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Abstract 
 
Background 
When tackling complex public health challenges such as childhood obesity, interventions 
focused on immediate causes, such as poor diet and physical inactivity, have had limited success, 
largely because upstream root causes remain unresolved. A priority is to develop new modelling 
frameworks to infer the causal structure of complex chronic disease networks, allowing disease 
“on-ramps” to be identified and targeted. 
 
Methods 
The system surrounding childhood obesity was modelled as a Bayesian Network, using data 
from The Longitudinal Study of Australian Children. The existence and direction of the 
dependencies between factors represent possible causal pathways for childhood obesity and were 
encoded in directed acyclic graphs (DAGs). The posterior distribution of the DAGs was 
estimated using Partition Markov chain Monte Carlo. 
 
Results: We have implemented structure learning for each dataset. For each wave and cohort, 
socio-economic status was central to the DAGs, implying that socio-economic status drives the 
system regarding childhood obesity. Furthermore, the causal pathway socio-economic status 
and/or parental high school levels → parental body mass index (BMI) → child’s BMI existed in 
over 99.99% of posterior DAG samples across all waves and cohorts. For children under the age 
of 8y, the most influential proximate causal factors explaining child BMI were birth weight and 
parents’ BMI. After age 8y, free time activity became an important driver of obesity, while the 
upstream factors influencing free time activity for boys compared with girls were different. 
 
Conclusions: Childhood obesity is largely a function of socio-economic status, which is 
manifest through numerous downstream factors. Parental high school levels entangle with socio-
economic status, hence are on-ramp to childhood obesity. The strong and independent causal 
relationship between birth weight and childhood BMI suggests a biological link. Our study 
implies that interventions that improve socio-economic status, including through increasing high 
school completion rates, may be effective in reducing childhood obesity prevalence. 
 
 
 
 
 
 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.22282647doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282647
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

Introduction 
Chronic diseases emerge as the outcome of complex interactions among many variables, 
spanning individual biology (genetics, epigenetics, metabolism, physiology, behaviours) through 
to environmental, social and psychological, societal, and global influences.1 Knowledge of this 
complexity has been important in moving beyond simple linear regression approaches to the 
prevention and treatment of chronic diseases. However, the challenge remains to tame the 
complexity of chronic disease systems by 1) simplifying the system, and 2) identifying key 
causal pathways among the tangle of influences, which can then be targeted through public 
health and clinical interventions.2 
 
One advance towards simplifying the system has been the discovery that many chronic 
conditions (e.g., obesity, cardiometabolic diseases, many cancers, dementia, autoimmune 
diseases), as well as the biology of ageing, share a common immuno-metabolic substrate, which 
is powerfully modulated by diet, sleep, physical activity and mental health.3,4 Identifying such 
common mechanisms and causal structures simplifies the complex disease system, potentially 
rendering it more tractable to interventions that yield multiple simultaneous benefits. 
 
When developing effective intervention targets within a complex system, it is important to 
distinguish immediate causal factors from influences which serve as “on-ramps” to increased risk 
of disease. Commonly, health interventions target immediate causes, such as poor diet or 
physical inactivity in the case of obesity, while leaving upstream root causes untouched and the 
problem unsolved.5 Hence, a priority is to develop modelling frameworks which can infer the 
causal structure of chronic disease networks. 
 
Here we implement one of the latest techniques in causal modelling, Bayesian networks (BN), to 
conduct a probabilistic causal analysis of the factors leading to childhood obesity, using data 
from a population study of Australian children. This method has the advantage of separating 
causal factors into those that are immediate factors, and therefore directly connected to the 
outcome, from those that serve as on-ramps, and are connected indirectly via intermediate 
variables.6 Inference in BN has two parts: inference regarding the parameters of a particular 
network structure, and inference regarding the actual structure itself. BN studies in health care 
(reviewed by McLachlan et al.7) have largely ignored inference regarding the network structure 
and either assumed a particular structure a priori or sought the most likely structure without 
considering the relative probabilities of all possible structures. The latter is especially 
problematic when there are many near equally likely structures, as is inevitably the case within 
complex networks of interacting variables such as for chronic disease. To address these 
problems, we used a technique, known as Partition Markov chain Monte Carlo (PMCMC),8 to 
place probabilities on all possible network structures rather than selecting a single most likely 
network structure.  
 
