay rapid changes in the time series, affecting the lead/lag between 400 

wastewater data and case counts. Future work should compare raw and smoothed model inputs 401 

to ensure that smoothing maintains the integrity of the data. 402 

Looking forward, once sewershed-specific models have been established, subsequent 403 

modeling will benefit from the fact that the sewersheds themselves will remain relatively 404 

consistent: the structure of the sewer system itself, transit time of sewage, noise from 405 

precipitation, and industrial discharge can be taken into account with ongoing data and existing 406 

normalization methods. These models will be independent from case counts and testing, and thus 407 

independent from lead/lag times relative to cases. The key factor subject to change will be fecal 408 

shedding rate and duration (Table 2). Models will require updated in vivo studies of fecal shedding 409 

profiles to adjust for new SARS-CoV-2 variants and evolving immunity in the population. 410 

Table 2. Scenarios that can lead to changes in the ratio of log transformed case to wastewater 411 

data. 412 

Ratio Changes to factors 
contributing to case data  

Changes to factors 
contributing to wastewater 
signal 

Both 

Increase Increased diagnostic testing rates 
without proportional increase in 
incidence 

Increase in incidence that is 
captured in the case data but is not 
reflected in wastewater data due to 
lower shedding rate or duration 

Tested cases increase 
before this is reflected 
in the wastewater data 

 

Tested cases increase 
more steeply than is 
reflected in the 
wastewater data 

Decrease Increase in incidence reflected in 
wastewater data is not reported in 
case data due to undertesting 

Higher wastewater values due to 
increased shedding rate or duration 

Wastewater values 
increase before cases 
reflect the change 
(undertesting) 
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 413 

Supplementary Materials 414 

Figure S1A. Kendall’s correlations between wastewater SARS-CoV-2 RNA and COVID-19 415 

cases per 100,000 people without timeshift (left) and cross-correlation heatmap of changes in 416 

Kendall’s tau after shifts of up to -14 to +14 days were applied to case data (right). The 417 

maximum correlation is indicated by gray points. Prior to correlation calculations, all wastewater 418 

data were flow-normalized, log-scaled, and lowess smoothed (with interpolation) to reduce 419 

noise, and all case data were converted to 7-day moving averages and log-scaled. Sewersheds 420 

were included only if they were sampled throughout the entire time series. 421 

Figure S1B. Kendall’s correlations between wastewater SARS-CoV-2 RNA and COVID-19 422 

cases per 100,000 people during the Epsilon/Alpha variant-dominated surge without time shift 423 

(left) and after shifts of up to -14 to +14 days were applied to case data, (right), as in Figure 424 

S1A.  425 

Figure S1C. Kendall’s correlations between wastewater SARS-CoV-2 RNA and COVID-19 426 

cases per 100,000 people during the Delta variant-dominated surge without time shift (left) and 427 

after shifts of up to -14 to +14 days were applied to case data, (right), as in Figure S1A. 428 

Figure S1D. Kendall’s correlations between wastewater SARS-CoV-2 RNA and COVID-19 429 

cases per 100,000 people during the Omicron BA.1 variant-dominated surge without time shift 430 

(left) and after shifts of up to -14 to +14 days were applied to case data, (right), as in Figure 431 

S1A. 432 

Figure S2. Time series of flow-normalized wastewater SARS-CoV-2 RNA concentration (gc/mL, 433 

orange), 7-day moving average COVID-19 cases per 100,000 people (blue), the ratio of log-434 

scaled cases over log-scaled RNA concentration (gray), and lowess-smoothed curves (alpha = 435 

0.05), at site D1 from August 25, 2020 to May 31, 2022. 436 

Figure S3. Time series of the ratio between log10(COVID-19 cases) and log10(wastewater 437 

SARS-CoV-2 RNA concentration) at 24 sites. Graphs are sorted by sewershed population and 438 

colored by mean weekly sampling frequency. Fraction of case data that is masked is 439 

represented by the following: *0-0.05 **0.05-0.33 ***>0.33. One outlier at site F was removed for 440 

visualization. 441 

Figure S4. Lowess-smoothed (alpha=0.1) ratio of log(cases) to log(wastewater concentration) 442 

non-normalized, normalized by testing capacity (Eq. 4) and normalized by testing bias (Eq. 5) at 443 

24 sewersheds. Averages were calculated for each week and each sewershed. For each 444 

sewershed, for a given week, a minimum of two data points was required for inclusion.  445 

Figure S5. Lowess smoothed time series of log-scaled, flow-normalized wastewater SARS-CoV-446 

2 RNA concentration (gc/mL, orange) and log-scaled, 7-day moving average COVID-19 cases 447 

per 100,000 people (blue) at sites D1, D2, K, L, and M. Both time series were rescaled by defining 448 

the minimum as 0 and the maximum as 1. 449 

Table S1. Overview of sites and sampling information. 450 
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Table S2. Input wastewater dataset. 451 

Table S3. Summary of sewersheds grouped by serviced population. 452 

Table S4. R2 values of linear regression trained on the relationship of log-scaled COVID-19 453 

cases and log-scaled wastewater SARS-CoV-2 RNA concentration during Alpha/Epsilon variant 454 

surge in each sewershed. 455 

Table S5. Differences in Kendall's Tau-b correlation coefficient after flow normalization using 456 

two methods (see Section 2.2), in relation to the coefficient of variation of flow at the respectives 457 

sites. 458 

Table S6. Kendall's tau values for the correlation between log10(cases per 100,000) and 459 

log10(wastewater SARS-CoV-2 RNA concentrations) with normalization. 460 

Table S7. Kendall’s correlation coefficient for the relationship between sewershed cases-to-461 

wastewater RNA and county-level testing rate. 462 
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