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Structured Abstract 

 

Importance: Psychiatric disorders display high levels of comorbidity and genetic overlap, 

necessitating multivariate approaches for parsing convergent and divergent psychiatric risk 

pathways. Identifying gene expression patterns underlying cross-disorder risk also stands to 

propel drug discovery and repurposing in the face of rising levels of polypharmacy.  

 

Objective: To identify gene expression patterns underlying genetic convergence and divergence 

across psychiatric disorders along with existing pharmacological interventions that target these 

genes.  

 

Design: This genomic study applied a multivariate transcriptomic method, Transcriptome-wide 

Structural Equation Modeling (T-SEM), to investigate gene expression patterns associated with 

four genomic factors indexing shared risk across 11 major psychiatric disorders. Follow-up tests, 

including overlap with gene sets for other outcomes and phenome-wide association studies, were 

conducted to better characterize T-SEM results. Public databases describing drug-gene pairs 

were used to identify drugs that could be repurposed to target genes found to be associated with 

cross-disorder risk.  

 

Main Outcomes and Measures: Gene expression patterns associated with genomic factors or 

disorder-specific risk and existing drugs that target these genes.  

 

Results: In total, T-SEM identified 451 genes whose expression was associated with the 

genomic factors and 41 genes with disorder-specific effects. We find the most hits for a Thought 

Disorders factor defined by bipolar disorder and schizophrenia. We identify 39 existing 

pharmacological interventions that could be repurposed to target gene expression hits for this 

same factor.  

 

Conclusions and Relevance: The findings from this study shed light on patterns of gene 

expression associated with genetic overlap and uniqueness across psychiatric disorders. Future 

versions of the multivariate drug repurposing framework outlined here have the potential to 

identify novel pharmacological interventions for increasingly common, comorbid psychiatric 

presentations.  
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Psychiatric disorders are highly polygenic and genome-wide analyses have identified 

hundreds of loci associated with these disorders.1–3 However, translating these findings into 

biological and clinical insights has been difficult. Many causal genetic variants are likely to be 

expression quantitative trait loci (eQTL) that affect trait variation via modulation of gene 

expression.4–6 Transcriptome-wide association studies (TWAS) can be used to quantity the effect 

of gene expression itself, the more proximal predictor, on a particular trait. TWAS carries the 

additional advantage of distilling hundreds of associated genetic variants into the more biologically 

interpretable subunit of gene-level results. Despite its scientific value, a rate limiting challenge for 

transcriptomic analyses is the pragmatic difficulty of obtaining gene expression data in relevant 

tissues, and most such studies of psychiatric disorders have relied on limited resources of 

postmortem brain tissue samples. Summary-based TWAS circumvents this issue by imputing gene 

expression for traits for which only genome-wide association study (GWAS) summary statistics 

are available. This approach has yielded insight into gene expression patterns associated with 

ADHD,7 major depression,8 treatment resistant depression,9 and autism spectrum disorder.10 This 

is with the interpretive caveat that prior findings do not account for pervasive genetic overlap 

across disorders. 

Many gene expression patterns associated with psychiatric risk are unlikely to show 

diagnostic specificity given genetic correlations that indicate highly overlapping genetic signal 

across the psychiatric phenome.11–13 Transcriptome-wide Structural Equation Modeling (T-

SEM)14 is a recently introduced extension of Genomic SEM15 for modeling tissue-specific gene 

expression within a multivariate network of genetically overlapping traits. We apply T-SEM here 

to investigate the effect of gene expression on four psychiatric genomic factors defined by the 

shared genetic signal across 11 childhood- and adult-onset psychiatric disorders. We also estimate 

the T-SEM heterogeneity metric (QGene), an index of genes with disorder-specific effects that 

allows for unpacking genetic sources of divergence for correlated traits.  

