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Abstract 

Background: Prostate cancer (PCa) is the second most prevalent malignancy and the fifth 

cause of cancer-related deaths in men. A crucial challenge is identifying the population at risk 

of rapid progression from hormone-sensitive PCa (HSPC) to the lethal castration-resistant 

PCa (CRPC). 
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Methods: We collected 78 HSPC biopsies and measured their proteomes using pressure 

cycling technology and a pulsed data-independent acquisition pipeline. The proteomics data 

and clinical metadata were used to generate models for classifying HSPC patients and 

predicting the development of each case. 

Results: We quantified 7,961 proteins using the HSPC biopsies. A total of 306 proteins were 

differentially expressed between patients with a long- or short-term progression to CRPC. 

Using a random forest model, we identified ten proteins that significantly discriminated long- 

from short-term cases, which were used to classify PCa patients with an 86% accuracy. Next, 

two clinical parameters (Gleason sum and total PSA) and five proteins (DPT, ARGEF1, 

UTP23, CMAS, and ANAPC4) were found to be significantly associated with rapid disease 

progression. A nomogram model using these seven features was generated for stratifying 

patients into groups with significant progression disparities (p-value = 5.2 × 10−9). 

Conclusion: We identified proteins associated with a fast progression to CRPC and an 

unfavorable prognosis. Based on these proteins, our machine learning and nomogram models 

stratified HSPC into high- and low-risk groups and predict their prognoses. These tools may 

aid clinicians in predicting the progression of patients, guiding individualized clinical 

management and decisions. 

Keywords: hormone-sensitive prostate cancer, PCT-PulseDIA, proteomics, risk stratification, 

castration-resistance, machine learning
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Introduction 

Prostate cancer (PCa) is the second most prevalent malignancy in males and the fifth leading 

cause of cancer-related death globally1. With the implementation of prostate-specific antigen 

screening (PSA) and the aggravation of population aging, after 2012, the PCa incidence and 

cancer-related mortality in China began to climb2. Regarding the risk categories of PCa, 

locally advanced PCa and metastatic PCa have significantly higher 10- and 15-year mortality 

rates than other categories3. Androgen deprivation therapy (ADT) combined with androgen 

blocking is frequently beneficial to patients with locally advanced and metastatic PCa during 

the initial treatment stage4. However, almost all hormone-sensitive prostate cancers (HSPC) 

progress to castration-resistant prostate cancers (CRPC) within five years, with only 5-10% of 

patients remaining alive ten years after initiating ADT5. 

Due to its heterogeneity, PCa has a complex disease spectrum, ranging from clinically 

indolent subtypes to aggressive ones. The progress span to CRPC varies significantly among 

patients; however, limited research has been conducted to explore this. Multiple randomized 

controlled phase-III trials, including CHAARTED6 and LATITUDE7, demonstrated that when 

HSPC patients are found to have either a long- or short-term progression to CRPC before 

initiating treatment, it is possible to implement an early and appropriate follow-up strategy, 

thereby optimizing treatment regimens. Therefore, it is urgent to predict and identify HSPC 

patients with a long- or short-term progression to CRPC. 

The ability to understand the genetics behind large next-generation sequencing datasets has 

greatly improved. However, not all the genetic or transcriptomic aberrations of PCa are 
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translated into the proteome. Specifically, Latonen et al. reported that gene copy numbers, 

DNA methylations, and RNA expression levels do not reliably predict the proteomics changes 

of PCa, especially CRPC8. By quantifying and validating large numbers of proteins, these 

findings indicate that proteomics could be a more promising approach for identifying the 

molecular mechanisms underlying HSPC progression to CRPC. 

