
Plasma cytokine levels reveal deficiencies in IL-8 and gamma IFN in Long-COVID  1 

 1 

Plasma cytokine levels reveal deficiencies in IL-8 and 2 

gamma interferon in Long-COVID 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

Authors 14 

 15 

Elizabeth S. C. P. Williams1, Thomas B. Martins2, Harry R. Hill2,3,4, Mayte Coiras5, Kevin 16 

S. Shah3, Vicente Planelles1(*), Adam M. Spivak1,3(*)  17 

Affiliations 18 

 19 
1University of Utah School of Medicine, Department of Pathology, 15 North Medical 20 

Drive East, Salt Lake City, UT 84112. 21 
2ARUP Institute for Clinical and Experimental Pathology, 1950 Circle of Hope Drive, Salt 22 

Lake City, UT 84112. 23 
3 University of Utah School of Medicine, Department of Internal Medicine, Salt Lake 24 

City, UT 84112.  25 
4University of Utah School of Medicine, Departments of Pathology and Pediatrics, 26 

Emeritus, Salt Lake City, UT 84112 27 
5AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos 28 

III, Avda. De Monforte de Lemos, 5, 28029, Madrid, Spain.  29 

 30 

*Address correspondence to Adam.spivak@hsc.utah.edu and 31 

vicente.planelles@path.utah.edu  32 

 33 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.03.22280661doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:Adam.spivak@hsc.utah.edu
mailto:vicente.planelles@path.utah.edu
https://doi.org/10.1101/2022.10.03.22280661


Plasma cytokine levels reveal deficiencies in IL-8 and gamma IFN in Long-COVID  2 

Abstract 1 

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID 2 

approximately three months after initial infection. These symptoms are highly variable, 3 

and the mechanisms inducing them are yet to be understood. We compared plasma 4 

cytokine levels from individuals with long-COVID to healthy individuals and found that 5 

those with long-COVID had 100% reductions in circulating levels of interferon gamma 6 

(IFNγ) and interleukin-8 (IL-8). Additionally, we found significant reductions in levels of 7 

IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune 8 

exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 9 

preventing the lungs and other organs from healing after acute infection, and reducing 10 

the ability to fight off subsequent infections, both contributing to the myriad of symptoms 11 

suffered by those with long-COVID. 12 

 13 

 14 

 15 

 16 
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Introduction 1 

COVID-19, caused by a novel coronavirus known as severe acute respiratory syndrome 2 

coronavirus 2 (SARS-CoV-2), was declared a pandemic by the World Health 3 

Organization March 11th, 2020[1]. COVID-19 is responsible for 538.6 million infections 4 

and over 6.3 million deaths worldwide as of June 18th, 2022[2]. For up to half of 5 

individuals who contract the virus, acute SARS-CoV-2 infection is followed by persistent 6 

health issues [3]. These individuals suffer a myriad of symptoms that affect their daily 7 

lives, including fatigue and post-exertional malaise, respiratory and cardiac symptoms, 8 

neurological symptoms, digestive symptoms, and more (Table 1)[4, 5].  9 

 10 
Table 1. Long-COVID Symptoms 11 

Categories: Neurocognitive: Respiratory: Psychological: Other: 

Symptoms: 

Brain fog General fatigue 
Post-traumatic 
stress disorder 

Ageusia 

Dizziness Dyspnea Anxiety Anosmia 

Loss of attention Cough Depression Parosmia 

confusion Throat pain Insomnia Skin rash 

Autonomic: Gastrointestinal: Musculoskeletal: 

Chest pain Diarrhea Myalgias 

Tachycardia Abdominal pain Arthralgias 

palpitations Vomiting  

Most commonly reported symptoms associated with long-COVID[4, 5]. 12 
 13 

Several names are in use to describe this post-viral syndrome, including long-haul 14 

