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Abstract 
 
Objective: To compare individualized treatment selection strategies based on predicted 
individual-level treatment effects from a causal forest machine learning algorithm and a 
penalized regression model. 
 
Study Design and Setting: Cohort study characterizing individual-level glucose-lowering 
response (6 month reduction in HbA1c) in people with type 2 diabetes initiating SGLT2-
inhibitor or DPP4-inhibitor therapy. Model development set comprised 1,428 participants in 
the CANTATA-D and CANTATA-D2 trials (SGLT2-inhibitor versus DPP4-inhibitor ). For 
external validation, calibration of observed versus predicted differences in HbA1c in patient 
strata defined by size of predicted HbA1c benefit was evaluated in 18,741 UK primary care 
patients (Clinical Practice Research Datalink).  
 
Results: Heterogeneity in treatment effects was detected in trial participants with both 
approaches (causal forest: 98.6% & penalized regression: 81.7% predicted to have a benefit 
on SGLT2-inhibitor therapy over DPP4-inhibitor therapy). In validation, calibration was good 
with penalized regression but sub-optimal with causal forest. A strata with an HbA1c benefit 
>10 mmol/mol with SGLT2-inhibitors (3.7% of patients, observed benefit 11.0 mmol/mol 
[95%CI 8.0-14.0]) was identified using penalized regression but not causal forest, and a 
much larger strata with an HbA1c benefit 5-10 mmol with SGLT2-inhibitors was identified 
with penalized regression (regression: 20.9% of patients, observed benefit 7.8 mmol/mol 
(95%CI 6.7-8.9); causal forest 11.6%, observed benefit 8.7 mmol/mol (95%CI 7.4-10.1). 
 
Conclusion: When evaluating treatment effect heterogeneity researchers should not rely on 
causal forest (or other similar machine learning algorithms) alone, and must compare 
outputs with standard regression. 
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What is new? 
Question: What is the comparative utility of machine learning compared to standard 
regression for identifying variation in patient-level outcomes (treatment effect heterogeneity) 
due to different treatments? 
 
Findings: Causal forest and penalized regression models were developed using trial data to 
predict glycated hemoglobin [HbA1c]) outcomes with SGLT2-inhibitor and DPP4-inhibitor 
therapy in 1,428 individuals with type 2 diabetes. In external validation (18,741 patients), 
penalized regression outperformed causal forest at identifying population strata with a 
superior glycemic response to SGLT2-inhibitors compared to DPP4-inhibitors.   
 
Implications: Studies estimating treatment effect heterogeneity should not solely rely on 
machine learning and should compare results with standard regression.  
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Introduction 
 
Randomized controlled trials (RCTs) are the gold standard for understanding the effect of 

treatments on clinical outcomes.  Average treatment effects from RCTs are then used to 

support evidence-based clinical decision making for individual patients. This application of a 

population-level result to individual treatment selection may result in sub-optimal decision 

making, as the average treatment effects may only represent the individual experience of a 

subset of patients.1 As a result, there is great interest in developing precision medicine 

approaches to treatment, by characterizing patient sub-populations for which a treatment is 

most beneficial, or harmful. Such variability in patient level outcomes is known as treatment 

effect heterogeneity,2,3 and is often obscured by quoting average treatment effects. 

Importantly, if differences are clinically significant, characterizing treatment effect 

heterogeneity may allow specific treatments to be targeted at patients most likely to benefit. 

 

Methods to evaluate treatment effect heterogeneity are not well established. One-variable-

at-a-time subgroup analysis approaches have been shown to be rarely replicable due to low 

power, and will miss treatment effect heterogeneity induced by complex covariate 

relationships.3 Traditional regression-based models can be used to estimate treatment effect 

heterogeneity across multiple variables by defining potential treatment-covariate interactions 

for each covariate of interest, but require these covariates to be specified by the analyst. 