Methods 
Data sources 
Data for the analyses came from ‘Growing Up in Australia: The Longitudinal Study of 
Australian Children’ (LSAC),9 Australia's nationally representative children’s longitudinal study, 
focusing on social, economic, physical, and cultural impacts on health, learning, social and 
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cognitive development. The study tracks two cohorts of children, referred to as the birth (B) 
cohort (5107 infants from 0-1 years old) and the kindergarten (K) cohort (4983 children from 
ages 4-5 years). Data were collected over seven biennial visits ("Waves") from 2004 to 2016.  
 
A selection of ~25 variables (Table 1) was chosen from the questionnaires for inclusion in 
Bayesian network models, informed by the existing literature on childhood obesity; e.g. the 
literature indicates that parental body mass index (BMI), socio-economic status, birthweight 
score and screen time are causally associated with childhood BMI.  
 

Insert Table 1 about here. 
 
Study design 
We analysed 12 of the cross-sectional datasets (Waves 2-7 in B cohort and Waves 1-6 in K 
cohort). For each Wave and cohort, a Bayesian network (BN)6 was used to model the factors 
surrounding childhood BMI. At each time point (Wave) the cross-sectional dataset was used to 
construct the distribution of possible network structures, allowing for inference on the causal 
pathways to childhood BMI at that time point. By comparing cross-sectional networks, we could 
then follow the evolution of these causal pathways over time. 
 
To investigate the causal factors of childhood BMI in different genders, we further split each 
data set into boys and girls and made inferences on the corresponding Bayesian networks 
separately. 
 
Learning a Bayesian Network 
When aiming to infer causality, graph structures are sought which do not contain any 
cycles/loops (such loops lead to self-causality, which is hard to interpret). These structures are 
called directed acyclic graphs (DAGs). Figure 1a illustrates a hypothetical DAG containing four 
variables: socio-economic status, BMI of the primary caregiver (BMI1), BMI of the second 
parent (BMI2), and BMI of the child (BMI). The interpretation of this DAG is as follows: First, 
socio-economic status is antecedent to parents’ BMI, i.e., socio-economic status is causal to the 
parents’ BMI and not the other way around. Second, both caregivers’ BMIs are causal to the 
child’s BMI. Third, conditional on the caregivers’ BMIs, a child’s BMI is independent of socio-
economic status, i.e., socio-economic status has no impact on child BMI, given the parents’ BMI. 
 

Insert Figure 1 about here. 
  
A BN can be thought of as a graphical representation of a structural equation model (SEM).  In a 
Bayesian paradigm, one starts with a prior belief about the subject of interest (here, the DAG 
structure) based on existing knowledge. Then, on observing data, this prior belief is updated via 
what is known as a ‘likelihood function’ to arrive at a revised (‘posterior’) belief. In the context 
of BNs, the subject of interest has two components: first, the parameters of a particular DAG 
configuration, which we denote generically by 𝜃𝜃! , including quantities such as the strength of the 
connection between two factors; and second, the DAG itself, denoted by G. We wish to infer 
both 𝜃𝜃!  and G, which is done via the joint posterior distribution 𝑃𝑃( 𝜃𝜃! , 𝐺𝐺 ∣∣ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) =
𝑃𝑃( 𝜃𝜃! ∣∣ 𝐺𝐺, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 )𝑃𝑃( 𝐺𝐺 ∣ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ). We first make inference regarding the structure G, by attaching 
probabilities to structures, 𝑃𝑃( 𝐺𝐺 ∣ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) and then, given a structure, infer the parameters needed 
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to prescribe that structure	𝑃𝑃( 𝜃𝜃! ∣∣ 𝐺𝐺, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ). In the first step, 𝑃𝑃(𝐺𝐺 ∣ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ) is computed by 
integrating over all the possible values of parameters. This is different from traditional SEM 
which either assumes G is known or selects a single G,	𝐺𝐺/	say, using a model selection technique 
and then makes inference only about 𝜃𝜃!".10,11 However, structure learning is arguably more 
fundamental to causal inference than parameter estimation, since the parameters can only be 
estimated once the structure is known.  
 