COVID, post-acute sequalae of SARS-CoV-2 (PASC), and long-COVID. The 15 

mechanisms driving long-COVID are still poorly understood. We defined Long-COVID 16 

syndrome patients as those who fulfilled one of the following criteria: (a) individuals 17 

whose symptoms never resolved following acute infection; (b) individuals whose 18 

COVID-19 symptoms resolved but subsequently returned; or (c) individuals who 19 

developed new symptoms approximately three months after initial infection[6, 7]. 20 

Severity of symptoms during acute infection does not appear to predispose to 21 

development of long-COVID. Both asymptomatic individuals and those hospitalized due 22 

to severe complications develop long-COVID at similar rates[3, 8, 9].  23 

 24 

Post-viral sequelae of human coronavirus (HCOV) infections have been well 25 

documented [10-12]. Both the severe acute respiratory syndrome coronavirus (SARS-26 

CoV) outbreak in 2003[13-17] and the Middle Eastern respiratory syndrome coronavirus 27 

(MERS-CoV) outbreak starting in 2012[18-20] caused post-viral syndromes with similar 28 

symptom profiles to those experienced by individuals with long-COVID[21]. Additionally, 29 

other human coronaviruses; especially HCOV 229E and HCOV NL63; that did not reach 30 

pandemic status, have been implicated as the etiology of Kawasaki Syndrome[10, 11]. 31 
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Chikungunya Virus also induces a post-viral syndrome, which presents with symptoms 1 

reminiscent of rheumatoid arthritis[22-25].  2 

 3 

Long-COVID symptomatology bears similarities to myalgic encephalomyelitis/ chronic 4 

fatigue syndrome (ME/CFS). ME/CFS is characterized by 6 months or more of constant 5 

or relapsing bouts of excessive fatigue, cognitive impairment, post-exertional malaise, 6 

unrefreshing sleep, headaches, and neuroendocrine and immune alterations[26-30]. The 7 

number of people affected by ME/CFS is growing each year, currently affecting 0.3%-8 

2.5% of the population globally, depending on the diagnostic criteria used[31, 32]. The 9 

heterogeneous symptoms of ME/CFS are linked to dysregulation of multiple biological 10 

systems including the immune system and inflammation[33-37], cytokines[27, 32, 38], 11 

metabolism[34, 39-42], mitochondrial function[34, 39, 43], oxidative stress[34, 36], 12 

apoptosis[34, 36], and circadian rhythm[34, 44]. Additionally, research into cytokine 13 

levels as biomarkers for ME/CFS diagnosis or severity metrics has yielded conflicting 14 

reports, for a thorough review please see Blundell et al. 2015[32]. There are also 15 

disparate theories regarding the origin of ME/CSF including dysbiosis of one’s 16 

microbiome[41, 45-47], and as a post-viral syndrome following infection with Epstein 17 

Barr Virus[48-51].  18 

 19 

Based on the pro-inflammatory basis of other post viral syndromes, we hypothesized 20 

that Long-COVID is caused by abnormal, sustained, elevated levels of pro-inflammatory 21 

cytokines present in the blood after acute SARS-CoV-2 infection has abated. To test 22 

this, we assayed plasma from 15 healthy individuals and compared it to plasma from 12 23 

patients at the University of Utah’s Long-COVID Clinic. 24 

 25 

Materials and Methods  26 

 27 

Study Subjects 28 

We obtained healthy donor blood samples from individuals who were recruited under 29 

University of Utah Institutional Review Board (IRB) protocol 131664. These individuals 30 

were recruited from Salt Lake City, UT and the surrounding metro area between May of 31 

2020 and December of 2021. For the purposes of this study, we define “healthy” as 32 

individuals who were uninfected or had been infected but recovered without the 33 

sequalae of long-COVID. 34 

 35 

In the fall of 2021, the University of Utah opened a Long-COVID registry (IRB 140978). 36 

Individuals attending University of Utah Comprehensive COVID clinic or self-identified 37 

with Long-COVID can enroll in the registry, which includes a detailed symptom and 38 

health survey and blood draw for biobanking of plasma and PBMCs at the Cellular 39 