Results may in particular be subject to the risk of Type I Error rate inflation (false positives) 

with small sample sizes, which may not be solved by penalized or shrinkage methods.4 

Recently, machine learning algorithms, in particular causal forest, have been developed to 

specifically assess treatment effect heterogeneity and represent a data-driven alternative to 

regression-based approaches.5,6 Whilst such machine learning approaches have been 

demonstrated to overcome challenges associated with reliance on manual input, their 

comparative utility relative to regression-based approaches for the purposes of treatment 

selection based on treatment effect heterogeneity has not previously been assessed.7   

 

This issue of sub-optimal (personalized) decision making is potentially evident in the 

pharmacological management of Type 2 diabetes; a heterogenous chronic condition with 

multiple treatment options prescribed with the primary clinical purpose of lowering blood 

glucose (glycated hemoglobin [HbA1c]) levels. SGLT2-inhibitors (SGLT2-i) and DPP4-

inhibitors (DPP4-i) are two commonly prescribed glucose-lowering treatment options,8 

recommended after metformin in type 2 diabetes clinical guidelines.9 Whilst RCT data 

suggest that the glucose-lowering efficacy of both treatments is on average similar,10 
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treatment effect heterogeneity is plausible due to the marked variation in the clinical 

characteristics of people with type 2 diabetes, and the two drugs’ differing mechanisms of 

action.11 As such, our primary objective in this study was to compare individualized treatment 

selection strategies based on predicted treatment effects from a causal forest algorithm and 

a penalized regression model, using the clinically relevant context of selecting between 

SGLT2-i and DPP4-i therapy for people with type 2 diabetes.  
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Methods 
Overview 

Two treatment effect heterogeneity models (causal forest and penalized regression) were 

developed to predict HbA1c-lowering efficacy with SGLT2-i and DPP4-i therapy using 

individual-level participant data from two large RCTs. Performance of individualized 

treatment selection strategies derived from each model was evaluated in routine clinical 

data.  

 
Data sources & Handling 

Clinical trial data (development dataset) 

Individual participant data from 2 active comparator glucose-lowering efficacy RCTs of 

SGLT2-i (Canagliflozin) and DPP4-i (Sitagliptin) therapy (2010-2012) in people with type 2 

diabetes were accessed from the Yale University Open Data Access Project 

(https://yoda.yale.edu/). Data on participants randomized to either SGLT2-i or DPP4-i in the 

CANTATA-D and CANTATA-D2 were pooled for analysis; these trials differed only in 

background glucose-lowering therapy not in any other inclusion criteria. Trial results to 

compare the average HbA1c-lowering efficacy of the two therapies have been previously 

published.12,13 

 

Routine clinical data (test dataset) 

Anonymized primary care electronic health records were extracted from UK Clinical Practice 

Research Datalink (CPRD) GOLD.14 New users of SGLT2-i and DPP4-i therapies (i.e. 

patients initiating one of these therapies for the first time) after January 1st, 2013, were 

identified, following our previously published protocol.15 We then excluded patients 

prescribed a SGLT2-i or DPP4-i as first-line treatment (as this is not in-line with treatment 

guidelines),9 patients co-treated with insulin, patients with eGFR <45 (where SGLT2-i 

prescription is usually contraindicated), patients with a missing baseline HbA1c or a baseline 

HbA1c <53 or ≥ 120 mmol/mol (with baseline defined as the closest HbA1c to drug initiation 

within –91/+7 days). 

 

Predictors 

Across both sources, the following clinical features were extracted for each individual: initial 

HbA1c, age at treatment, sex, estimated glomerular filtration rate (eGFR), Alanine 

Aminotransferase (ALT), body mass index (BMI), High-density lipoprotein cholesterol (HDL-

c), High-density lipoprotein cholesterol (HDL-c), Triglycerides, Albumin, and Bilirubin. These 
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features were selected due to their availability in a majority of individuals in both the trial and 

routine data.  

 

Diabetes duration was redacted from the RCT data so was not evaluated. In CPRD, where a 

systematic baseline assessment was not available, we used the most recent value in the 2 

years prior to drug initiation available in the primary care record. In CPRD, we also identified 

the number of currently prescribed glucose-lowering treatments, and the number of glucose-

lowering drug classes ever prescribed, as addition patient-level confounding factors.  

 

Missing Data Handling 

In the trials, missing values in all the covariates were imputed using missForest, a random 

forest based imputation method.16 For validation of the model developed in the trials in 

CPRD, we conducted complete case analysis, as missing values were considered likely to 

be missing not at random.17 

 

Statistical Modelling  

Two treatment effect heterogeneity models were developed using RCT (training) data. 

During model development the prediction target was the achieved HbA1c 6 months after 

drug initiation (a measure of glucose-lowering efficacy), presented as a continuous measure. 