Transcriptomic results can also be used to inform drug repurposing when combined with 

open-source databases that describe existing drugs that target specific genes. Drug repurposing can 

circumvent an otherwise costly and time-consuming drug development pipeline16 and may propel 

novel avenues for pharmacotherapy. A transcriptomics informed drug discovery approach has 

already been applied to identify potential pharmacological interventions for individual psychiatric 

disorders.9,17 Given psychiatric comorbidity that is the norm rather than the exception,18,19 it is 

unsurprising that polypharmacy is equally common, with most help-seeking children20 and adults21 

prescribed ≥ 2 psychiatric medications from a single community visit. As T-SEM identifies gene 

expression patterns that transcend diagnostic boundaries, these may function as efficacious 

pharmacological targets that aid in reducing polypharmacy for comorbid or mixed clinical 

presentations.  

 

Method 

 

Univariate TWAS in FUSION 

 Transcriptomic imputation was performed using the FUSION software6 applied to publicly 

available, European GWAS summary statistics for 11 major psychiatric disorders (Table 1). 

Imputation was performed using 16 sets of functional weights including the 13 brain-based tissue 

types from the Genotype-Tissue Expression project (GTEx v8),22 the two dorsolateral prefrontal 

cortex (dlPFC) datasets from the CommonMind Consortium (CMC),23 and the prefrontal cortex 

data from PsychENCODE.24 Reference alleles were aligned across univariate GWAS summary 
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statistics and, when this information was available, restricted to SNPs with a minor allele 

frequency minor allele frequency (MAF) > 1% and an imputation (INFO) score > 0.6. We 

restricted results to genes with an imputation accuracy (R2) > 0.7 and only performed imputation 

for genes with a maximum of 50% of the SNPs with functional weights missing. There were 77,943 

tissue-specific gene expression estimates across all 11 disorders.  

 

LD-score Regression and Psychiatric Factor Model 

 GWAS summary statistics were processed with the munge function prior to running 

multivariable LD-score Regression (LDSC)25 implemented within Genomic SEM.15 Multivariable 

LDSC produces the genetic covariance matrix and sampling covariance matrix that index genetic 

overlap and sampling dependencies across estimates, respectively, and are used as input to T-SEM. 

We used the LD score for the European subsample of 1000 Genomes, excluding the major 

histocompatibility complex (MHC) region, for LDSC estimation. All heritability estimates were 

converted to the liability scale by inputting the population prevalence and the sum of the effective 

sample size.26 To produce a set of findings comparable to previous work, we used the same model 

of these 11 disorders from Grotzinger et al. 2022,13 that provided good fit to the current data (CFI 

= .976, SRMR = .097; Figure 1). This model consists of four correlated genomic factors reflecting 

subsets of (i) Compulsive, (ii) Thought, (iii) Neurodevelopmental, and (iv) Internalizing disorders.   

Transcriptome-wide Structural Equation Modeling  

 Transcriptome-wide Structural Equation Modeling (T-SEM) is a two-stage approach for 

examining the effect of tissue-specific gene expression within a multivariate model of genetically 

overlapping traits. In Stage 1, FUSION and LDSC are applied and the tissue-specific estimates for 

each gene produced by TWAS are used to expand both the genetic covariance and sampling 

covariance estimates. The read_fusion function was used to scale the univariate TWAS output to 

be partially standardized gene-phenotype covariances. Genomic inflation was corrected for by 

multiplying TWAS standard errors by the univariate LDSC intercept when this intercept was > 1. 

In Stage 2, the effect of tissue-specific gene expression on the four psychiatric factors was 

estimated. We also produce gene- and factor-specific metrics of heterogeneity via the QGene 

statistic, a metric that identifies genes likely to have disorder specific effects.14 QGene is estimated 

as the model 2 difference test comparing a (i) a common pathways model in which the gene solely 

predicts the psychiatric factor to an (ii) an independent pathways model in which the gene directly 

predicts the psychiatric disorders that define the factor.  