Translational Research Core (CTRC) at the University of Utah.  40 

 41 

Blood and Tissue Samples 42 

15 mL of total blood was collected by phlebotomy-certified research staff into two BD 43 

Vacutainer EDTA Additive Blood Collection Tubes. Tubes were gently inverted 8-times 44 

to mix the blood and EDTA and were then centrifuged at 150g for 20 minutes at room 45 

temperature. Blood plasma was collected following centrifugation and cryopreserved in 46 
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sterile cryovials at -80ºC. Peripheral blood mononuclear cells (PBMCs) were isolated by 1 

Ficoll density gradient (Histopaque-1077, Sigma), and were cryopreserved in 1mL 2 

aliquots in 80% complete culture media (endothelial cell media), 10% fetal bovine serum 3 

(FBS), and 10% dimethyl sulfoxide (DMSO) in sterile cryovials at -80ºC.  4 

 5 

Determination of Cytokine Concentration in Plasma 6 

The Luminex based (Luminex Corp, TX) multiplexed cytokine assay was performed 7 

using a modified version of our previously published method[52, 53]. Briefly, monoclonal 8 

antibodies to human IL-2, sIL-2r, IL-4, IL-6, IL-8, IL-10, TNFα (BD Biosciences, Franklin 9 

Lakes, NJ), IL-13, IL-17, IFNγ (eBioscience-ThermoFisher Scientific, Waltham, MA), 10 

and IL-1β, IL-5 (R&D Systems Minneapolis, MN), IL-12 p35/p70 (Cell Sciences, 11 

Newburyport MA), were covalently coupled to MagPlex microsphere particles (Luminex 12 

Corporation) using a 2-step carbodiimide reaction, as previously described (Staros, 13 

Wright et al. 1986).  A standard curve was generated by mixing known concentrations of 14 

recombinant human cytokine receptor IL-2r (R&D Systems), and recombinant human 15 

cytokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα and IFNγ 16 

(R&D Systems).  Biotinylated secondary antibodies were purchased from the following 17 

sources: eBioscience-ThermoFisher Scientific (IL-1β, IL-4, IL-6, TNFα, IL-12p70, IFN, 18 

IL-13, IL-17) and BD Biosciences (IL-2, IL-5, IL-8, IL-10, IL-2r). Performance parameters 19 

including specimen dilution/recovery, detection capability, precision, interference due to 20 

hemolysis, specimen stability, and linearity were validated following Clinical & 21 

Laboratory Standards Institute (CLSI) guidelines. 22 

 23 

Statistical Analysis 24 

The individual cytokine values for the healthy and Long-COVID cohorts were analyzed 25 

for statistical significance using unpaired, two-tailed, nonparametric Mann-Whitney tests 26 

with Prism 9.0 (GraphPad Software, San Diego, CA, USA).  27 

 28 

 29 

Results  30 

Our long-COVID cohort included 12 individuals, who we compared to 15 matched, 31 

healthy controls (Table 2). The cytokines assayed included IL-1β, IL-2, sIL-2R, IL-4, IL-32 

5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IFNγ, and TNFα. Figure 1 shows the plasma 33 

concentration in pg/ml of each cytokine. Individuals in the long-COVID cohort have 34 

decreased levels in most cytokines tested. Most notably, individuals with long-COVID 35 

have a 100% reduction 36 

in plasma levels of 37 

interferon gamma (IFNγ) 38 

and IL-8, yielding p-39 

values of <0.0001 and 40 

0.0011, respectively 41 

(Figure 1).  42 

 43 

 44 

 45 

Table 2. Cohort Demographics 

 
All 

Participants 
Sex 

Age 
Ranges 

  Male Female  

n 27 7 20 23-70 

Healthy 15 7 8 27-65 

Long-
COVID 

12 -- 12 23-70 

Demographics of our healthy and long-COVID cohorts. 
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Figure 1. Comparison of pro-inflammatory cytokines in healthy individuals and those with Long-1 
COVID 2 