In the trials, this was defined as the last-observation-carried-forward HbA1c from 3-months if 

the 6-month value was not available. In CPRD, this was defined as the closest HbA1c to 6 

months (within 3-15 months) after initiation, on unchanged glucose-lowering therapy. 

Subsequently, utility of the models for selecting optimal treatment for patients was evaluated 

in routine clinical electronic medical record data using a novel framework.11. 

 

Model development in trial data: Penalized regression 

A multivariable linear regression model was fitted to the training dataset composed of 

allbaseline features (see Predictors), the outcome and the treatment indicator. Each of the 

eleven continuous baseline features was modelled as a 3-knot restricted cubic spline to 

allow for non-linearity. Interaction term for each baseline feature:treatment indicator pair 

were included to estimate treatment effect heterogeneity. No variable selection was applied, 

but optimal penalty factors, based on AIC, were estimated separately for main effects, non-

linear effects, and interaction terms, using a ridge regression approach (pentrace function in 

R package RMS).18 Optimism-adjusted model fit (R2), root mean square error (RMSE), and 

the calibration slope and calibration-in-the-large were estimated, although these test the 

ability of a model to predict the outcome, and are therefore of limited use when evaluating 
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treatment effect heterogeneity. Relative feature importance, in terms of treatment effect 

heterogeneity, was assessed by ranking features by the proportion of chi-squared explained 

by the interaction term for that feature, with bootstrapped confidence intervals. 

 

Model development in trial data: Causal forest 

A causal forest model was also fitted over the training dataset. The causal forest model was 

built over 5000 causal trees and used default tuning parameters for growing the many tree 

structures. Tuning parameters used for growing an individual causal tree included setting a 

minimum of ten patients within a determined subgroup and splitting the training dataset 

equally into two separate samples for first determining the tree structure, and then utilising 

the second sample for treatment effect estimation at each determined subgroup. Variable 

importance measures computed from trees in the forest highlight the covariates selected 

most frequently by the model. However, CART and associated ensemble structures (e.g., 

random forests) have been shown to be biased towards splitting over covariates that offer 

many potential values to split on (e.g., continuous covariates) as compared to covariates 

with few categories (e.g., binary covariates). To account for this problem of biased variable 

selection, adjusted feature importance in the form of p-values were determined using a 

permutation-based test.19,20 A p-value for each covariate is computed by determining the 

proportion for which importance measures from forest models over permuted responses are 

greater than the measure obtained for a forest using an unpermuted response.   

 

Model evaluation in routine clinical data 

Utility of the two treatment effect heterogeneity modelling approaches for selecting the likely 

most effective therapy for patients was tested in CPRD. The first step was to estimate the 

difference in the in predicted HbA1c outcome (the conditional average treatment effect; see 

Box 1) for each patient using both models. The accuracy of the CATE cannot be evaluated 

at the patient-level (as patients receive either SGLT2-i or DPP4-i but not the other). 

However, it can be used to define and test a treatment selection decision rule in patient 

strata defined by the difference in predicted HbA1c outcome, as follows: For each model, the 

difference in HbA1c outcome was estimated for each patient. For penalized regression this 

was the difference in predicted HbA1c outcome on the two therapies. In the causal forest 

algorithm, the difference in HbA1c outcome is explicitly estimated. Strata were then defined 

by defined by decile of predicted difference in predicted HbA1c outcome, and by clinically 

defined HbA1c cut-offs of predicted difference in HbA1c outcome (SGLT2i benefit: ≥10, 5-

10, 3-5, 0-3 mmol/mol; DPP4i benefit: ≥5, 3-5, 0-3 mmol/mol). To compare performance of 

each model, we tested whether within-strata HbA1c outcome differences were consistent 

with predictions. Linear regression models were used to contrast HbA1c outcome in 
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concordant (i.e. therapy received is the therapy predicted to have greatest HbA1c lowering) 

versus discordant (i.e. therapy received is the predicted non-optimal therapy) subgroups. As 

CPRD patients were not randomized to treatment, models were adjusted for all features 

used in the treatment selection model, and confounding factors (see Predictors). Statistical 

analysis used R software, with causal forest fitted using the grf package.21 

 
Box 1: Primer on Conditional Average Treatment Effect (CATE) Estimation 
 
Evaluation framework 

In a potential outcomes framework, the causal effect of a treatment on a patient is defined by 

the difference in outcomes, where the outcomes are obtained for two different treatment 

assignments. The conditional average treatment effect (CATE) is defined as the average over 

individual treatment effects for a subpopulation determined by specific patient characteristics. 

