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Abstract 

Purpose: This study sought to construct genome-wide polygenic scores for femoral neck and total body 

BMD and to estimate their potential in identifying individuals with a high risk of osteoporotic fractures. 

Methods: Genome-wide polygenic scores were developed and validated for femoral neck and total body 

BMD. We externally tested the PGSs, both by themselves and in combination with available clinical risk 

factors, in 455,663 European ancestry individuals from the UK Biobank. The predictive accuracy of the 

developed genome-wide PGS was also compared with previously published restricted PGS employed in 

fracture risk assessment. 

Results: For each unit decrease in PGSs, the genome-wide PGSs were associated with up to a 1.17-fold 

increased fracture risk. Out of four studied PGSs, ���_������� (HR: 1.03; 95%CI 1.01-1.05, p=0.001) 

had the weakest and the ���_����������� (HR: 1.17; 95%CI 1.15-1.19, p<0.0001) had the strongest 

association with an incident fracture. In the reclassification analysis, compared to the FRAX base model, 

the models with, ���_	
����	, ���_�������, ���_	
���������, and ���_����������� improved 

the reclassification of fracture by 2% (95% CI, 1.5% to 2.4%), 0.2% (95% CI, 0.1% to 0.3%), 1.4% (95% CI, 

1.3% to 1.5%), and 2.2% (95% CI, 2.1% to 2.4%), respectively.  

Conclusions: Our findings suggested that an efficient PGS estimate enables the identification of strata 

with up to 1.5-fold difference in fracture incidence. Incorporating PGS information into clinical diagnosis 

is anticipated to increase the benefits of screening programs in the population level.  

Keywords: DISEASE AND DISORDERS OF/RELATED TO BONE; FRACTURE RISK ASSESSMENT; GENETIC 

RESEARCH; HUMAN ASSOCIATION STUDIES; OSTEOPOROSIS.  
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Introduction 

 Osteoporosis is an age-related, devastating bone disease characterized by low bone mineral 

density (BMD) and structural deterioration of bone tissue [1], resulting in an increased risk of fracture. 

As the world population ages rapidly, bone fracture is becoming a major public health issue. Each year, 

osteoporosis is responsible for more than 8.9 million fractures globally, of which more than 1.5 million 

occur in the United States [2]. In 2025, osteoporotic fractures are projected to increase to over 3 million 

in the US [3]. The increasing fracture incidence renders early identification and preventive intervention a 

vital goal. 

Several fracture predictive tools have been developed in recent years. In the United States, the 

Fracture Risk Assessment Tool (FRAX) is the most widely used fracture prediction tool, which is well-

established and validated to predict 10-year probabilities of major osteoporotic fracture (MOF) and hip 

fracture (HF) on the basis of 12 clinical risk factors [4]. However, the performance of FRAX in 

discriminating fracture and non-fracture cases is too often unsatisfactory, which certainly indicates that 

there is still room for improvement [5-7].  

The predisposition to osteoporotic fracture is attributable to the complex interaction between 

genetic and non-genetic factors [8]. As a major determinant of fracture risk, BMD measured by dual-

energy X-ray absorptiometry (DXA) has been proven to be highly heritable [9-13] and has thus been 

widely investigated in Genome-wide association studies (GWAS) [14-16]. Numerous BMD-associated 

genetic variants, mainly single nucleotide polymorphism (SNPs), have been discovered in the past 

decade [15-17]. As a result, the polygenic score (PGS), calculated according to GWAS summary statistics 

and an individual’s genotype profile, is often used to quantify the genetic propensity of individuals to a 

disease/trait [18]. 
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Prior studies have demonstrated the potential use of BMD-decreasing PGS in predicting fracture 

risk; however, they provided only limited predictive power [19-22]. A PGS based on 62 femur neck-

related SNPs revealed a hazard ratio (HR) of 1.20 for incident fracture per one standard deviation (SD) 

increase [23]. Another study derived a similar PGS from 63 BMD-related SNPs was also reported having 

significant association with fracture risk in adults [24]. However, previously published genetic risk scores 

included genetic variants restricted to those that reached genome-wide significant levels (p < 5*10��). 