In recent years, pressure cycling technology (PCT) and pulsed data-independent acquisition 

(PulseDIA) have enabled the in-depth and fast identification of proteins in little amounts 

within tissues, not only fresh frozen9 but also formalin-fixed and paraffin-embedded (FFPE) 

ones10. This technology is particularly suitable for measuring the proteomes of trace amounts 

of clinical biopsies. Through the use of FFPE clinical biopsies tissue, this technology tackles 

the problem that the data collecting period is too long owing to the collection of clinical 

prognosis information, therefore considerably speeding up the understanding of major 

diseases or crucial phases of clinical research. 

This study explored the proteomics differences between HSPC patients with a long- or short-

term progression to CRPC. To this aim, we used the PCT-PulseDIA pipeline to analyze the 

proteomes of pre-ADT PCa biopsies. In addition, the proteomes of HSPC with significantly 

distinct progression were retrospectively evaluated using clinical data. Finally, we generated a 

machine learning model for classifying patients as undergoing a long- or short-term 

progression to CRPC and a nomogram model for predicting the advancement of HSPC. 
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Materials and methods 

Patient recruitment and sample collection 

A total of 78 HSPC patients with complete follow-up information were recruited 

between January 2014 and July 2021 in the Second Hospital of Dalian Medical University 

(median [min, max] follow-up time (months): 9.00 [2.00, 65.00]). The Clinical characteristic 

are given in sTable1. This research was approved by the ethical committee of the Second 

Hospital of Dalian Medical University with the Declaration of Helsinki. The study was 

registered in the Chinese Clinical Trial Register (ChiCTR2100054836), and all patients 

signed a written informed consent before participation. 

Locally advanced PCa samples were classified according to the European Association of 

Urology Prostate Cancer Guideline as any PSA, cT3-4 or cN+, any International Society of 

Urological Pathology (ISUP) grade or Gleason sum (GS), while metastatic PCa was defined 

as cM1 disease based on CT and bone scans11,12. Accordingly, the patients from our study 

population were diagnosed with locally advanced (N = 4) or metastatic disease (N = 74) 

based on histopathological biopsies. Subsequently, all patients were treated with ADT 

(luteinizing hormone-releasing hormone agonists: goserelin 3.6 mg, once every 28 days, one 

dose each time, or leuprorelin 3.75 mg, once every 28 days, one dose each time, subcutaneous 

injection in numerous areas of the upper arm, belly, and buttocks) and with anti-androgen 

(bicalutamide 50 mg s.i.d. or flutamide 250 mg t.i.d. taken orally). This was the initial and 

only therapy before progression. Those patients that progressed to CPRC met the following 

criteria: 1) serum testosterone level < 50 ng/dl, or 1.7 nmol/L; 2) PSA progression: PSA 
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value > 2.0 ng/mL, interval 1 week, three times higher than the baseline level > 50 percent. 

All patients were followed up till their advancement to CRPC. Patients with cardiovascular 

diseases, autoimmune diseases, other malignancies, or deceased due to other causes were 

excluded. The GS was used to evaluate each PCa case's malignancy and annotate primary and 

secondary patterns. 

Proteomics sample preparation and data analysis 

The pre-ADT biopsies were punched (diameter 1 mm) from the FFPE blocks at the 

histopathological sites, and the pathologists evaluated the primary Gleason patterns. A total of 

78 tissue core samples were collected and then assigned to two groups: a discovery set (n=16) 

and a modeling set (n=62). These samples were then analyzed using the PCT-PulseDIA 

technology. 

The PCT-assisted proteomics sample preparation procedures followed our previously 

published workflows13. In brief, about 0.2 mg of FFPE punches were dewaxed with heptane, 

hydrated with ethanol, and then underwent acidic hydrolysis by 0.1% formic acid (FA, 

Thermo Fisher Scientific, USA) and basic hydrolysis by 0.1 M Tris-HCl (pH = 10.0). 

Samples were next lysed using a 6 M urea/2 M thiourea buffer (Sigma, USA), reduced by tris 

(2 carboxyethyl) phosphine (Sigma, USA), and alkylated by iodoacetamide (Sigma, USA). 