The estimation of such subgroup-specific treatment effects has traditionally relied on a manual 

comparison of pre-defined patient sub-populations. However, this is not necessarily possible 

for subgroups determined by unknown covariate relationships or for higher-dimensional 

datasets. We evaluate two different methods that are able to estimate conditional average 

treatment effects, which represent differential patient responses to a treatment allocation. 

 

Penalized regression 

Standard maximum likelihood regression models can estimate CATE by including treatment-

by-covariate interaction terms. For each covariate, the interaction term coefficient(s) represent 

the estimated differential treatment effect associated with that covariate. The model can then 

be used to predict the counterfactual outcome on each therapy, conditional on the features 

included as interaction terms. The difference between the predicted outcome on each therapy 

provides an estimate of the patient-level treatment effect. Penalized regression can be used to 

reduce overfitting and potentially improve prediction in new data. 

 

Causal forest 

Causal forest is a data-driven ensemble method built over many individual causal trees to 

estimate the CATE.6  A causal tree5 modifies the traditional CART structure22 to explicitly 

optimise for treatment effect heterogeneity and generates estimates at the leaves of the trees. 

Causal trees utilise a separate sample to detect the tree structure and another sample to 

estimate the treatment effects, this double-sample approach (also referred to as honest) helps 

to overcome the problem of over-fitting. Similar to the random forest for outcome prediction, 

each causal tree within the causal forest is built over a bootstrap sample from the training data 

and the forest averages over the tree generated treatment effects. In general, a forest over a 

large number of individual trees has been shown to more stable and produce more accurate 
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results than an individual tree.19 

Results 
Participant cohort 

Baseline clinical characteristics of the trial cohort used for model development (n=1,428) are 

reported in Table 1. 61 participants were excluded as they had no on-treatment HbA1c 

outcome available (sFlowchart 1). Mean achieved HbA1c at 26 weeks was 53.0 (SD 9.8) on 

SGLT2-i and 54.1 (SD 10.9) on DPP4-i. 

Model development 

Penalized regression  

In the development cohort the median average treatment effect was estimated as a 1.9 (IQR 

0.5, 3.6) greater HbA1c reduction with SGLT2-i compared to DPP4-I (sFigure 1a). There 

was evidence of heterogeneity of treatment effect with a predicted greater HbA1c reduction 

with SGLT2-i versus DPP4-i for 1,216 (81.7%) of trial participants. Optimism-adjusted model 

performance statistics for predicting HbA1c outcome were: RMSE 8.1 (95%CI 7.6, 8.1) 

mmol/mol, R2 0.30 (95%CI 0.26, 0.36), calibration slope 0.98 (95%CI 0.98, 1.00), calibration 

in the large 0.86 (-0.19. 0.95).  

Causal forest  

The median average treatment effect in the development cohort was a 1.6 (IQR 0.6, 2.5) 

greater HbA1c reduction with SGLT2-i therapy (sFigure 1b). There was evidence of 

heterogeneity in individual treatment effects (p=0.005), although 1,408 (98.6%) of 

participants were predicted to have a greater benefit on SGLT2-i therapy.  

Model specification 

Most influential predictors of differential treatment effect 

Figure 1 reports the most influential predictors for differential treatment effect for the 

regression and causal forest approaches. Baseline HbA1c, age, ALT and triglycerides were 

the top 4 predictors identified by both approaches. 

Model external validation: performance for treatment selection in routine clinical data 

Utility for selecting treatment was evaluated in 18,741 patients initiating DPP4-i (n=11,682), 

or SGLT2-i (n=7,059) in CPRD (sFlowchart). Patients initiating each therapy differed in all 

clinical characteristics except sex and baseline albumin (Table 1). In particular, patients 

initiating DPP4-i were on average older than those initiating SGLT2-i (mean 64.0 versus 59.9 
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years), had a lower baseline HbA1c (mean 72.4 versus 76.8 mmol/mol), and had lower BMI 

(mean 32.2 versus 24.4 kg/m2) and eGFR (mean 82.9 versus 88.8 mL/min/1.3 m2 

The distribution of model predicted treatment difference for the regression and causal forest 

approaches are shown in Figure 2. The regression model predicted that 87% (n=16,276) of 

patients would benefit on SGLT2-i and 13% (n=2,465) on DPP4-i. In contrast, the causal 

forest model predicted that nearly all patients (99.7% [n=18,689]) would benefit on a SGLT2-

i.  