The review by McLachlan and colleagues7 refers to three approaches for estimating a BN 
structure: data-driven, expert knowledge-driven, and hybrid approaches. These approaches are 
all Bayesian, which correspond to varying prior beliefs. The solely data-driven approach is 
analogous to a prior belief which assumes that each possible DAG is equally likely. The expert 
approach is analogous to a prior belief which assumes that the expert-constructed network is the 
true network, with probability 1.The hybrid approach, as used here, allows the strength of prior 
beliefs to vary both within and across structures; hence, information from different sources can 
be incorporated in a logically consistent manner, allowing the relative contributions of 
information from experts and from data to be measured. Importantly, hybrid approaches provide 
an ideal platform for formalising the collaboration between subject domain experts and specialist 
data experts: both groups are essential for success. 
 
Although Bayesian networks have the potential to implement causal inference using 
observational data, they are not without drawbacks. First, the number of possible DAGs grows 
super-exponentially with respect to the number of variables, and it is computationally infeasible 
to compute the likelihood for each possible DAG once there are more than only a moderate 
number (~10) of variables. Second, the structure learning algorithms can only learn up to a 
DAG’s equivalence class, in which all the DAGs are equally likely.6 The equivalence class is 
represented by a completed partially directed acyclic graph (CPDAG).6 CPDAGs contain 
undirected links which could be in either direction. Figure 1b shows the CPDAG of the DAG in 
Figure 1a. In Figure 1b, the undirected link between socio-economic status and BMI1 indicates 
we cannot distinguish the causal directions. For computational reasons, all the existing 
algorithms to estimate network structures assume that continuous variables cannot be ‘parents’ of 
discrete variables.12 In our data, there are both discrete and continuous variables. The algorithm 
we used to conduct structure learning is Partition Markov chain Monte Carlo (PMCMC)7 and the 
code is available at the Comprehensive R Archive Network (https://cran.r-
project.org/web/packages/ BiDAG/index.html). All the analyses in this paper were undertaken in 
R 4.0.4 (https://www.R-project.org/). PMCMC reduces the abovementioned computational 
challenges by collapsing the DAG space into partition space. We have adopted a strategy which 
considers every variable to be a Gaussian random variable to tackle the challenge caused by the 
existence of a mixture of continuous and discrete random variables in the data. The details can be 
found in the Supplementary Material.  
 
By applying PMCMC to the LSAC data, we obtained posterior samples of DAG structures at 
each time point for each Wave and cohort of the LSAC data. Following the changes in DAG 
structures across waves allowed us to observe how causal patterns change as children age.   
 
We also calculated the posterior probability of each DAG (top left corner), which describes the 
probability of each DAG given the data. These probabilities are expressed as a proportion of the 
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sum of the posterior probability densities corresponding to the top 100 graphs. The larger the 
value, the more probable is the graph. Mathematically, the probability is defined as #!

∑ #"#$$
"%#

, where 

𝑑𝑑% is the likelihood of the ith graph; i.e., a value of 70% indicates that when considering the 
subset of the top 100 graph structures, that graph has a posterior probability of 0.70 if each graph 
is equally likely a priori. 
 
Results 
 

Insert Table 2 about here. 
 