 To better characterize transcriptomic results, we ran five follow-up tests (described in detail 

in Online Supplement). First, Bayesian colocalization analyses were utilized to determine the 

probability of shared (i.e., colocalized) causal variants across gene expression and the psychiatric 

factors. Second, the variance explained in nearby multivariate GWAS estimates by gene 

expression results was calculated. Third, joint analyses were conducted to estimate the conditional 

significance of physically proximal genes and genes with expression weights across multiple 

tissues. Conditional findings should be interpreted with caution as genes with nonsignificant 

conditional associations may simply have higher correlations with other genes. Fourth, Over 

Representation Analyses (ORA) were conducted using WebGestalt27 to identify overlap between 

factor hits and gene sets for external traits. The number of gene expression hits was either too small 

for these analyses or did not produce significant findings for any outcome except the Thought 

disorders factor. Fifth, we performed phenome-wide association studies (PheWAS) within the 

Vanderbilt BioVU European (n=70,439) and African Ancestry (n=15,174) participants to assess 
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the clinical phenotypes associated with gene expression hits for the psychiatric genomic factors. 

PheWAS analyses used a strict Bonferroni correction for the number of tested associations across 

factors, genes, and phecodes (p < 1.81E-7). We did not detect any significant associations for 

individuals of African ancestry, which is likely due to reduced power. Nominally significant 

associations with psychiatric phenotypes are considered in the Online Supplement.  

 

Multivariate GWAS of Psychiatric Factors 

 Multivariate GWAS summary statistics were estimated for the psychiatric factors to 

perform the follow-up colocalization and conditional analyses described above. This was achieved 

by estimating the SNP effects on the four correlated factors using the userGWAS function within 

Genomic SEM. Prior to running userGWAS, the 11 GWAS summary statistics for the disorders 

were run through the sumstats function to align results to the same reference allele, partially 

standardize estimates with respect to the trait variance, and restrict to MAF > 0.5% and INFO > 

0.9 when this information was available. This resulted in a final set of 4,863,931 genetic variants.  

Drug Repurposing  

 We utilize the Drug-Gene Interaction Database (DGIdb v.4.2.0) and the Broad Institute 

Connectivity Map (C-MAP) Drug Repurposing Database28 to identify existing pharmacological 

interventions that target T-SEM gene expression hits. These databases include information on the 

mechanisms of action (MOA) for each drug (e.g., antagonist). This allowed for matching drugs to 

genes that are likely to have therapeutic, as opposed to adverse, effects based on whether upward 

or downward expression was associated with psychiatric risk. Oncology, vaccine, and antibody 

drugs were removed as these forms of drug administration are less likely to be relevant to 

psychiatric treatment. In line with prior quality control of the DGIdb resource, only drug-gene 

pairs with interaction scores > 0.5 were retained.29 The interaction score reflects the product of 

supporting publications and the relative drug- and gene-specificity, such that higher values indicate 

greater support of a drug-gene interaction.30 This resulted in a final list of 3,678 and 5,638 drug-

gene pairs from DGIdb and C-MAP, respectively. Drug-gene pairs were cross-referenced with the 

factor and QGene hits, though we find no significant results for QGene. In line with prior drug 

repurposing pipelines,31 we remove genes whose predicted expression was directionally discordant 

across tissue types for a given factor as the desired MOA is unclear.  

 

Results 

 

Hits on the factors reflect genes that were significant at p < 1.60E-7, reflecting the Bonferroni 

corrected threshold for the number of tested genes and factors (.05/[77,943Genes × 4Factors]), and 

were not QGene  significant using the same threshold. As many genes are present across multiple 

tissues, we focus on results for unique gene IDs.  