The lysates were then digested using PCT by a mix of Lys-C and trypsin (Hualishi Tech. Ltd., 

China). Finally, the PCT-assisted digestion reaction was stopped by trifluoroacetic acid and 

cleaned by C18. 
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A total of 400 ng peptides were injected and separated along a 45 min liquid chromatography 

gradient (from 3 to 28% buffer B – see below for its composition) at a flow rate of 300 

nL/min (precolumn: 3 μm, 100 Å, 20 mm × 75 μm i.d.; analytical column: 1.9 μm, 120 Å, 

150 mm × 75 μm i.d.). Buffer A was mass spectrometry-grade water containing 2% 

acetonitrile and 0.1% FA; buffer B was acetonitrile containing 2% H2O and 0.1% FA. The 

peptides were then analyzed by a Q Exactive HF hybrid Quadrupole-Orbitrap (Thermo Fisher 

Scientific, USA) using the PulseDIA mode with four pulses, as previously described14. 

To analyze the PulseDIA data, we generated an experimental spectral library for the PCa 

tissues. We combined the cleaned peptides from the discovery dataset into a mixture 

containing 100 µg peptides. The peptide pool was then separated using Thermo Ultimate 

Dinex 3000 (Thermo Fisher Scientific, USA) with an XBridge Peptide BEH C18 column 

(300 Å, 5 µm x 4.6 mm x 250 mm) (Waters, Milford, MA, USA) and a 60 min gradient. 

Finally, we collected 20 peptide fractions. The fraction data were acquired using data-

dependent acquisition (DDA). Four fractions were randomly selected and analyzed by MS 

twice. Spectronaut™ Pulsar X (version 14.6, Biognosys, Switzerland) was used to generate 

the spectral library15. The DDA files were searched by Pulsar against a human Swiss-Prot 

FASTA database (downloaded on 2020-01-22), including 20,367 protein sequences; the 

settings were left to their default values. The established library comprised 143,347 peptide 

precursors, 115,257 modified peptides, and 9,644 proteins. Next, PulseDIA files were 

analyzed using Spectronaut with default settings. 
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Machine learning model generation and evaluation 

To generate a model for stratifying the patients with long- or short-term progression, we 

screened the differentially expressed proteins (DEPs) from the discovery set having p-value＜

0.01 and fold-change > 2. The discovery set included long- (L, n=8) and short-term (S, n=8) 

progression cases. 

To generate a machine learning model and a nomogram, the resulting 306 DEPs were 

preserved in the modeling set, and their missing values were imputed by zero. The modeling 

set was separated into a training set of 41 samples (~2/3), and an independent testing set of 21 

samples (~1/3). According to the median progression time (nine months) from HSPC to 

CRPC, the label of samples was further divided into an S group and an L group. 

We conducted an analysis of variance (ANOVA) on the training set for each DEP, selected 

the significant proteins whose corresponding p-values were less than 0.05 according to the 

ANOVA, constructed a random forest (RF) model using the ten significant proteins based on 

the training set, and validated the RF model using the independent testing set. Specifically, we 

created 500 trees, set the node size hyperparameter to one, selected the Gini index as the 

importance metric for the variables, and left all the other hyperparameters at their default 

values. We used “mlr3” R package for the above machine learning analysis. 

Establishing a nomogram for predicting the disease progression 

The multivariable Cox regression (R package "survival") was used to determine the 

prognostic significance of 16 features, comprising six clinical characteristics (age, T-stage, N-
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stage, M-stage, total PSA (tPSA), GS) and ten proteins from the RF model (Protein name 

(gene name): Rho guanine nucleotide exchange factor 1 (ARHGEF1), Protein Hook homolog 

3 (HOOK3), ATP-dependent RNA helicase DDX24 (DDX24), Dermatopontin (DPT), N-

acylneuraminate cytidylyltransferase (CMAS), Glucose 1,6-bisphosphate 

synthase (PGM2L1), rRNA-processing protein UTP23 homolog (UTP23), Protein 

FRA10AC1 (FRA10AC1), Anaphase-promoting complex subunit 4 (ANAPC4), Collagen 

alpha-3(V) chain (COL5A3)). In addition, the R package "forestplot" was used to visualize 

each variable (p-value, hazard ratio (HR), and 95% confidence interval (CI)). 