 3 
Comparison of cytokines between the healthy cohort (n = 15) and the long-COVID cohort (n = 4 
12). (*) p ≤ 0.05; (**) p ≤ 0.01; (***) p ≤ 0.001; (****) p ≤ 0.0001. 5 
 6 
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In addition, individuals with long-COVID have a 70% reduction in levels of IL-6. Levels 1 

of IL-2, IL-17, and IL-13 were reduced more than 40% in individuals with long-COVID 2 

(p-values 0.0285, 0.0082, and 0.0176, respectively; Figure 1; Table 3). Individuals with 3 

long-COVID also had a reduction in levels of IL-4 (26%; p = 0.0266). Differences in 4 

plasma levels of soluble IL-2 receptor (sIL-2R), IL-1β, IL-12, IL-10, IL-5, and TNFα 5 

between the long-covid and healthy groups were not statistically significant.  6 

 7 

Given that all the participants in the long-COVID group (12 out of 12) were female 8 

(Table 2), we sought to investigate whether the observed cytokine deficits in the long-9 

COVID group were perhaps linked to biological sex. To do this, we performed two 10 

comparisons. First, we compared cytokine levels between males and females in the 11 

healthy group. These results showed that in healthy individuals, 12 out of the 13 12 

cytokines assayed were not significantly different between healthy males and females. 13 

One cytokine, IL-2, was 42% lower in healthy males than in healthy females (p = 14 

0.0367; Figure 3; Table 4).  15 
 16 
Secondly, we compared cytokine levels between the long-COVID group (all females) 17 

and the female participants in the healthy group (n = 8). We continue to observe a 100% 18 

reduction in IFNγ and IL-8 levels with p-values of <0.0001 and 0.0144, respectively 19 

(Figure 2). We also observed a 72% reduction in IL-6 (p = 0.0062), 55% lower levels of 20 

IL-2 (p = 0.0028), a 59% decrease in IL-13 levels (p = 0.0189), and IL-4 levels are 21 

reduced by 44% (p = 0.0362) in females with long-COVID (Figure 2; Table 3). One 22 

notable difference in the results from this female-female analysis is that the observed 23 

decrease in IL-5 levels (26%) in long-COVID females becomes statistically significant 24 

with a p-value of 0.0323, whereas the decrease between the healthy cohort when it  25 

Table 3. Statistical Summary of Cytokine Comparison 

Cytokine Healthy Long-
COVID 

% Change in Long-
COVID compared to 

Healthy (M+F) 

% Change in Long-
COVID compared to 

Healthy (F only) 
 (M+F) (F only) 

n= 15 8 12 

 Median Median Median 
% 

Change 
p= 

% 
Change 

p= 

IFNγ 4.586 5.263 0.0000 -100% <0.0001**** -100% <0.0001**** 

IL-8 1.700 0.3848 0.0000 -100% 0.0011** -100% 0.0144* 

IL-6 1.248 1.317 0.3685 -70.46% 0.0016** -72.05% 0.0062** 

IL-2 2.953 3.567 1.588 -46.19% 0.0285* -55.45% 0.0028** 

IL-17 0.8802 1.024 0.4846 -44.94% 0.0082** -52.68% 0.0191* 

IL-13 9.564 13.40 5.462 -42.89% 0.0176* -59.23% 0.0189* 

IL-4 2.262 2.969 1.653 -26.92% 0.0266* -44.32% 0.0362* 

sIL-2R 229.2 205.6 174.2 -24.03% 0.1138 -15.32% 0.4269 

IL-1β 6.425 7.469 5.153 -19.8% 0.2701 -31.01% 0.0779 

IL-12 2.687 2.900 2.162 -19.53% 0.1320 -25.43% 0.0788 

IL-10 1.494 1.598 1.219 -18.38% 0.0717 -23.69% 0.1506 

IL-5 0.5346 0.6157 0.4542 -14.71% 0.0884 -26.23% 0.0323* 

TNFα 2.812 3.397 2.909 3.47% 0.7815 -14.35% 0.7201 

Percent change and p-values for comparisons between the healthy cohort and the long-