Due to the polygenic nature of BMD, previously established “restricted PGSs” were not able to 

sufficiently capture the underlying genetic predisposition, thus failing to provide a comprehensive 

assessment of genomic information in fracture risk prediction. PGSs calculated from millions of variants 

across the genome and accounting for linkage disequilibrium (LD) between variants was proven to 

outperform traditional PGS in the risk prediction of several diseases, such as cardiovascular disease, type 

II diabetes, and breast cancer [25-27]. However, whether a novel BMD-related genome-wide PGS 

derived from an improved PGS algorithm would significantly increase the predictive power of the 

genetic components in fracture prediction remains unclear. Therefore, we aimed to build more robust 

and generalizable genome-wide PGSs for BMD to provide a more comprehensive fracture risk evaluation. 

We compared the accuracy of the genome-wide PGS with previously published PGS in fracture risk 

assessment. We also aimed to assess the added value of PGS beyond FRAX in fracture prediction. We 

hypothesized that genome-wide PGSs would outperform previously published “restricted PGS” in 

assessing fracture risk and that combining genome-wide PGS with FRAX could better identify individuals 

at high risk of osteoporotic fracture. 
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Method 

Study cohort 

 UK Biobank (UKB) is a large-scale, population-based observational study consisting of 502,617 

individuals aged 40-69, recruited from across the United Kingdom between 2006 and 2010 [28]. A total 

of 488,251 participants were genotyped using Affymetrix arrays [29]. The genotype data were quality 

controlled and imputed using the Haplotype Reference Consortium [30]. At recruitment, a standardized 

socio-demographic questionnaire, medical history, and other lifestyle factors were collected. Individual 

records were linked to the Hospital Episode Statistics (HES) records and the National Death and Cancer 

Registries. Compared to the general population, the UKB participants were healthier, less obese, and 

less likely to smoke and drink alcohol [31]. Since the PGSs were derived based on predominately White 

GWAS participants and the people of non-European ancestry comprised only a small proportion of the 

UKB, we restricted the analysis to 452,936 white British individuals so as to analyze individuals with a 

relatively homogeneous ancestry.  

Fracture event ascertainment 

Fracture cases were identified through the Hospital Episodes Statistics linked through NHS 

Digital, with a hospital-based fracture diagnosis irrespective of mechanism within the primary (data field 

#41202; n= 435,968) or secondary (n= 435,972) diagnosis field. Fractures of the skull, face, hands, and 

feet, as well as pathological fractures due to malignancy, atypical femoral fractures, periprosthetic, and 

healed fracture were excluded from the analysis. The incident fracture cases were defined as having the 

date of ICD-10–identified fractures after the initial assessment visit.  

Ascertaining conventional risk factors 

Age, sex, height, weight, body mass index (BMI), previous fracture, current smoking status, 

glucocorticoid use, rheumatoid arthritis, and secondary cause of osteoporosis (Type 1 diabetes and 
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menopause before age 45 years) were ascertained from the initial assessment visit. Previous fractures 

were defined as those reported by questionnaire at enrollment or from ICD-10 codes that occurred 

before the baseline visit. Gender was self-reported and verified by genotype, and Individuals with 

discordant sex between self-report and genotype were excluded.  

Data processing and quality control 

Genotyping of the UKB samples was performed using Affymetrix, UK BiLEVE Axiom, and the 

Affymetrix UKB Axiom array. The Wellcome Trust Centre for Human Genetics performed the genotype 

imputation using the Haplotype Reference Consortium (HRC) and the UK10K haplotype resources, which 

yielded a total of 96 million imputed variants. Quality control was performed for the UKB genotype data: 

SNPs with minor allele frequency less than 0.1%, were missing in a high fraction of subjects (>0.01), and 

have Hardy-Weinberg equilibrium p-value < 1*10�� were removed. Individuals who have a high rate of 

genotype missingness (> 0.01) were also excluded from PGS construction. After quality control, a total of 

11.5 million variants were retained for analysis.  

Polygenic score tuning 

The summary statistics of two comprehensive GWA studies conducted among European 

predominantly cohorts for femoral neck BMD [16] and total body BMD [14] were used to derive PGSs. 

UKB samples were not included in any of the two discovery GWASs. The UKB dataset was split into a 

tuning set (n=3,000) and a testing set (n=452,936). For the tuning set, we randomly selected 1000 

prevalent fracture cases and 2000 non-fracture cases of European ancestry. A set of candidates PGSs 

was derived for each trait by using the Pruning and Thresholding (P+T) method and the LDPred2 

computational algorithm in the tuning set. 