Table 2 lists the demographic features of the 2135 children depicted in Figure 2 (B cohort Wave 
5), stratified over three weight classes according to BMI (underweight or less, normal weight, 
overweight or greater, based on Cole and colleagues).13 The pattern of mean differences 
between weight classes is consistent with much of the previous literature on obesity. Children 
with obesity were more likely to have a lower socio-economic status score and more financial 
hardship; were less active with more TV minutes; have parents with higher BMI; and have a 
higher birth weight z-score. However, these mean differences cannot elucidate the causal 
dependencies represented by the DAGs. See the Supplementary Material for the demographic 
features of the other Waves. 
 

 
Insert Figures 2-3 about here 

 
Central role of socio-economic status and parental education over all time points 
The CPDAG derived from the most probable DAG for B cohort Waves 5 (age 8-9) is shown in 
Figure 2. It clearly shows that socio-economic status played a central role in the obesity networks 
we studied. For every Wave in the B cohort, socio-economic status sits in the central position of 
the CPDAG structure. This implies that socio-economic status drives almost everything else in 
the network structure. The same conclusion applies to other Waves. In LSAC, socio-economic 
status was derived from family income, parents' education and parents' occupational status 
(Gibbings and colleagues),14 however our results indicate that socio-economic status represents 
an important influence on child BMI over and above any of its constituents alone. In addition, 
more than 99% of the posterior samples of DAG structures contain a pathway from socio-
economic status or parental high school level to child BMI. The detail of percentages is found in 
Table 3. 
 

Insert Table 3 about here 
 
DAG structures from every Wave show the importance of both parents finishing high school 
(P1E for mother, P2E for father). These two variables are correlated with socio-economic status, 
and the relationships are present in every DAG. The importance of this relationship is especially 
apparent in the network for K cohort Wave 1 (Figure 3), for which no specific socio-economic 
status variable was available.  Figure 3 shows that in the absence of a specific socio-economic 
variable, parental high school level becomes the central node for the network. 
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Insert Figs 4 about here. 

 
Free time activity becomes a driver of obesity as children age 
For children up to the age of 6 years (Figure 4), a child's BMI is on the periphery of the DAG 
and is connected to the other variables only via the BMI of the child's carers (BMI1 and BMI2) 
and the child's birth weight z-score. After the age of 6 years, the drivers of childhood obesity 
become more complex. There is a formation of another sub-graph around child-specific 
variables, such as conduct disorder, emotional problems, sleep quality and quantity and 
electronic games, although there is considerable uncertainty associated with the direction and 
strength of these relationships at different Waves.  
 
Figure 2 shows that after age 8 years, free time activity (e.g., dancing and sports) becomes an 
important driver of obesity, and this, in turn, is driven by socio-economic status and the extent of 
electronic gaming by the child. Figure 4 also indicates that gender begins to impact a child's BMI 
from age 6 (B cohort Wave 4). However, gender does not directly influence a child's BMI; 
rather, it passes its influence through other paths, e.g., SEX → electronic gaming→ free time 
activity → child BMI, which is shown in Figure 2. To further investigate the impact of gender, 
we applied PMCMC to boys and girls separately. The CPDAG derived from the most likely 
DAG of B cohort Wave 5 is presented in Figure 5 for boys (Figure 5a) and girls (Figure 5b), 
respectively. For boys, the causal pathway electronic gaming → free time activity → child BMI 
emerges. However, for girls, sleep → free time activity → child BMI is the main pathway 
regarding how free time activity impacts child BMI. It would appear that boys and girls have 
different upstream factors influencing free time activity. 

Insert Figs 5 about here. 
 
 
To illustrate the difference between BN and multiple regression, we conducted analyses using 
both techniques on a dataset containing variables: child BMI, parents’ BMI, socio-economic 
status, and parental high school level. Child BMI was the dependent variable in multiple 
regression analysis, and we compared its results to that of BN. The most probable DAG obtained 
by PMCMC showed the complete set of direct and indirect causal pathways from each of the 
variables to child BMI. However, multiple regression only revealed the direct paths between 
parental BMIs and children’s BMI, with the other indirect relationships not detected. More 
details of this comparison can be found in the Supplementary Material. 
  