COVID cohort, as well as between the healthy (females only) and the long-COVID cohort. 
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  1 

Figure 2. Comparison of pro-inflammatory cytokines present in healthy females and those with 
Long-COVID 

 
Comparison of cytokines between the healthy cohort (n = 15) and the long-COVID cohort (n = 
12). (*) p ≤ 0.05; (**) p ≤ 0.01; (***) p ≤ 0.001; (****) p ≤ 0.0001. 
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 1 

contains both males and 2 

females and the long-3 

COVID cohort is only 4 

14% and is not 5 

statistically significant 6 

(Figure 1; Table 3). The 7 

changes observed in sIL-8 

2R, IL-1β, IL-12, IL-10, 9 

and TNFα levels remain 10 

not statistically significant 11 

whether the healthy 12 

cohort includes the males 13 

or not (Figure 2; Table 3). 14 
 15 
 16 

 17 

 18 

 19 

Discussion 20 

 21 

Upon infection with SARS-CoV-2 the innate immune system recognizes both pathogen- 22 

and damage- associated molecular patterns (PAMPs and DAMPs, respectively) and 23 

responds by activating the NLRP3 (NOD-, LRR-and pyrin domain-containing protein 3) 24 

inflammasome[54, 55]. Monocytes and macrophages respond to PAMPs and DAMPs by 25 

secreting type I IFN and the pro-inflammatory cytokines IL-1, IL-2, IL-6, IL-12, and 26 

TNFα[54, 56]. To evaluate the possibility that dysregulated secretion of pro-inflammatory 27 

cytokines can be observed in the context of long COVID, we measured levels of 13 28 

plasma cytokines via Luminex assay in samples from 12 donors diagnosed with long-29 

COVID and compared them to 15 healthy controls (Table 2). All the statistically 30 

significant differences between the long-COVID cohort and healthy controls represented 31 

reductions in cytokine levels rather than the expected increases based on previous 32 

studies of other post-viral syndromes (Figure 1; Table 3)[32, 57].  33 

 34 

Pro-inflammatory cytokines have been implicated in multiple aspects of acute COVID-35 

19 pathogenesis. For example, increased levels of IL-1β are linked to lymphopenia in 36 

COVID-19 patients, presumably due to ongoing inflammation-induced pyroptosis[54, 37 

58]. Macrophages express angiotensin-converting enzyme 2 (ACE2) receptors, making 38 

it possible for SARS-CoV-2 to directly infect them, and, as COVID-19 severity 39 

increases, activated macrophages congregate in the lungs, where even if not 40 

productively infected, an abortive infection of macrophages by SARS-CoV-2 is sufficient 41 

to induce cytokine storm[54, 59, 60]. Lastly, supporting the importance of Th17 in the 42 

pathogenesis of COVID-19, is research showing that there are increased numbers of 43 

Th17 cells present in blood samples of COVID-19 patients[54, 61]. 44 

 45 

The two most drastically decreased cytokines in our study were IFNγ and IL-8, each 46 

reduced by 100% in our long-COVID cohort. IL-8 is produced by many cell types,  47 

Table 4. Statistical Summary of Cytokine Comparison 

Cytokine Healthy 
% Change in Males 

compared to Females 
 Females Males 

n= 8 7 

 Median Median 
% 

Change 
p= 

IL-2 3.567 2.04 -42.81% 0.0367* 

IFNγ 5.263 3.657 -30.51% 0.2793 

TNFα 3.397 2.419 -28.79% 0.6929 

IL-13 13.40 9.564 -28.62% 0.0533 

IL-1β 7.469 5.479 -26.63% 0.1786 

IL-5 0.6157 0.4542 -26.23% 0.1304 

IL-4 2.969 2.262 -23.82% 0.2678 

IL-6 1.317 1.016 -22.87% 0.9259 

IL-10 1.598 1.322 -17.27% 0.8872 

IL-12 2.900 2.476 -14.62% 0.1131 

IL-17 1.024 0.8802 -14.04% 0.8424 

sIL-2R 205.6 264.9 22.37% 0.0541 

IL-8 0.3848 3.356 88.52% 0.0667 

Percent change and p-values for comparisons between 
males and females within the healthy cohort. 
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 1 Figure 4. Comparison between healthy males and healthy females 