The P+T method PGSs were built using a p-value and linkage disequilibrium-driven clumping 

procedure in PLINK 1.90b. Twenty-four candidate PGSs were identified as having combinations of the p-
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value (1.0, 0.5, 0.05, 5 × 10
−4

, 5 × 10
−6

, and 5 × 10
−8

) and �� (0.2, 0.4, 0.6, and 0.8) thresholds for each 

trait.  

The LDPred2 computational algorithm was used to generate seven candidate PGSs for each trait. 

Based on seven hyper-parameter values of ρ (1, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001), seven sets of 

candidates PGSs were generated using the LDPred2 computational algorithm grid mode. Each set of 

PGSs tested a grid of hyper-parameter values, where 102 combinations of hyper-parameters ρ (the 

proportion of causal variants) and �� (the SNP heritability) were tuned. For each ρ value, we chose the 

best model according to the Z-score from the regression of the fracture by the PGS, with age, sex, and 

BiLEVE/UKB genotyping array and the first four principal components (PCs) being adjusted for. The PGS 

construction was restricted to the HapMap3 variants only as LDpred2 suggested [33]. 

Together there were 31 candidate PGSs that have been derived. The association between PGS 

and fracture was further evaluated in odds ratios (OR) per standard deviation of PGS using logistic 

regression adjusted for age, sex, and BiLEVE/UKB genotyping array and the first four principal 

components (PCs). The femoral neck BMD-related PGS (���_	
������	� ) and total body-related PGS 

(���_��������	� ) with the maximum predictive ability (AUC) with fracture were determined to be 

the best-performing ones and were carried forward into subsequent analyses in the independent UKB 

testing set. For femoral-neck BMD and total body BMD, � thresholds of 0.03 and 0.13, respectively, 

provided the most optimal discrimination of fracture cases and controls and were chosen to derive the 

genome-wide PGSs in the UKB testing set for the subsequent analyses. We additionally calculated two 

previously published femoral neck and total body-related PGSs from Estrada et al. (���_	
���
) and 

Xiao et al., (���_������) in the UKB testing set so as to compare the predictive value of the genome-

wide PGS with the “restricted PGS” in assessing fracture risk (Figure 1). Since the PGSs were BMD-

related, greater PGS is associated with higher BMD and lower fracture risk. 
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Figure 1. Study Design and Workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical Analysis 

 Demographic and baseline clinical characteristics of the UKB testing set are presented as mean ± 

standard deviation (SD) for continuous variables and frequencies (%) for categorical variables. All PGSs 

were standardized to zero-mean and unit-variance. The primary outcome was incident fracture that 

occurred after the baseline visit.  

To gauge the potential clinical impact of PGSs, we binned the UKB testing set into 100 groupings 

based on the percentile of the PGSs and determined the prevalence of fracture within each bin, 

stratified by sex. The predicted probability of incident fracture based solely on PGSs was also examined 

by gender. We additionally compared the observed risk gradient with the PGS predicted risk across 

percentile bins. For each individual, the 10-year predicted probability of disease was calculated using 
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simple logistic regression model includes PGS only. The predicted prevalence of disease within each 

percentile bin was calculated as the average probability of all individuals within that bin predicted solely 

by PGS. To illustrate the different cumulative incidence of fracture in individuals with distinct genetic 

predispositions, we grouped individuals according to different quantile ranges of PGSs: ≤1%, 1-5%, 5-

20%, 20-40%, 40-60%, 60-80%, 80-95%, 95-99%, and >99%. The cumulative incidence of fracture by each 

PGS group was then derived using the cumulative incidence function (CIF), with the competing mortality 

risk accounted for.   

The association between incident fracture risk and each PGS was first assessed using multiple 

logistic regression models. The discriminatory accuracy of each model was also evaluated using the c-

index. Next, we used the Cox proportional hazard modeling to estimate HRs of PGSs on incident 

fractures. The Cox proportional hazard model’s proportionality assumption was visually inspected 

beforehand using the Schoenfeld Residual test [34], and the linearity assumption was checked using the 

Martingale Residual test [35]. The UKB testing set satisfied both the proportional hazards and linearity 

assumptions. Additionally, we examined fracture incidence according to the PGS category in the UKB 

testing set. We compared the effect of top percentiles (1%, 5%, 10%, and 20%) with the remaining 

percentiles (99%, 95%, 90%, and 80%) of each PGS. using Cox proportional hazard models. The 

predictive performance of each PGS was also assessed using the C-index. All analyses were adjusted for 

age, sex, and the first four principal components (PCs).  