Next, the nomographs were created using the "RMS" software to predict the disease 

progression rates after 12, 18, and 24 months. The calibration curve showed the performance 

of the nomograms with the observed rates at 12, 18, and 24 months. 

The optimal cutoff value of the risk score was calculated using the R package "maxstat". We 

set the minimum number of samples in each group to be greater than 25% and the maximum 

number of samples in each group to be less than 75%. Patients were further classified into 

high or low-risk groups based on this criterion with a cutoff of 0.42. The prognosis difference 

between the two groups was estimated using the "Survfit" function in the "survival" package 

and the log-rank test. Finally, we obtained the area under the curve (AUC) by receiver 

operating characteristic (ROC) analysis using the R package "pROC". In particular, we 

gathered the patients' follow-up durations and risk scores and performed the ROC analyses at 

12, 18, and 24 months. 
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Statistical and bioinformatic analysis 

Before our data analysis, the protein matrix was log2-transformed. The coefficients of 

variation (CVs) of the proteins across the pooled samples and the Spearman correlation 

coefficients between pairs of pooled samples were then used to evaluate the data quality. 

Specifically, missing values were excluded from calculating the CVs and correlations. The R 

package "limma" was used for selecting the DEPs. Pathway and gene ontology (GO) 

enrichment were performed using Ingenuity Pathways Analysis (IPA 21.0) and Cytoscape 

(v3.8.1) with the ClueGO plugin (v2.5.7). 

Results 

Study design and global view of our proteomics analysis 

To stratify the patients with long- or short-term progression from HSPC to CRPC, we 

collected and analyzed two sets of pre-ADT PCa samples (n=78): a discovery set (n=16) and 

a modeling set (n=62). The whole study was divided into four stages: 1) processing the FFPE-

PCT-PulseDIA pipeline; 2) exploring the proteomics characteristics and biological 

differences between long- and short- term progression sample groups; 3) modeling for patient 

stratification; 4) progression and prognosis prediction (Figure 1A). 

In the first stage, we compared the proteomics expression differences between the two main 

groups in the discovery set: the long- (Group L, n=8) and short-term (Group S, n=8) 

progression groups. Specifically, Group L had shown a progression of at least twenty months, 

while Group S had a progression of no more than eight months. This time refers to the 
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interval between the diagnosis of PCa and the diagnosis of CRPC. A total of 66,450 peptides, 

7,961 protein groups, and 7,855 proteotypic proteins were identified in the 16 samples 

(Figure 1B and sFigure 1A). An average of 34,805 peptides and 5,318 proteins were 

detected. In particular, the median numbers of peptides and proteins were 31,658 and 5,118 

for Group L and 38,375 and 5,615 for Group S. A total of 85.8% (6,743/7,855) proteins was 

identified across both groups (sFigure 1B). In contrast, 796 and 316 proteins were 

exclusively expressed in Group S and Group L, respectively (Figure 1B). The higher number 

of unique proteins identified in Group S may be explained by the more severe condition of the 

disease. 

Next, we kept the proteins with less than 85% missing values that were detected in at least 

three samples, resulting in 6,873 proteins with relatively high confidence. The two sample 

groups were partially separated in the global view of the t-SNE plot of the 6,873 protein 

features (Figure 1C). This result suggests biological differences between the two groups. 