From the regression model there was good calibration between observed and predicted 

estimates, across deciles of predicted treatment effect (Figure 2). This included reliably 

identifying the smaller group of patients with a predicted treatment benefit on DPP4-i. 

Although the causal forest model did reliably identify patients with differences in observed 

treatment effect, the model did not show good calibration (Figure 2). The causal forest 

predicted treatment effects were in a much narrower range than observed treatment effects, 

and the model did not identify a patient strata with an observed treatment benefit on DPP4-i. 

In strata defined by clinical cut-offs for predicted treatment benefit (Table 2), the regression 

model reliably identified 687 (3.7%) patients with a marked (≥10 mmol/mol) observed benefit 

on SGLT2-i. This group was not identified using the causal forest model. The regression 

model also identified a much larger group of patients with an observed benefit with SGLT2-i 

of 5-10 mmol/mol (n=3,920 [20.9%]) compared to the causal forest model (n=2,175 [11.6%]). 

Similarly, a group with a >3mmol/mol benefit on DPP4-i was identified with the regression 

model (n=270 [1.4%]) but not the causal forest. 
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Discussion 
Our study provides a comparison of causal forest and regression approaches to detect and 

characterize treatment effect heterogeneity, as well as to operationalize it for treatment 

selection. Specifically, we observed that while both approaches detect treatment effect 

heterogeneity in glucose-lowering efficacy for SGLT2-i and DPP4-i, this translates into 

marked differences in predicted treatment benefit for individual patients. Through external 

validation using real-world (routinely collected) data, we establish the utility of both 

approaches for identifying strata with an observed benefit on one treatment over the other. 

We found a regression-based model performed substantially better than causal forest for 

identifying strata with a clinically important observed treatment benefit on SGLT2-i compared 

to DPP4-i. In contrast to causal forest, the regression model was also able to identify a 

smaller strata with a likely observed treatment benefit on DPP4-i. 

 

From a methodological perspective, the analysis adds to the growing literature showing 

limited, if any, performance improvement for machine learning over regression in tasks 

utilizing structured clinical data,23-26 although our study provides important new evidence as 

previous evaluations have focused on performance for risk prediction rather than treatment 

effect heterogeneity. Interestingly, in this setting we found the causal forest algorithm 

outputted substantially more conservative estimates of treatment effect heterogeneity 

compared to penalized regression. Although we demonstrate this with only a single outcome 

in a limited trial population, this reflects precisely the type of clinical dataset where such 

data-driven methods for treatment effect heterogeneity are increasingly being deployed, for 

example in evaluation of risk of harm of intensive blood pressure management in the 

SPRINT trial,27 and evaluation of heterogeneity in mortality risk in people with diabetes in the 

ACCORD trial.28 Given the lower performance of the causal forest algorithm in external 

validation, our study suggests that further research is urgently needed to understand the 

reasons underlying differences in outputs from treatment effect heterogeneity focused 

machine learning and regression based approaches in relatively low dimensional health 

datasets. In the meantime, we recommend that, when evaluating treatment effect 

heterogeneity, researchers do not rely on causal forest (or other similar machine learning) 

algorithms alone and compare outputs with standard regression. This is further supported by 

recent work suggesting subgroups defined by heterogenous treatment effects using causal 

trees may not be reproducible across randomized trials.29  

 

Moreover, in the specific context of type 2 diabetes management, our results support recent 

work showing that a ‘precision’ approach to treatment is possible by demonstrating clinically 
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relevant heterogeneity of treatment response that can be predicted using simple patient 

characteristics and routine biomarker tests.12,13 Our findings raise the possibility of targeting 

specific treatment, to patients most likely to have a greater HbA1c response, using 

characteristics that are already routinely measured. However, a limitation is that we 

evaluated only a single outcome, HbA1c. Treatment decisions are multi-factorial, and 

potential glycemic benefit should be considered alongside differences in side-effect profile, 

likely tolerability, and cardiovascular and renal benefit, and a similar approach to stratifying 

risk of these outcomes based on patient characteristics may be feasible in  future.11,30  