 

 Compulsive Disorders Factor. Results revealed 2 hits for the Compulsive disorders factor, 

both of which were hits for anorexia nervosa (AN): C3orf62 and DALRD3 (Supplementary Table 

1; Figure 2 for Miami plot). C3orf62 was also conditionally significant, explained 84.1% of the 

variance in nearby GWAS results, and was supported by a model of colocalized gene expression 

and GWAS associations (Supplementary Table 2). There were 2 significant QGene hits (SLC25A27; 

PPAPDC1A) with directionally opposing effects across AN, obsessive compulsive disorder, and 
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Tourette’s syndrome (Supplementary Table 3; Supplementary Figure 1). No significant PheWAS 

associations or drug-gene pairs were identified for this factor.  

 

 Thought Disorders Factor. We identify 394 gene expression hits for the Thought disorders 

factor defined by bipolar disorder (BIP) and schizophrenia (SCZ; Supplementary Table 4). 

Highlighting the ability of T-SEM to leverage shared power across genetically overlapping traits, 

this included 79 novel genes that were not significant for any of the univariate disorder TWAS for 

any reference tissue. Most hits (63.1%) were supported by a model of colocalized gene expression 

and GWAS (mean poster probability across all hits = .528), while a smaller percentage (27.3%) 

indicated independent associations (mean posterior probability = .275). There were 198 

conditionally significant factor hits that explained an average of 67.6% of the variance in nearby 

GWAS estimates (Supplementary Table 5). There were 31 significant QGene hits (Supplementary 

Table 6), 24 of which were significant hits for SCZ.  

 WebGestalt ORA analyses identified significant overlap across Thought Disorders factor 

hits and eight gene sets, including gene sets for BIP and SCZ (Supplementary Table 7). The most 

significant gene set was for Alexander Disease, a rare and fatal neurological disorder that causes 

enlargement of astrocytes.32 In addition, there were several autoimmune related gene sets, 

including: autoimmune thyroid disease, systemic lupus erythematosus, and both immunoglobin A 

(IgA) deficiency and dysgammaglobulinaemia, which are themselves linked to increased risk for 

autoimmune diseases.33 PheWAS results in BioVU participants of European ancestry revealed 31 

significant gene expression-phenotype associations, including 7 genes within the human leukocyte 

antigen (HLA) region linked to autoimmune diseases such as type I diabetes, multiple sclerosis, 

and celiac disease (Supplementary Table 8; Supplementary Figure 2). PheWAS results also 

identified several significant associations between GAS8 and CPNE7 expression and several skin 

cancer phenotypes.  

 We removed 36 unique genes with a mixture of positive and negative associations across 

tissue types for the factor hits. This yielded a final list of 358 unique genes associated with the 

Thought disorders factor for drug discovery follow-up. Drug repurposing results revealed a total 

of 39 drug-gene pairs across the DGIdb and C-MAP databases (Table 2). These pharmacological 

interventions may target the shared risk pathways across BIP and SCZ. 

 

 Neurodevelopmental Disorders Factor. Results revealed 1 hit for the Neurodevelopmental 

disorders factor for the KDM4A gene that explained 94.4% of the variance in nearby GWAS 

estimates (Supplementary Tables 9-10). There were 4 hits for QGene, 3 of which showed moderate, 

directionally opposing effects across traits (Supplementary Table 11). No significant PheWAS 

associations or drug-gene pairs were identified for this factor. 

 

Internalizing Disorders Factor. There were 54 hits for the Internalizing disorders factor, 

51 of which overlapped with univariate hits for major depressive disorder (MDD; Supplementary 

Table 12). Most hits (56.1%) were supported by a model of colocalized gene expression and 

GWAS (mean posterior probability = .543), while ~30% were supported by a model of 

independent expression and GWAS associations (mean posterior probability = .305). There were 

25 conditionally significant genes that explained an average of 83.4% of the variance in nearby 

GWAS estimates (Supplementary Table 13). There were 4 significant hits for QGene 

(Supplementary Table 14). PheWAS results revealed associations with 14 autoimmune 
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phenotypes driven by chromosome 6 genes (Supplementary Table 15). No significant drug-gene 

pairs were identified.  