Proteomics characteristics and differences between long- and short-term progression 

patients 

To explore the biological difference between the long- and short-term progression patients, 

we first identified the dysregulated proteins and visualized them using a volcano plot (Figure 

2A). This comparison revealed 43 down-regulated and 263 up-regulated proteins in Group S 

with fold-changes > 2 and p-values < 0.01 (Figure 2A). The two groups could be clearly 

distinguished in the t-SNE plot based on these 306 DEPs (Figure 2B). The heatmap in Figure 

2C shows the expressions of the 38 most significantly dysregulated proteins. 
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Next, the 306 DEPs were enriched using pathway and GO analyses. The signaling pathways 

of the complement system, the acute phase response, and GP6 were the three most 

significantly activated in S group. Also, the pathways involved in apoptosis, nucleotide 

excision repair, and PTEN signaling were inhibited in Group S (Figure 2D). Our GO 

enrichment analysis showed that, except for the complement system, several biological 

processes are involved in an unfavorable prognosis of the disease: collagen-containing 

extracellular matrix, vesicle-mediated transport, autophagy, ubiquitin mediated proteolysis, 

ncRNA processing, and tRNA wobble uridine modification (Figure 2E). The above data 

revealed the most important signaling pathways, biological processes, and the corresponding 

proteins that are associated with a rapid disease progression. The dysregulated proteins we 

identified were detected in multiple biofluids, and they could potentially be used as diagnosis 

or prognosis biomarkers and therapeutic drug targets (Figure 2F). 

Identifying patients with rapid progression using a protein panel-based machine 

learning model 

To stratify the two groups using statistical models, we collected a larger sample set: the 

modeling set (n=62). Using these samples and the same analytical methods used for the 

discovery set, we identified 7,423 proteins; the quality control analysis proved the data quality 

to be satisfactory (median CV = 0.0377; correlation coefficients > 0.85) (sFigure 1C-1D). 

Within the training set (n = 41), we identified the most significant proteins by setting the 

ANOVA p-values < 0.05 and then selected ten proteins with statistically significant 

differences. Among these, five proteins were significantly downregulated, and the other five 
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were significantly upregulated in Group S (p-value < 0.05) (Figure 3A). We then built our RF 

model and ranked these ten protein features based on their Gini importance in our model 

(Figure 3B). The model performance on training set was shown in sFigure 2. Next, each 

individual in the testing set (n =21) was scored by the RF model based on the above ten 

features (Figure 3C). The resulting model correctly classified 18 of 21 patients (testing set) 

with an accuracy of 0.86 (Figure 3D); the model's sensitivity, specificity, positive predictive 

value, and negative predictive value were 0.91, 0.80, 0.83, and 0.89, respectively. The AUC 

of our RF model was 0.914 (Figure 3E), showing the high performance of our classification 

model. 

Predicting the progression time and risk ratios through nomogram 

We next predicted the progression time and the risk of progression to CRPC for each 

individual. To this aim, we screened the clinical characteristics and the above ten protein 

features using a multivariable Cox proportional hazards regression. Seven of the 16 features 

were significantly associated with an unfavorable prognosis. Specifically, two clinical 

features (GS and tPSA) and four protein features (DPT, ARGEF1, UTP23, and ANAPC4) 

were positively associated with the disease progression. In contrast, the most significantly 

modulated protein CMAS was negatively related to the progression and had a p-value = 

0.0018 (Figure 4A). Hence, these seven features may help predict the probability of 

individual PCa cases progressing into CRPC. 

Next, we constructed a nomogram by integrating these seven features and predicted the 

disease progression (Figure 4B). Each individual was scored using our nomogram and the 
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seven features, with a risk score cutoff of 0.42. Specifically, based on this cutoff, patients 

were split into groups of high- (n = 25, ratio of 32%) and low-risk scores (n=53, ratio of 

68%). The model's overall concordance index (C-index) was 0.72 (95% CI 0.66-0.78), and 

our calibration plot showed the agreement between our estimations and the observations 18 

and 24 months after confirmed HSPC. The progression curve showed a statistically 

significant difference between the two groups (p-value = 5.2 × 10−9, HR = 5.69) (Figure 

4C). The AUC values of the 18-month (AUC=0.87) and 24-month (AUC=0.92) nomogram 

progressions were larger than those of the 12-month (AUC=0.79) ones (Figure 4D). 