 

Strengths of our study include the systematic comparison of both modelling approaches in 

the same datasets, and the use of individual-level trial data to develop treatment effect 

heterogeneity models, meaning randomization may allow a causal interpretation of 

individual-level treatment effects.31 Whilst research to develop optimal methods for predicting 

treatment effect heterogeneity, and to evaluate their performance, has been called for in the 

recent PATH statement,2 the evaluative framework applied in this study can be applied for 

any future study aiming to evaluate the value of using patient level features to inform a 

precision medicine approach to treatment in any disease with multiple treatment options.11   

 

A limitation of our study is that we only compared performance in a single, low dimensional 

setting with a continuous outcome; it is conceivable that causal forest may outperform 

regression-based approaches with high dimensional or less structured data than those 

captured in clinical trial and routine clinical data. A further limitation is that we only evaluated 

a single machine learning approach. Causal forest was chosen as it is widely used with easy 

to use software available. We cannot comment on the performance of other treatment effect 

heterogeneity focused algorithms, such as the LASSO,32 Bayesian frameworks,33-35 and a 

generic machine learning approach, that were not evaluated. Finally, as our validation 

dataset was observational, we cannot rule out unmeasured confounding as a potential 

explanation for our findings.36  

 

Conclusions 

The causal forest machine learning algorithm is outperformed by standard regression when 

identifying patients with a treatment benefit of one blood glucose-lowering drug over another. 

Given the rapidly growing interest in precision medicine, further research is urgently needed 

to understand the settings in which different classical and data-driven modelling approaches 

can be effectively deployed to reliably detect and quantify treatment effect heterogeneity.  
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Tables  

 

Table 1: Baseline clinical characteristics by initiated drug class in CANTATA D and D2 trials, 

and CPRD. Data are mean (SD) unless stated.  

 
 

Derivation set: CANTATA D and D2 trials Validation set: Clinical Practice Research Datalink 

 SGLT2-inhibitor 
(n=715) 

[Canagliflozin 300mg] 

DPP4-inhibitor 
(n=713) 

[Sitagliptin 100mg] 

SGLT2-inhibitor 
(n=11,682) 
[Any class] 

DPP4-inhibitor 
(n=7,059) 

[Any class] 
Trial (n %)     
    CANTATA-D 355 (49.7) 356 (49.9) NA NA 
    CANTATA-D2 360 (50.3) 357 (50.1) NA NA 
Age (years)  55.9 (9.4) 56.0 (9.4) 59.9 (9.1) 64.0 (10.8) 
     
Sex (n %)     
    Female  355 (49.7) 339 (47.5) 4,393 (37.6) 2,593 (36.7) 
    Male  360 (50.3) 374 (52.5) 7,289 (62.4) 4,466 (63.3) 
HbA1c (mmol/mol)  63.9 (9.9) 63.9 (9.9) 76.8 (14.2) 72.4 (13.2) 

BMI (kg/m2)  31.5 (6.6) 31.9 (6.5) 34.4 (6.6) 32.2 (6.4) 
eGFR (mL/min/1.3 m2)  88.5 (18.2) 88.2 (19.5) 88.8 (14.4) 82.9 (17.2) 
HDL-c (mmol/L)  1.2 (0.3) 1.2 (0.3) 1.1 (0.3) 1.2 (0.3) 
LDL-c (mmol/L) 2.7 (0.9) 2.7 (0.9) 2.4 (1.0) 2.3 (0.9) 
Triglycerides (mmol/L)  2.1 (1.4) 1.9 (1.2) 2.3 (1.4) 2.1 (1.3) 
ALT (IU/L) 28.8 (18.5) 28.2 (14.7) 36.5 (44.2) 33.9 (56.9) 
Albumin (g/L)  41.0 (3.3) 41.0 (3.3) 42.4 (4.0) 42.4 (3.9) 
Bilirubin (µmol/L)  8.3 (4.0) 8.0 (0.9) 9.8 (5.0) 10.0 (5.1) 
Number of concurrent 
glucose-lowering drugs (n %) 

    

    0 0 0 187 (2.6) 665 (5.7) 
    1 355 (49.7) 356 (49.9) 2818 (39.9) 6947 (59.5) 
    2 360 (50.3) 357 (50.1) 3268 (46.3) 3914 (33.5) 
    3 0 0 786 (11.1) 156 (1.3) 
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Table 2: External validation in CPRD: Observed treatment effects across strata defined by 
clinical cut-offs of predicted treatment benefit. Estimates are adjusted for clinical features in the 
treatment selection model (to improve precision and control for potential differences in covariate 
balance within subgroups).  
 