Discussion 
We have used BN to infer the causal pathways leading to childhood obesity and shown how this 
pathway changes as children age. Our analysis of the LSAC data demonstrated that parental high 
school level (both paternal and maternal) serves as an on-ramp to childhood obesity. When 
children were aged 2-4 years the causal pathway was: socio-economic status/parental high school 
level → parental BMI → child BMI. By the time the child was 8-10 years old, an additional 
pathway had emerged: parental high school level − socio-economic status → electronic games → 
free time activity → child BMI. 
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Obesity is a complex health issue, with multiple factors that operate at the level of the individual, 
family and beyond contributing to its development and maintenance.1,15,16 For example, strong 
positive associations between parental and offspring BMI have been documented in many studies 
using traditional regression analytic approaches.17–19 A range of other individual, family and 
socio-demographic characteristics are also associated with childhood obesity, including poor 
dietary intake, lower levels of physical activity, higher recreational screen time, family income 
and parental high school levels.18,20,21 Studies in high income countries have shown that social 
disadvantage, measured via family or parental income, parental high school level, occupation or 
employment status, is associated in childhood with both higher obesity prevalence rates and a 
range of obesity-related behaviours.18,22 
 
Such complexity has made it challenging to identify key causal pathways and hence to 
implement effective interventions.23 Our analyses have not only reinforced previous findings in 
relation to the multiple factors associated with childhood obesity but have now clarified the 
causal structure that underpins these associations. We have highlighted the central role of lower 
socio-economic status and low high school level for parents as the primary root cause of 
childhood obesity, which exerts its effect via several more proximal factors. Among these 
downstream factors, there was a strong and independent positive relationship between birth 
weight and childhood obesity, in keeping with findings from studies using traditional regression 
analyses.24 Birth weight itself is influenced by a range of genetic, epigenetic, maternal, in utero 
and social factors. 
 
It is this ability to infer complex causal structures without temporal information which makes BN 
such a powerful and useful technique in health and medical research. Causal inference is 
achieved by estimating the full joint distribution of potential factors as a product of conditionally 
independent distributions, thereby distinguishing between direct and indirect dependencies. In 
contrast, more conventional multiple regression techniques lack a mechanism to infer causality 
without temporal information.25 Indeed, multiple regression can be considered a specific 
example of a BN, where a particular dependency structure is imposed a priori, namely that all 
independent variables are directly related to the dependent variable. The marked difference 
between these two approaches is illustrated in the two distinct causal pathways shown in the 
Supplementary Materials, developed using a cut-down version of our dataset.  
 
In contrast to the structural equation modelling (SEM), another popular causal model, Bayesian 
networks learn the causal links, and the corresponding probabilities from the data, while SEM 
requires users either to specify the causal model prior to parameter estimation, based on expert 
knowledge or select an optimal structure based on some model selection criteria. 10,11 In our 
analysis, the computational challenge is greatly alleviated, firstly, by working closely with 
content experts to incorporate domain knowledge by constructing a form of “blacklist” in DAG 
structures, which includes all forbidden links, i.e., those considered by domain experts to be 
illogical or infeasible (see Supplementary Materials for full “blacklist”). Secondly, PMCMC is 
used to reduce the DAG space by grouping individual DAG structures into partitions.8 
Importantly, PMCMC also allows samples to be drawn from the posterior distribution over 
graphs and thereby to quantify uncertainty, which is of paramount importance for domain 
practitioners who use the resulting graph structures to make decisions.  
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Our results have important implications for interventions to address the complex issue of 
childhood obesity and demonstrate why intervening at the level of more proximate, downstream 
factors risks leaving the root causes of childhood obesity untouched, leaves the problem 
unsolved. It is well recognised that low levels of maternal and paternal high school levels are 
associated with inequalities in child health status and mortality.26,27 These disparities appear to be 
mediated through other social determinants of health, including socio-economic status and living 
conditions.28 There is some evidence that interventions which improve parental, especially 
maternal, education are associated with improvements in general measures of early childhood 
health and child mortality29.However, to our knowledge there have been no such studies that 
measure offspring weight status by mid-childhood or adolescence. Our analyses imply that 
interventions that improve socio-economic status, including through increasing high school 
completion rates, may lead to improvements in childhood obesity prevalence over much longer 
time spans. 
 