 

Discussion 

 

 The current findings reflect a comprehensive transcriptomic examination of 11 major 

psychiatric disorders and the first strictly multivariate analyses of gene expression patterns 

associated with psychiatric risk. Applying T-SEM, we identified a cumulative set of 451 genes 

associated with the genomic factors. Results for the Compulsive and Neurodevelopmental factors 

were limited, likely reflecting the lower power for the traits defining these factors. Hits for the 

Internalizing factor included RPL31P12, a gene previously shown to be potentially causally 

associated with MDD34 and a top hit for a cross-trait analysis of MDD and insomnia.35 Another 

Internalizing hit, RAB27B, was recently associated with MDD, risk for Alzheimer’s disease, and a 

range of associated outcomes, including increased tangles, β-amyloid and cognitive decline.36  

Among the top hits for the Thought disorders factor were NEK4 in the prefrontal cortex, 

which has been previously linked to BIP and SCZ,37 and ZSCAN2 expression in the prefrontal 

cortex, which has been associated with SCZ.38 Our multivariate findings indicate these prior 

univariate results likely index gene expression patterns underlying the shared risk pathways across 

BIP and SCZ. We also observed 24 QGene hits that were specific to SCZ, including the CRHR-IT1 

that has been linked to loneliness,39 and VPS29, a gene uniquely associated with risk for SCZ in 

prior conditional analyses.40 In addition, the TBC1D5 SCZ and QGene hit has been found to interact 

with VPS29 to regulate the retromer complex,41 a highly conserved subunit associated with early 

onset Alzheimer’s disease.42 These SCZ-specific genes may reflect central components of the 

divergent risk pathways across SCZ and BIP.  

We identified 39 drug-gene pairs for the Thought disorders factor. Lending support for the 

proposed link between immune dysfunction and psychiatric risk,43 several identified drugs were 

originally developed for autoimmune disorders. For example, Teneliximab was designed as a 

treatment for autoimmune diseases as a drug that targets the immune system involved CD40 

gene.44 In addition, Larazotide Acetate is prescribed for the autoimmune disorder celiac disease.45 

This subset of drugs is consistent with the ORA and PheWAS follow-up analyses that revealed 

overlap across Thought Disorders factor hits and autoimmune outcomes. These outcomes included 

autoimmune thyroid disease, which has itself been linked to increased risk for schizophrenia46 and 

psychosis.47   

Antihypertensive drugs (e.g., Amlodipine, Nitrendipine, Nimodipine) that target the 

CACNA1D Thought disorders hit were also identified. The CACNA1D gene codes for the Cav1.3 

α1 subunit, which regulates L-type calcium channels (LTCC) that are increasingly associated with 

psychiatric risk48 and considered viable therapeutic targets.49 Consistent with our results that 

CACNA1D is specifically associated with shared genetic risk pathways across BIP and SCZ, LTCC 

antagonist prescriptions were recently associated with reduced psychiatric hospitalizations for both 

disorders.50 Nimodipine has also been linked to improved cortical efficiency during working 

memory tasks, indicating this may have therapeutic value for the treatment of negative symptoms, 

such as cognitive dysfunction.51  

Finally, we highlight that Riluzole, an antiglutamatergic agent targeting the KCNN3 hit, 

was found to be effective in treating negative symptoms in a randomized control trial for 

schizophrenia.52 The therapeutic potential of a pharmacological intervention targeting the 

glutamatergic system is further supported by increasing evidence linking this system to psychiatric 
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risk.53 Prior findings that indicate the potential of Nimodipine and Riluzole to alleviate negative 

symptoms is exciting as these are typically untreated using current standard approaches.54 Within 

BIP, these two drugs may be especially useful for treating the cognitive deficits more often 

observed in individuals who experience mania with psychotic features, as compared to those with 

nonpsychotic mania.55  

 