Penalized regression model external validation  
 Observed treatment difference (mmol/mol; negative favors SGLT2-i) 

Predicted HbA1c difference  N patients 
Treatment  
difference Lower CI Upper CI p-value 

Overall 18,741 -4.5 -4.9 -4.0 <0.001 

Strata      

SGLT2-i benefit by any mmol/mol 15626 -5.1 -5.5 -4.6 <0.001 

SGLT2-i benefit by ≥10 mmol/mol 687 -11.0 -14.0 -8.0 <0.001 

SGLT2-i benefit by 5-10 mmol/mol 3920 -7.8 -8.9 -6.7 <0.001 

SGLT2-i benefit by 3-5 mmol/mol 3763 -5.4 -6.3 -4.4 <0.001 

SGLT2-i benefit by 0-3 mmol/mol 7256 -2.6 -3.2 -2.0 <0.001 

DPP4-i benefit by any mmol/mol 3115 0.2 -0.8 1.2 0.700 

DPP4-i benefit by 0-3 mmol/mol 2845 0.0 -1.1 1.1 0.983 

DPP4-i benefit by ≥3 mmol/mol 270 3.1 -1.5 7.7 0.186 

 
  
 

Causal forest external validation 

 
 

Observed treatment difference (mmol/mol; negative favors SGLT2-i) 

Predicted HbA1c difference  N patients 
Treatment  
difference Lower CI Upper CI p-value 

Overall 18741 -4.5 -4.9 -4.0 0.003 

Strata      

SGLT2-i benefit by any mmol/mol 18689 -4.5 -4.9 -4.0 <0.001 

SGLT2-i benefit by ≥10 mmol/mol 0 NA NA NA NA 

SGLT2-i benefit by 5-10 mmol/mol 2175 -8.7 -10.1 -7.4 <0.001 

SGLT2-i benefit by 3-5 mmol/mol 8676 -5.8 -6.5 -5.2 <0.001 

SGLT2-i benefit by 0-3 mmol/mol 7838 -1.0 -1.6 -0.4 0.001 

DPP4-i benefit by any mmol/mol 52 2.0 -12.7 16.8 0.78 

DPP4-i benefit by 0-3 mmol/mol 52 2.0 -12.7 16.8 0.78 

DPP4-i benefit by ≥3 mmol/mol 0 NA NA NA NA 
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Figure legends 
 
 
Figure 1: Relative feature importance for treatment selection between SGLT2-inhibitor and DPP4-
inhibitor treatment, for all clinical features. a) Penalized regression. Feature importance reflects the 
proportion of chi-squared explained by drug-by-covariate interaction terms for each clinical feature in 
multivariable analysis, as these represent differential treatment effects for the two therapies. Bars 
represent bootstrapped 95% confidence intervals. b) Causal forest model. Adjusted importance (using p-
values) represent the covariates selected most often by trees within the causal forest, after controlling for 
biased variable selection. Permutation-based tests generate p-values for each covariate, using an 
understanding that spurious splits in trees would continue to occur in the presence of a permuted outcome 
unless these splits also reflect the true underlying association. For the purpose of comparison, inverse p-
values are presented as relative importance measures. 

a) Penalised regression   
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b) Causal forest 
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Figure 2: Final treatment selection model performance for A) Penalized regression and B) Causal 
forest in CPRD validation data. Left panels show the distribution of predicted individualized treatment 
effects. Negative values reflect a predicted benefit on SGLT2-inhibitor treatment, positive values reflect a 
predicted HbA1c benefit on DPP4-inhibitor treatment. Right panels show calibration between observed 
and predicted treatment effects, across strata defined by decile of predicted treatment effect. Estimates are 
adjusted for clinical features in the treatment selection model to improve precision and control for 
potential differences in covariate balance within strata.  
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