 
Limitations 
The LSAC data were collected in Australia which is a developed country. Thus, the children in 
this data set may only be representative of wealthy countries. It does not necessarily cover the 
characteristics of children from low- and middle-income countries.  
 
Our study used Bayesian networks to model the variables surrounding childhood obesity. 
Whereas BNs are powerful, they are not without their drawbacks. They are computationally 
expensive, due to the super-exponential growth of the number of possible graph structures. For 
example, a system with 20 factors has an order of 2190 possible graph structures, which is greater 
than the number of atoms in the universe. Therefore, exhaustive search is impossible and some 
constraints on the number of possible graph structures need to be imposed.  
 
All the presented causal pathways are only valid for the LSAC data. There is the possibility that 
some confounders were not measured in these data and misleading causal links may have 
resulted. For example, there could be further ‘upstream’ variables influencing both socio-
economic status and parental high school levels which might explain the apparent undirected link 
between those two variables. However, under the current dataset, socio-economic status and 
parental high school levels are co-dependent. 
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PMCMC : Partition Markov chain Monte Carlo 
LSAC: The Longitudinal Study of Australian Children’  
SEM: structural equation model 
CPDAG : completed partially directed acyclic graph 
Other abbreviations can be found in Table 1 
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Table 1. The descriptions of the variables in the analysis. 

Abbreviation Type Description 
BMI Continuous Child BMI z-score for age based on CDC growth reference. 

The adjustment was made by the data provider. 
BMI1 Continuous Parent1’s BMI. Parent1 is the primary carer who knows best 

of the child. 
BMI2 Continuous Parent2’s BMI. Parent2 is Parent 1’s partner or another adult 

in the home with a parental relationship to the study child. In 
most cases this is the biological father, but step-fathers are 
also common. 

FTA Discrete Study child’s choice to spend free time. 1: inactive, 2: both, 3: 
active. The data was collected via the face-to-face interview 
(F2F) with P1 and the study child. 

CD Discrete SDQ conduct problems scale (integer 0 to 10) of child. Higher 
value indicates more severe conduct problem. The SDQ was 
completed by P1 during the interview questionnaire (P1D). 

DP1 Discrete Parent 1 depression K6 score. Higher value indicates less 
depression. 

EG Continuous Total minutes playing electronic games per week. This was 
reported by P1. 

EM Discrete SDQ emotional problems scale (integer 0 to 10) of child. 
Higher value indicates more severe emotional problem. The 
SDQ was completed by P1 during the interview questionnaire 
(P1D). 

FH Discrete Household financial hardship score (0-6). 0: not hard; 6: very 
hard. 

FS Discrete Parent 1 financial stress (1-6). 1: Prosperous; 2: Very 
comfortable; 3: Reasonably comfortable; 4: Just getting along; 
5: Poor; 6: Very poor. The data was collected by F2F 
interview with P1. 

INC Continuous Usual weekly income for household. 
P1E  Discrete P1’s high school level. Higher value indicates more high 

school years completed. 
P2E  Discrete P2’s high school level. Higher value indicates more high 

school years completed. 
OD Discrete The quality of outdoor environment. Higher value indicates 

worse outdoor environment. This is derived from several F2F 
questions about the neighbourhood. 

RP1 Discrete The scale of parent 1 feeling rushed. Higher value indicates 
being less rushed. This data was completed by P1 during the 
interview questionnaire (P1D). 