We also investigated the predictive value of PGS beyond the existing fracture assessment tool. 

The association between PGS with fracture risk, adjusted for the FRAX risk factors, including age, body 

weight, height, previous fracture, current smoking, glucocorticoids, and rheumatoid arthritis, was 

assessed using Cox proportional hazard models. The model with only FRAX risk factors included was set 

as the base model. In total, five models were formulated as follows: Model 1 – FRAX base model; Model 

2 – FRAX + ���_	
���
; Model 3 – FRAX + ���_������; Model 4 – FRAX + ���_	
������	� ; 
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and Model 5 – FRAX + ���_��������	� . The magnitude of the association between each PGS and 

fracture risk was assessed by the HRs and its corresponding 95% confidence intervals. In addition, net 

reclassification improvement (NRI) comparing the nested models was calculated separately for 

individuals with and without fractures. We designated “high risk” as predicted MOF risk ≥ 20% and “low 

risk” as predicted MOF risk < 20%, based on the National Osteoporosis Foundation recommended fixed 

intervention cutoff. The Integrated discrimination improvement (IDI) was also calculated to incorporate 

both the direction of change in the calculated risk and the extent of change. All statistical analyses were 

conducted using R version 4.0.3 software and SAS. 

 

Results 

Characteristics of the UKB testing set 

The characteristics of the UKB participants in the testing set (N=455,663) are shown in 

Supplementary Table 1, comprising 17,351 fracture cases and 441,196 non-fracture cases in total. There 

were 5,720 prevalent fracture cases at the time of recruitment and 11,649 incident cases of fracture 

during a mean follow-up of 6.2 years. In the UKB testing set, the four PGSs were moderately correlated, 

with correlation coefficients ranging from -0.03 to 0.43.  

Fracture risk by PGS groups 

In the UKB testing cohort, a lower PGS, which predicts a lower BMD, was associated with higher 

fracture risk. Our results showed that, for both men and women, the ���_	
���
, 

���_	
������	� , and ���_��������	�  percentile among fracture cases were higher than among 

healthy controls. The distribution of ���_������ ; however, it did not show a big difference between 

fracture cases and non-cases (Figure 2A & Supplementary Figure 1A). Similarly, the predicted 
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probability of incident fracture was significantly higher among women than among men, and a sharp 

decrease can be observed in the right tail of the ���_	
���
, ���_	
������	� , and 

���_��������	�  distributions. Individuals with higher BMD-related PGS have a lower risk of fracture 

(Figure 2B & Supplementary Figure 1B). Based only on the PGSs, the shape of the observed risk gradient 

was consistent with predicted risk, except for PGS_tbbmd81 (Figure 2C & Supplementary Figure 1C.). 

The crude 10-year cumulative fracture incidence by nine PGS groups was shown in Figure 5. With 

competing mortality risk accounted for, significant differences were observed across ���_	
���
, 

���_	
������	�  and ���_��������	� groups (p<0.0001). The crude fracture incidence was 

significantly higher among individuals with low PGS (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.16.22282416doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.16.22282416
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Figure 2. Risk for Incident Fracture According to Genome-wide PGSs. 

 

 

 

 

 

 

A. B. C. 

(A) PGSs percentile among fracture cases versus controls in the UK Biobank testing set. Within each boxplot, the 

horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the 

whiskers reflect the maximum and minimum values within each group. (B) Predicted Probability of Incident 

Fracture by PGSs: Risk gradient for fractures according to the PGS percentiles. 100 groups of the testing dataset 

were derived according to the percentile of each of the four PGSs. (C) Predicted versus Observed prevalence of 

incident fracture according to PGS percentiles. 
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Figure 3. Cumulative Incident Function Plot for Fracture According to Decile of the Genome-Wide 

Polygenic Score (PGS) in UKB Testing Set. Shaded Regions Denote 95% Confidence Intervals.  