Therefore, the most accurate nomograms for predicting the development of PCa were the 18-

month and 24-month nomograms. 

Discussion 

We investigated pre-ADT PCa patients by exploring the differences between the long- and 

short-term progression cases. We collected clinical data and measured the proteomes of PCa 

biopsies. We newly identified proteins that may be crucial in a faster progression of HSPC 

into CRPC. Finally, we generated a model for predicting the advancement of HSPC and 

stratifying patients into high- and low-risk groups. 

The clinical staging of newly diagnosed PCa patients in China differs from western developed 

countries. For instance, among the newly diagnosed PCa patients in the US, most cases 

(~76%) are clinically localized, while only ~13% and ~6% involve metastases in local lymph 

nodes or distant sites, respectively16. However, the data in China are quite different. A multi-

center Chinese study showed that only 1/3 of the newly diagnosed PCa patients are clinically 
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localized. Also, most patients in China are in the middle or advanced stage at the diagnosis, 

resulting in a worse overall prognosis than in Western countries17. For this reason, our study 

focused on exploring advanced PCa cases from China. In our study, we enrolled 78 advanced 

PCa patients, but their median time for progressing to CRPC was only nine months: much 

shorter than previously published18. This fact may be explained by most of our enrolled 

patients already having developed metastases (N = 72, 97.3%). 

Recent studies have shown that the time of HSPC progression to CRPC is highly variable in 

patients treated with standard ADT19. Multiple phase-III trials proved the importance of 

identifying HSPC patients at risk of rapid disease progression, allowing the early 

implementation of appropriate therapeutic strategies to improve the prognosis20. There are 

two well-known studies on the risk classification of metastatic HSPC. The first was the 

CHAARTED trial, where patients with visceral and/or at least four bone metastases were 

classified as high-volume to distinguish them from the remaining low-volume ones21, 

concluding that the high-volume group benefits from ADT+ docetaxel treatment, whereas the 

low-volume group should be served by ADT alone. The second study was the LATITUDE 

trial, where patients with at least two high-risk characteristics (at least three bone metastases, 

visceral metastases, and ISUP grade four) were categorized as high-risk, which were found to 

have an increased survival following an abiraterone acetate plus prednisone therapy7. 

However, it is obvious that there were many patients defined as low-risk or low-volume, 

progressed to CRPC rapidly in the above researches. And in our study, most patients would 

have been classified as low-volume and low-risk according to the CHAARTED and 

LATITUDE criteria, respectively. However, our patients had a rapid disease progression 
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(median time: nine months). Collectively, stratifying patients based on clinical imaging or M 

stage alone is inappropriate.  

In this study, a novel nomogram was established for predicting the probability of specific 

progression times to CRPC, by integrating five proteins (ARHGEF1, UTP23, ANAPC4, DPT, 

and CMAS) and two clinical features (tPSA and GS), based on their expression levels and 

regression coefficients, as demonstrated by the multivariate Cox regression analysis. As a 

comprehensive scoring system, of which prediction ability was comfirmed by the overall C-

index and the AUC values, our results suggest a better discrimination capability than 

previously published transcriptomic signatures consisting of two to 22 genes22-25. 

According to the risk score, patients were then divided into high-risk and low-risk groups. 

The Kaplan–Meier survival curve showed that patients with high-risk scores had a 

significantly poorer recurrence-free survival than those with low-risk scores, suggesting that 

patients with high-risk scores were more prone to progression. According to current clinical 

trails mentioned above, high-risk patients may respond better to ADT combined with 

chemotherapy or novel endocrine therapy medicines. Larger-scale clinical trials are necessary 

to assess the most suitable treatments for each identified category. 