Limitations and Future Work. Several limitations should be noted. Most importantly, we highlight 

that results were performed strictly in European samples due to the limited availability of data for 

other ancestries. It is our hope that in the next few years the expansion of GWAS datasets for 

different ancestries will reach a sufficient size to extend these findings more representatively. As 

this work was conducted using common variants with an MAF > 1%, it will also be important to 

extend this framework and analyses to utilize whole-exome and -genome sequencing datasets. We 

note also that an analytic pipeline that utilizes a GWAS of the disorders does not account for 

individual differences in treatment response itself. Future work might then seek to identify the 

gene expression patterns for individuals with a treatment-resistant form of the disorder. Examining 

gene expression patterns associated with treatment nonresponse could be used to identify 

interventions for the subset of individuals most likely to require novel pharmacological 

approaches.  

 

Conclusion 

 

We apply T-SEM to 11 major psychiatric disorders to identify patterns of gene expression 

underlying both genetic convergence and divergence. As GWAS, gene expression, and drug-gene 

datasets continue to rapidly expand, the multivariate analyses employed here have the potential to 

identify novel drug targets with relevance for comorbid clinical presentations. Highlighting the 

promise of T-SEM informed drug repurposing, our analyses identify 39 drugs that target genes 

associated with the shared risk pathways across BIP and SCZ. Lending support to these findings, 

a subset of identified drugs have prior evidence from clinical trials indicating their therapeutic 

potential for one or both disorders. With recent advances in psychiatric genetics, we are finally 

beginning to deliver on one of the initial promises of psychiatric GWAS to propel drug discovery.  
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Code Availability 

GenomicSEM software (including the T-SEM extension), is an R package that is available from 

GitHub at the following URL: https://github.com/GenomicSEM/GenomicSEM  

Directions for installing the GenomicSEM R package can be found at: 

https://github.com/GenomicSEM/GenomicSEM/wiki  

The FUSION software used for univariate TWAS analyses is available here: 

http://gusevlab.org/projects/fusion/ 

The WebGestalt software documentation can be found here and the R package directly installed 

from the R console:  

http://www.webgestalt.org/ 

 

Data Availability 

The data that support the findings of this study are all publicly available or can be requested for 

access. Specific download links for various datasets are directly below.  

Summary statistics for data from the Psychiatric Genomics Consortium (PGC) can be 

downloaded or requested here:  

https://www.med.unc.edu/pgc/download-results/ 

Summary statistics for the Anxiety phenotype can be downloaded here:  

https://drive.google.com/drive/folders/1fguHvz7l2G45sbMI9h_veQun4aXNTy1v 

Links to the LD-scores, reference panel data, and the code used to produce the current results can 

all be found at: https://github.com/GenomicSEM/GenomicSEM/wiki 

Links to the functional reference weights from GTEx version 8 and CMC can be found here: 

http://gusevlab.org/projects/fusion/ 

Links to the functional reference weights from PsychENCODE can be found here: 

http://resource.psychencode.org/ 

The DGIdb database can be found here (results were downloaded on March 4th, 2022) 

https://www.dgidb.org/ 

The C-MAP Repurposing database can be found her (results were downloaded on March 4th, 

2022): https://clue.io/repurposing-app 

 

 

https://github.com/GenomicSEM/GenomicSEM
https://github.com/GenomicSEM/GenomicSEM/wiki
http://gusevlab.org/projects/fusion/
http://www.webgestalt.org/
https://www.med.unc.edu/pgc/download-results/
https://drive.google.com/drive/folders/1fguHvz7l2G45sbMI9h_veQun4aXNTy1v
https://github.com/GenomicSEM/GenomicSEM/wiki
http://gusevlab.org/projects/fusion/
http://resource.psychencode.org/
https://www.dgidb.org/
https://clue.io/repurposing-app
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Figure 1. Genomic Factor Model of Psychiatric Disorders. Figure depicts the results from a model in which the gene expression of 

CACNA1D imputed using the PsychENCODE functional weights predicts the four psychiatric factors. CACNA1D was both a top hit for the 