SE Continuous The z-score for socioeconomic position among all families. 
The derivation of this variable can be found in Gibbings et. 
al.12 
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SL Discrete The study child sleep quality. Higher value indicates better 
sleep quality. The data was collected via the face-to-face 
interview (F2F) which was conducted with P1 and the study 
child. This variable is a summation of several questions, such 
as Wheezing, snoring, waking during the night, bed wetting, 
Nightmares and so on. 

SEX Discrete Gender. 1: Male; 2: Female. 
TV Continuous Total minutes watching TV per week. This was reported by 

P1. 
BWZ Continuous Birth weight Z-score. 
GW Discrete Gestation weeks. 
FV Discrete Serves of fruit and vegetables per day. This was reported by 

P1. 
HF Discrete Serves of high fat food (inc. whole milk) per day. This was 

reported by P1. 
HSD Discrete Serves of high sugar drinks per day. 
SLD Continuous Sleep time duration (in hours). This was reported by P1. 
LOTE Discrete Is child regularly spoken to in a language other than English 

by you or other relatives, babysitters or at child care, pre-
school or school? 1: NO, 2: YES. This data is collected via 
F2F with P1.  

 

Table 2. Birth cohort aged 8 to 9 

Characteristic Underweight 
N = 1071 

Normal 
N = 16011 

Overweight 
N = 4271 

Female 57 (53%) 763 (48%) 218 (51%) 
BMI z-score (BMI) -1.86 (0.68) 0.13 (0.59) 1.62 (0.38) 
socioeconomic position (SE) 0.35 (0.99) 0.33 (0.92) 0.06 (0.88) 
Child’s choice to spend free time (FTA)    

Active 29 (27%) 430 (27%) 86 (20%) 
Active and inactive 55 (51%) 750 (47%) 199 (47%) 
Inactive 23 (21%) 420 (26%) 142 (33%) 

Total No. of TV minutes for an average week (TV) 12 (7) 13 (8) 14 (8) 
Total No. of electronic game minutes for an average 

  
5.3 (5.2) 5.0 (4.9) 5.3 (5.4) 

SDQ Emotional symptoms scale (EM) 2.06 (1.99) 1.62 (1.76) 1.82 (1.87) 
SDQ Conduct problems scale (CD) 1.00 (1.14) 1.08 (1.30) 1.30 (1.44) 
Weekly household income (annual) (INC)    

$0-$999 ($0-$51,999) 10 (9.3%) 86 (5.4%) 46 (11%) 
$1,000-$1,999 ($52,000-$103,999) 34 (32%) 516 (32%) 133 (31%) 
$2,000-$2,999 ($104,000-$155,999) 37 (35%) 540 (34%) 154 (36%) 
$3,000 or more ($156,000 or more) 26 (24%) 459 (29%) 94 (22%) 

How family is getting on financially (FS)    
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Characteristic Underweight 
N = 1071 

Normal 
N = 16011 

Overweight 
N = 4271 

Prosperous/Very comfortable 25 (23%) 533 (33%) 113 (26%) 
Comfortable/getting along 82 (77%) 1,057 (66%) 308 (72%) 
Poor/Very poor 0 (0%) 11 (0.7%) 6 (1.4%) 

Hardship scale (FH) 0.15 (0.45) 0.13 (0.51) 0.21 (0.56) 
Parental school completion (P1E) 78 (73%) 1,281 (80%) 302 (71%) 
Parental school completion (P2E) 68 (64%) 1,088 (68%) 265 (62%) 
Parental body mass index (BMI1) 24.2 (4.9) 25.5 (5.1) 28.8 (6.0) 
Parental body mass index (BMI2) 25.7 (3.3) 27.3 (3.9) 29.4 (4.7) 
Frequency of feeling rushed (RP1)    