In terms of the five proteins in the model, ARHGEF1 and DPT have been proved to promote 

the occurrence and progression of other cancers26-28, which were consistent with our results. 

ANAPC4 and CMAS have not been reported in cancer. It is noteworthy that down-regulation 

of UTP23 promotes paclitaxel resistance and predicts poorer prognosis in ovarian cancer29. 

However, in the present study, high expression of UTP23 promoted the progressions from 
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HSPC to CRPC. Subsequently, we looked at the effect of UTP23 on the prognosis of pan-

cancer through the TCGA database. The effect of UTP23 on the prognosis of different cancer 

types was different, including significantly promoting cancer in 7 cancer types and 

suppressing cancer in 2 cancer types. In TCGA database, the trend of UTP23 promoting 

prostate cancer is consistent with our study. The role of UTP23 in different cancer types 

deserves further study. 

Although several proteomics studies of PCa have been published, they mainly focused on 

characterizing protein alterations and their biological changes by comparing benign/normal 

with PCa cases30, exploring metastatic PCa31, describing the heterogeneity of PCa32, and 

investigating the disease progression8. Ours is the first study to employ proteomics to 

investigate the differences between long- and short-term progressions from HSPC to CRPC 

and to discover a panel biomarker for identifying patients with a rapid progression. The 

~8000 proteins we identified provide a high-quality resource for explorative analyses. 

Furthermore, the 306 DEPs we found associated with different progressions to CRPC were 

enriched in the complement system and other inflammatory response-related pathways and 

functions (Figure 2D and 2E), in agreement with previous findings using prostatic fluids33. 

In GO enrichment analysis, collen-containing extracellular matrix was closely related to DPT 

proteins. The changes of collen-containing extracellular matrix caused by high expression of 

DPT will become a potential research direction for HSPC progression to CRPC. 

Our study was limited by the small sample size, which was collected from a single center. 

Also, all our patients were treated with standard ADT. However, in clinical practice, ADT, 

combined with bicalutamide and flutamide, is gradually being replaced by the combination of 
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chemotherapy and second-generation hormonotherapy. Therefore, further validations need to 

be performed on a larger and multi-center study. In particular, individuals with different 

treatment approaches should be compared to determine the benefits of various treatment 

strategies in connection with patient stratification. 

Conclusion 

We identified proteins and clinical parameters that are significantly associated with a fast 

progression of HSPC to CRPC. Using this information, we developed efficient models for 

classifying PCa patients and predicting HSPC development. Our data and tools can 

potentially guide the clinical management of patients with advanced HSPC. 
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Figures and legends 

Figure 1. Study design and global proteomics view of the discovery set. 

 

Figure 1. Study design and global proteomics view of the discovery set. (A) Workflow of 

the study. (B) Venn diagram of the protein identifications from the short- (S) and long-term 

(L) progression groups. (C) t-SNE plot showing the sample distribution of the S and L groups 

based on 6,873 proteins with less than 85% missing values.  
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Figure 2. Comparative proteomics and bioinformatic analysis of the discovery set. 

 

Figure 2. Comparative proteomics and bioinformatic analysis of the discovery set. (A) 

Volcano plot of the 306 differentially expressed proteins (DEPs) between Group S and Group 
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L with p-value < 0.05 and fold-change > 2. (B) Using the 306 DEPs, the two groups were 

separated in the t-SNE plot. (C) Heatmap showing the expression of the 38 most significantly 

dysregulated proteins for each sample. (D) Pathway enrichment of the 306 DEPs. Positive and 

negative z-scores indicate the active and inhibited pathways, respectively. (E) The gene 

ontology enrichment networks of the 306 DEPs generated by the ClueGO plugin of 

Cytoscape. (F) Ciros plot showing the 306 DEPs annotated by cellular location, their being 

plasma proteins, urine proteins, biomarkers, and/or drug targets, their average expression in 

Group S (AveExpr_S) and Group L (AveExpr_L), and their fold change (FC). 
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Figure 3. Stratification and prediction for patients with short- and long-term 

progression. 