Thought disorders factor and one of the genes with several identified drug-gene pairs. Depicted results are standardized with respect to the 

total genetic variance in the 11 psychiatric disorders. The genetic variance of the psychiatric factors reflects 1 + the variance explained by 

CACNA1D expression. Standard errors are shown in parentheses and the effect of gene expression on the factors is highlighted in red. AN = 

anorexia nervosa; OCD = obsessive-compulsive disorder; TS = Tourette’s syndrome; SCZ = schizophrenia; BIP = bipolar disorder; AUD = 

alcohol use disorder; ASD = autism spectrum disorder; ADHD = attention-deficit hyperactivity disorder; PTSD = post traumatic stress 

disorder; MDD = major depressive disorder; ANX = anxiety disorders. 
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Figure 2. T-SEM of Psychiatric Factors. Panels depict Miami plots of Z-statistics for the 77,943 estimated gene expression effects on the 

Compulsive disorders factor (Panel A), Thought disorders factor (Panel B), Neurodevelopmental disorders factor (Panel C), and Internalizing 

disorders factor (Panel D). Z-statistics are signed such that dots on the upper and lower half the plot reflect genes whose upward and downward 

expression is associated with the psychiatric factors, respectively. The solid blue lines on both sides of the plot reflect the Bonferroni significance 

threshold, correcting for both the number of tested genes and number of factors. Genes that both surpass these thresholds and are not significant 

for QGene are depicted as red points to denote factor hits. Up to the top 80, Bonferroni significant, unique genes for each factor are labeled.   
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Table 1. T-SEM Results  

Outcome 

  
Population 

Prevalence 
Mean 2(1) 

Total Hits   Unique Genes 

Cases Controls 

Hits             

Shared 

hits    

 

Hits             

Shared 

hits  

Factor 1: Compulsive Disorders - - - 1.432 3 3   2 2 

   Factor 1 QGene - - - 1.144 2 0   2 0 

Factor 2: Thought Disorders - - - 3.317 1,085 866   394 315 

   Factor 2 QGene - - - 1.530 139 129   31 26 

Factor 3: Neurodevelopmental Disorders - - - 1.498 2 2   1 1 

   Factor 3 QGene - - - 1.452 4 1   4 1 

Factor 4: Internalizing Disorders - - - 1.703 132 126   54 53 

   Factor 4 QGene - - - 1.167 4 2    4 2 

Alcohol use Disorder (AUD)56 8,485 20,272 15.90 1.060 1  0 (1)   1 0 (1) 

Anorexia Nervosa (AN)57 16,992 55,525 0.90 1.478  31 3 (0)   11 2 (0) 

Anxiety Disorders (ANX)58 31,977 82,114 20.00 1.259 0  -   - - 

Attention-deficit Hyperactivity Disorder (ADHD)59 19,099 34,194 5.00 1.432  17 5 (0)   12 5 (0) 

Autism Spectrum Disorder (ASD)60 18,381 27,969 1.20 1.377  3 0 (0)   3 0 (1) 

Bipolar Disorder61 41,917 371,549 2.00 2.246 232 187 (0)   106  85 (0) 

Major Depressive Disorder (MDD)62 170,756 329,443 15.00 1.948 215 163 (0)    82 68 (0) 

Obsessive Compulsive Disorder63 2,688 7,037 2.50 1.127 0 -   - - 

Post-traumatic Stress Disorder (PTSD)64 2,424 7,113 30.00 1.037 1 0 (1)   0 0 (1) 

Schizophrenia65 53,386 77,258 1.00 3.427 1,306 814 (128)   418 291 (24) 

Tourette's Syndrome66 4,819 9,488 0.80 1.217 0 -   - - 
Note. For the four psychiatric factors and QGene the Shared Hits column reports the number of hits that were overlapping with univariate TWAS hits for 

the individual disorders. Hits for the factors are reported for Bonferroni significant genes that were not significant for QGene. For the 11 disorders, the 