Always/Often 65 (61%) 992 (62%) 242 (57%) 
Sometimes 37 (35%) 502 (31%) 149 (35%) 
Rarely/Never 5 (4.7%) 107 (6.7%) 36 (8.4%) 

K-6 Depression scale summed score (DP1) 8.57 (2.65) 8.42 (2.83) 8.86 (3.33) 
Frequency ate fruit and vegetables (FV) 3.19 (1.25) 3.41 (1.38) 3.28 (1.38) 
Frequency ate high fat food (inc. whole milk) (HF) 3.20 (1.41) 3.24 (1.43) 3.12 (1.54) 
Frequency drank high sugar drinks (HSD) 0.99 (1.08) 0.94 (1.02) 1.04 (1.07) 
Poor sleep quality (SL)a 33 (31%) 463 (29%) 116 (27%) 
Wake up in the morning (Time) (SLD) 612 (43) 618 (38) 611 (43) 
Child regularly spoken to in a language other than English 

 
23 (21%) 251 (16%) 69 (16%) 

No. weeks of gestation (GW) 38.23 (6.01) 38.92 (3.76) 39.01 (3.44) 
Birth weight z-score (BWZ) -0.42 (0.99) 0.04 (1.04) 0.21 (1.10) 
1n (%); Mean (SD); aSleep problems > 0 
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Table 3. The percentage of the path (SE/P1E/P2E → BMI1/BMI2 → BMI) appearing in the 
posterior samples for every Wave. 

Wave 1 2 3 4 5 6 7 
B cohort NA 1.000 1.000 0.998 0.999 1.000 1.000 
K cohort 0.996 1.000 1.000 1.000 1.000 1.000 NA 

 

 
 

 
(a)                                                                       (b) 

Figure 1 legend. An example of directed acyclic graph (DAG) containing four nodes. A directed 
edge between two nodes may indicate causal relationship. For instance, SE → BMI1 could be 
interpreted that SE impacts BMI1.  SE denotes socio-economic status, BMI1 denotes the primary 
caregiver's BMI, BMI2 denotes the second caregiver's BMI and BMI denotes the child's BMI. 
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Fig 2 legend. The CPDAG derived from the most probable DAG for Wave 5 in B cohort. The 
child BMI node is highlighted by a red diamond shape. The thicknesses of the edges in the 
network correspond to the strength of relationship between nodes exists, with a thicker line 
denoting a higher absolute value. The link and orange edges indicate positive and negative 
relationships respectively. The ellipse nodes in each plot are colour-coded as follows: an orange 
node denotes ancestors of child BMI.  
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Fig 3 legend. The CPDAG derived from the most probable DAG for Wave 1 in K cohort.  
The child BMI node is highlighted by a red diamond shape. The thicknesses of the edges in the 
network correspond to the strength of relationship between nodes exists, with a thicker line 
denoting a higher absolute value. The link and orange edges indicate positive and negative 
relationships respectively. The ellipse nodes in each plot are colour-coded as follows: an orange 
node denotes ancestors of child BMI.  
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Fig 4 legend. The CPDAG derived from the most probable DAG for Wave 4 in B cohort.  
The child BMI node is highlighted by a red diamond shape. The thicknesses of the edges in the 
network correspond to the strength of relationship between nodes exists, with a thicker line 
denoting a higher absolute value. The link and orange edges indicate positive and negative 
relationships respectively. The ellipse nodes in each plot are colour-coded as follows: an orange 
node denotes ancestors of child BMI.  
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Fig 5 legend. The CPDAG derived from the most probable DAG for boys and girls respectively 
in Wave 5 B cohort. The child BMI node is highlighted by a red diamond shape. The thicknesses 
of the edges in the network correspond to the strength of relationship between nodes exists, with 
a thicker line denoting a higher absolute value. The link and orange edges indicate positive and 
negative relationships respectively. The ellipse nodes in each plot are colour-coded as follows: 
an orange node denotes ancestors of child BMI.  
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