  

  

 

PGSs association with incident fractures 

Multiple logistic regression results show that, in the UKB testing set, each of the four GPSs was 

strongly associated with incident fracture (p<0.0001), with an OR ranging from 1.03 to 1.27. A 

comparison of the genome-wide PGS with previously published PGS from Estrada et al., 

( ) and Xiao et al. ( ) in the UKB testing set is given in Figure 4A, showing 

that the genome-wide PGS of total body BMD had a substantially greater association with fracture risk in

terms of OR, whereas the genome-wide PGS of femoral neck BMD ( ) didn’t show a 

significantly higher association with fracture compared to the restricted PGS ( ). For total 

body BMD related PGS, the genome-wide PGS ( ) outperformed the restricted PGS 

n 
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( ) with OR estimates per standard deviation decrease at 1.03 (95% CI, 1.01 – 1.05) and 

1.27 (95% CI, 1.25 – 1.30) of the  and , respectively.   

The Cox proportional hazard regression results showed attenuated but significant associations 

between each PGS and the fracture risk. For every one unit decrease of PGSs, the restricted PGS and the 

genome-wide PGSs were associated with up to 1.13-fold and 1.17-fold increased fracture risk, 

respectively. Out of four studied PGSs,  (HR: 1.03; 95%CI 1.01-1.05, p=0.001) had the 

weakest and the  (HR: 1.17; 95%CI 1.15-1.19, p<0.0001) had the strongest 

association with an incident fracture. Models that include genome-wide PGSs had higher c-indices than 

models with restricted PGSs (0.651 versus 0.644) (Figure 4B).  

Figure 4. Relative Performance of Individual Polygenic Scores (PGS) for Fracture. 4A: Results from Cox 

Proportional Hazard Models; 4B: Results from Multivariate Logistic Regression Models.  

A.  

B.  
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We additionally estimated the OR and HR and corresponding 95% CI for individuals in the 

bottom 1%, 5%, 10%, and 20% of the PGSs, as compared with the remaining individuals. Results from 

Cox proportional hazard regression showed that individuals in the bottom 1% distribution of 

���_	
���
 , ���_	
������	�  , and ���_��������	�  had 1.33-, 1.25-, and 1.47-fold increased 

fracture risk respectively, compared to their corresponding remaining individuals. In contrast, individuals 

with extreme ���_������ values did not show a significantly higher risk of fracture. Similar results 

were observed when applying multiple logistic regression models (Supplementary Table 2).  

The Cox proportional hazard model showed that, after adjusting for FRAX risk factors available 

in the UKB testing set, all four PGSs were significantly associated with incident fractures. Out of four 

PGSs, ���_��������	�  had the strongest association with incident fracture. The HRs of 

���_	
���
 , ���_������ , ���_	
������	�  , and ���_��������	�  for incident fracture 

were 1.13 (95% CI, 1.11 – 1.15), 1.03 (95% CI, 1.01 – 1.05), 1.11 (95% CI, 1.09 – 1.14), and 1.16 (95% CI, 

1.15 – 1.19), respectively. Compared to the FRAX base model, the association between clinical risk 

factors and incident fracture risk did not attenuate in all four PGS models (Table 1).  
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Table 1. Hazard Ratio of Significant Predictive Variables for Incident Fractures in Models with and 

without PGSs.  

Variable Model 1:  

FRAX Base Model 

 

 

HR per 1 unit 

(95% CI)  

Model 2:  

FRAX + 

��_������� 

 

HR per 1 unit 

(95% CI) 

Model 3:  

FRAX + 

��_������� 

 

HR per 1 unit  

(95% CI) 

Model 4:  

FRAX + 

��_���������	� 

 

HR per 1 unit  

(95% CI)  

Model 4:  

FRAX + 

��_���������	� 

 

HR per 1 unit  

(95% CI)  

Age 1.03 (1.02-1.03) 1.03 (1.02 – 1.03) 1.03 (1.02 – 1.03) 1.03 (1.02 – 1.03) 1.03 (1.02 – 1.03) 

Sex (women vs. men) 2.83 (2.70 - 2.94) 2.83 (2.70 - 2.94) 2.83 (2.70 – 2.94) 2.83 (2.70 – 2.94) 2.81 (2.63 – 2.94) 

Body weight 1.01 (1.01 – 1.01) 1.01 (1.01 – 1.01) 1.01 (1.01 – 1.02) 1.01 (1.01 – 1.02) 1.01 (1.01 – 1.02) 

Height 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 

Oral glucocorticoid 1.10 (0.87 – 1.22) 1.11 (0.88 – 1.39) 1.10 (0.86 – 1.37) 1.09 (0.87 – 1.39) 1.09 (0.86 – 1.39) 