Shared Hits column reports univariate TWAS hits that were overlapping with any of the factor T-SEM hits, along with values in parentheses reporting 

univariate hits overlapping with the QGene hits. Hits and Shared hits are reported for: (i) the total cumulative hits across all tissues (Total Hits) and (ii) 

restricting to unique gene IDs when the gene was significant across multiple tissues (Unique Genes). Thus, the right-most column of Unique Genes: Shared 
Hits reports shared hits across an individual disorder and psychiatric factor, even if that hit is in two different tissue types. Taken together, Factor 2 had 79 

highly unique gene hits (i.e., 394-315) that were not significant in any tissue type for any of the psychiatric disorders. To facilitate comparison across T-

SEM and TWAS outcomes, mean χ2 values reported in each row were converted to χ2(1) statistics before taking their means. 
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Table 2. Drug-Gene Pairs     

Drug Primary Name 
Gene 

Target 
CHR Mechanism of Action  

DGIdb 

Interaction 

Score 

RILUZOLE KCNN3 1 activator 0.69 

AMLODIPINE CACNA1D 3 inhibitor 0.61 

AMLODIPINE MALEATE CACNA1D 3 blocker 0.61 

AZIDOPINE CACNA1D 3 inhibitor 2.45 

DILTIAZEM MALATE CACNA1D 3 blocker 0.61 

ISRADIPINE CACNA1D 3 blocker 1.4 

NIMODIPINE CACNA1D 3 blocker 1.07 

NITRENDIPINE CACNA1D 3 inhibitor 0.92 

CLEVIPREX CACNA1D 3 calcium channel blocker - 

DRONEDARONE CACNA1D 3 adrenergic receptor antagonist - 

GABAPENTIN CACNA1D 3 calcium channel blocker - 

MANIDIPINE CACNA1D 3 calcium channel blocker - 

NIFEDIPINE CACNA1D 3 calcium channel blocker - 

NILVADIPINE CACNA1D 3 calcium channel blocker - 

NISOLDIPINE CACNA1D 3 calcium channel blocker - 

SPIRONOLACTONE CACNA1D 3 mineralocorticoid receptor antagonist - 

VERAPAMIL CACNA1D 3 calcium channel blocker - 

PEMIGATINIB FGFR1 8 inhibitor 0.71 

NINTEDANIB FGFR1 8 inhibitor - 

PONATINIB FGFR1 8 inhibitor - 

PROGESTERONE CYP17A1 10  agonist - 

LARAZOTIDE ACETATE CHRNA3 15 partial agonist 1.59 

TC-6499 CHRNA3 15 agonist 0.8 

VARENICLINE CHRNA3 15 agonist 1.36 

CYTISINE CHRNA3 15 acetylcholine receptor agonist - 

NICOTINE CHRNA3 15 acetylcholine receptor agonist - 

TETRAMISOLE CHRNA3 15 immunostimulant - 

LORLATINIB FES 15 inhibitor 1.82 

AT-7519 CDK10 16 inhibitor 0.61 

AZD-5438 CDK10 16 inhibitor 0.64 

PHA-793887 CDK10 16 inhibitor 0.61 

RONICICLIB CDK10 16 inhibitor 0.64 

MK-8353 MAPK3 16 inhibitor 1.06 

RAVOXERTINIB MAPK3 16 inhibitor 3.18 

ULIXERTINIB MAPK3 16 inhibitor 1.59 

TENELIXIMAB CD40 20 partial agonist 5.79 

BUMETANIDE SLC12A5 20 inhibitor - 

PLUMBAGIN EP300 22 inhibitor 0.61 

TOSEDOSTAT XPNPEP3 22 inhibitor 3.35 

Note. Table reports the 39 drug-gene pairs identified when cross-referencing the DGIdb and C-MAP 

databases with gene expression hits for the Thought Disorders factor. Results are ordered by chromosome 

and gene name. Interaction scores are reported for drug-gene pairs from DGIdb. CHR = chromosome.  
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