 

Figure 3. Stratification and prediction for patients with short- and long-term 

progression. (A) Boxplots showing the log2(protein abundance) in Groups S and L. The p-

values were estimated using ANOVA. (B) The Gini importance of each protein feature ranked 

by our random forest model. (C) The predicted probabilities of belonging to Groups S or L for 

the patient from our testing set. Our random forest model generated these results. The three 

wrongly classified patients were marked with their patient identification numbers. (D) 

Confusion matrix of the independent testing set. (E) ROC plot showing the model 

performance with an independent testing set. 
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Figure 4. Predicting the probability of non-progression to castration-resistant prostate 

cancer (CRPC) at different times. 

 

Figure 4. Predicting the probability of non-progression to castration-resistant prostate 

cancer (CRPC) at different times. (A) Multivariable Cox analysis of the proteins and 

clinical features we selected for distinguishing progression to CRPC (p-value < 0.05). (B) 

Nomogram for the prognostic prediction of developing advanced hormone-sensitive prostate 

cancer. (C) Survival curves indicating the probability of non-progression to CRPC. The low- 
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and high-risk are grouped using an optimal nomogram risk score cutoff of 0.42. (D) ROC 

curves for the 12-, 18-, and 24-month advanced prostate cancer progress-related nomogram. 
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Supplementary Materials 

sTable 1. Representativeness of Study Participants 

 Clinical characteristics Number 

Age 
Mean±SD 72.90±8.68 

Median [min-max] 74.00 [50.00,89.00] 

Gleason 

5+5 4 (5.13%) 

5+4 16 (20.51%) 

5+3 3 (3.85%) 

4+5 12 (15.38%) 

4+4 20 (25.64%) 

4+3 14 (17.95%) 

3+5 5 (6.41%) 

3+4 4 (5.13%) 

T-stage 

T4 40 (51.28%) 

T3 25 (32.05%) 

T2 13 (16.67%) 

N-stage 
N1 53 (67.95%) 

N0 25 (32.05%) 

M-stage 

M1c 9 (11.54%) 

M1a/b 61 (78.20%) 

M0 8 (10.26%) 

Time to CRPC 

(months) 

Mean±SD 14.97±14.12 

Median [min-max] 9.00 [2.00,65.00] 

GleasonSUM 

9 28 (35.90%) 

8 28 (35.90%) 

7 18 (23.08%) 

10 4 (5.13%) 

t-PSA 

< 50 11 (14.10%) 

50-100 15 (19.23%) 

> 100 52 (66.67%) 

 

 

reuse, remix, or adapt this material for any purpose without crediting the original authors.
this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placedthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.23.22281406doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.23.22281406


sFigure 1. Data quality control analysis.  

 

sFigure 1. Data quality control analysis. (A) Numbers of the identified proteins and 

peptides from Group F and Group S in the discovery set. (B) Statistical analysis for the 

peptide and protein identifications in the discovery set. (C) Coefficients of variation of the 

proteins across the pooled samples in the modeling set. (B) Pearson correlations between 

pairs of pooled samples in the modeling set. 
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sFigure 2. Model performance with the training set. 

 

sFigure 2. Model performance with the training set. (A) The predicted probabilities of 

belonging to Groups S or L for the patient in our training set. Our random forest model 

generates these results. (B) The confusion matrix of the training set. (C) The receiver 

operating characteristic curve of the training set. 
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sFigure 3. The calibration curves of our nomogram.  

 

sFigure 3. The calibration curves of our nomogram. (A) Calibration curves for the 12-, 

18-, and 24-month progressions to advanced prostate cancer.  
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