Type 1 diabetes 1.49 (1.30 – 1.69) 1.48 (1.30 – 1.69) 1.48 (1.30 – 1.69) 1.47 (1.28 – 1.69) 1.46 (1.27 – 1.67) 

Early menopause 1.02 (0.97 – 1.08) 1.02 (0.97 – 1.07) 1.02 (0.93 – 1.03) 1.02 (0.93 – 1.03) 1.02 (0.93 – 1.03) 

Rheumatoid arthritis 1.10 (1.01 – 1.19) 1.10 (1.01 – 1.19) 1.10 (1.01 – 1.19) 1.10 (1.02 – 1.20) 1.10 (1.01 – 1.20) 

Current smoking 1.51 (1.43 – 1.59) 1.50 (1.43 – 1.59) 1.50 (1.43 – 1.59) 1.51 (1.43 – 1.59) 1.51 (1.43 – 1.59) 

PGS NA 1.13 (1.11 – 1.15) 1.03 (1.01 – 1.05) 1.11 (1.09 – 1.14) 1.16 (1.15 – 1.19) 

 

Model Evaluation 

 The fracture discrimination ability of PGSs over clinical risk factors was assessed using the 

concordance index (c-indices) (Supplementary Table 3). Compared to the base model, models with PGSs 

showed moderate improvement in discriminating fracture cases and controls. The ��_�����
� and 

the ��_��������� improved the discrimination from 0.678 to 0.683 and from 0.678 to 0.686, 

respectively. In the reclassification analysis, compared to the FRAX base model, the models with 

���_	
���
 , ���_������ , ���_	
������	�  , and ���_��������	�  improved the 

reclassification of fracture by 2% (95% CI, 1.5% to 2.4%), 0.2% (95% CI, 0.1% to 0.3%), 1.4% (95% CI, 1.3% 

to 1.5%), and 2.2% (95% CI, 2.1% to 2.4%), respectively. The ���_��������	�  showed the greatest 

improvement in terms of reclassification. For the model that included ���_��������	� , 395 

individuals were correctly reclassified up to the high-risk group, and 325 individuals who did not 

experience a fracture were correctly reclassified from the high-risk group to the low-risk group. The 

continuous NRI showed that improvement in fracture reclassification contributed by ���_	
���
 , 
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���_������� , ���_
����������  , and ���_�����������  were 11.8%, 2.1%, 7.1%, and 13.2%, 

respectively (Table 2).  

Table 2: Reclassification Table of 10-Year Osteoporotic Fracture Stratified by Event Status. Results of 

Reclassification Analysis: Percent of Reclassification Compared with FRAX Base Model. 

 

 

Discussion 

Early identification of high-risk individuals is crucial in enhancing fragility fracture screening and 

facilitating preventive interventions [36]. PGS has the advantage that it can be assessed well before any 

clinical risk factors emerge. As fragility fracture has a sizable heritable component because of its 

polygenicity nature, utilizing thousands of genetic variants discovered from GWAS to predict risk holds 

promise for risk stratification and therefore helps facilitate primary prevention.  

Prior studies focused mainly on the predictive ability of PGS derived using genome-wide 

significant SNPs, resulting in mixed findings. This study systematically derived and validated a genome-

wide PGS of femoral neck BMD and total body BMD, incorporating information from the entire genome 

system. To compare the predictive ability of genome-wide PGSs to restricted PGSs, we additionally 

calculated two previously published PGSs based on 63 femoral neck BMD- and 81 total body BMD-

related SNPs, respectively. We quantified the strengths of associations of four PGSs with fracture 

Reclassification 

  

Non-fracture group 

 

Fracture group 

 

NRI  

(category) 

 

p  

 

NRI  

(continuous) 

 

p  

 

 

IDI 

 

p  

 

 Reclassification 

down 

Reclassification 

up 

Reclassification 

up 

Reclassification 

down 

      

���_����	��  0.040 0.026 0.010 0.013 0.012 

(0.010 to 0.013) 

0 0.114 

(0.108 to 0.120) 

0 0.013 

(0.012 to 0.014) 

0 

���_
���	�� 0.011 0.010 0.004 0.004 0.002 

(0.001 to 0.003) 

<0.01 0.021 

(0.015 to 0.027) 

<.01 0.002 

(0.001 to 0.023) 

0.83 

���_����	����	�  0.043 0.028 0.013 0.015 0.014 

(0.013 to 0.015) 

0 0.071 

(0.065 to 0.077) 

0 0.014 

(0.013 to 0.023） 

<0.01 

���_
���	����	� 0.063 0.034 0.015 0.022 0.022 

(0.021 to 0.024) 

0 0.132 

(0.125 to 0.138) 

0 0.032 

(0.002 to 0.032） 

0.004 
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outcome in 450,000 UKB participants and demonstrated that PGS accurately predicted striking 

differences in fracture risk. For the total body BMD, our results showed that the LDpred2 approach, 

which builds a risk prediction model based on the entire genome, yielded better predictive performance 

than the approach that includes only 81 variants that reached a genome-wide significant level. However, 

femoral neck BMD-related PGS calculated using the LDpred2 method showed no improvement over the 

restricted PGS.   

Whether including more SNPs would improve the predictive ability of PGS remains controversial. 

For many phenotypes, genome-wide PGSs outperform those PGSs calculated by using genome-wide 

significant variants only, in line with the evidence that much of the genetic predisposition of a 

disease/trait explained by the low-level effect SNPs [37, 38]. However, in some cases, including millions 

of SNPs with negligible effect size in the polygenic score does not affect the predictions [39-42]. In a 

prior study, Khera et al. constructed 30 genome-wide PRSs for five common diseases using up to 7 

million SNPs. Results show that genome-wide PRSs had lower c-statistics than PRSs based on genome-

wide significant SNPs only [43].  

In our study, individuals in the top 1% of total body BMD PGS had a HR of 1.47, compared to the 

remaining individuals. This level of effects may be sufficient to justify the use of PGSs for clinical 

screening of individuals in order to detect those in the extreme tail, which may be useful for monitoring 

and preventive treatment. Several studies have investigated the potential for risk scores based on 

GWAS-level significant variants in improving fracture risk prediction accuracy and reported weak to no 

evidence for added value from these scores [44-46]. More recently, Lu et al. derived a genome-wide PGS 

(gSOS) of heel ultrasound measurements (speed of sound) using a statistical learning approach (LASSO) 

and demonstrated that gSOS was more predictive of major osteoporotic fracture and hip fracture than 

most clinical risk factors. Additionally, they also derived a FRAX-gSOS and demonstrated that it could 

refine the risk prediction by employing a positive net reclassification index ranging from 0.024 to 0.072.  
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However, as a well-used metric of fracture risk that is incorporated into the FRAX algorithm, the 

genome-wide PGS for BMD has never been studied. In current study, we generated more accurate 

genome-wide PGSs that can possibly capture a larger proportion of total variance in BMD. BMD-related 

genome-wide PGSs remained significantly associated with incident fracture risk, even after accounting 

for FRAX clinical risk factors. Moreover, adding genome-wide PGS to the FRAX clinical risk score has 

successfully demonstrated significant improvement in predictive accuracy for fracture. The PGS refined 

risk discrimination and reclassified up to 2% of individuals to a higher or lower fracture risk category. 

Notably, for total body BMD, in comparison to the restricted PGS, the genome-wide PGS showed 

significantly better ability in reclassifying individuals who will and will not sustain a fracture.  

There are several limitations in the current study worth noting. First, only European ancestry 

individuals were considered in this study; therefore, the specific PGS calculated here may not have 

optimal predictive power in other ethnic groups due to different allele frequencies, LD patterns, and 

effect sizes of common variants across populations of different ethnic backgrounds. Thus, our findings 

may not generalize to other ethnic groups. Second, due to the limited data availability, we failed to 

include all 14 clinical risk factors included in FRAX; consequently, a comprehensive evaluation of PGS 

with complete adjustment was not conducted. Third, the UKB participants were generally younger and 

healthier than the general population, with a lower incident rate of fracture; this non-random 

ascertainment is likely to deflate disease prevalence. 

In summary, we constructed two genome-wide PGS for BMD based on the UKB dataset and 

demonstrated that an efficient PGS estimate enables the identification of strata with up to 1.5-fold 

difference in fracture incidence. This finding definitely calls for personalized screening and prevention 

strategies that incorporate the PGS information into clinical diagnosis, thus considerably increasing the 

benefits of population-wide screening programs.  
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