 
Compariso n of cytokines between the healthy females (n = 8) healthy males (n = 
7). (*) p ≤ 0.05. 
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including epithelial cells, fibroblasts, endothelial cells, macrophages, lymphocytes and 1 

mast cells[62]. The secretion of IL-8 is induced in part by levels of IL-1β. However we 2 

found that there is no significant difference in IL-1β levels between individuals with long-3 

COVID and healthy controls. 4 

 5 

Also referred to as the neutrophil chemotactic factor, IL-8 recruits neutrophils and NK-6 

cells to sites of inflammation where they can clear infected cells and promote wound 7 

healing. It is possible that the apparent lack of IL-8 in long-COVID patients may be 8 

responsible for at least some of the debilitating symptoms including post-exertional 9 

malaise, fatigue, persistent cough, shortness of breath and chest pain. In this scenario, 10 

the acute SARS-CoV-2 infection damages the lungs, the cytokine milieu unfolds as 11 

described above, recruiting cells to the site of damage where the cells can either (a) 12 

help control the infection and induce a wound healing environment and the individual 13 

recovers normally; or (b) the infection causes abundant cellular infiltration leading to a 14 

high concentration of immune cells in a relatively small physical space, ultimately 15 

causing more tissue damage, which is not efficiently repaired in the absence of IL-8. 16 

Predictably, under scenario ‘b’ the individual remains having difficulty with oxygen 17 

transfer from the lungs into the blood stream. Therefore, if the macrophages and other 18 

cells that secrete IL-8 become exhausted or are otherwise incapable of secreting IL-8, 19 

neutrophils will not be recruited to assist in the wound healing process in the lung once 20 

the infection has been cleared[63]. Scenario ‘b’ therefore emerges as a potential model 21 

to explain certain long-COVID complications based on lack of IL-8. 22 

 23 

IFNγ is secreted by the innate immune natural killer cells (NK) and natural killer T cells 24 

(NKT) as well as the adaptive immune CD4+ Th1 and CD8+ cytotoxic T lymphocytes 25 

(CTL) after the development of antigen-specific immunity[64]. Together with IL-12, IFNγ 26 

helps drive the differentiation of Th1 cells, which in turn can secrete IL-2, TNFα, and 27 

IFNγ [65]. The observed lack of circulating IFNγ (Figure 1; Table 2) in the plasma of 28 

COVID19 patients suggests either severe immune dysfunction or exhaustion. We 29 

observed no significant difference in the levels of IL-12 (-19%), or TNFα (3%), in 30 

individuals with long-COVID.  31 

 32 

Levels of IL-2 and IL-4 were decreased by 46% and 26%, respectively, in individuals 33 

with long-COVID (Figure 1; Table 2). It is possible that fewer T cells differentiated into 34 

Th2 cells due to lower levels of IL-2 and IL-4, which could potentially lead to lower levels 35 

of the cytokines that Th2 cells secrete (IL-4, IL-5, IL-6, IL-9, and IL-13). This scenario 36 

may be supported by our data as we observed significantly lower levels of IL-4, IL-6, 37 

and IL-13 in individuals with long-COVID (Figure 1; Table 2). Additionally, when we 38 

compare the long-COVID cohort, which includes only females, to only the females from 39 

the healthy cohort, the decrease in IL-5 between females with long-COVID and healthy 40 

females becomes statistically significant (p = 0.0323; Figure 3; Table 2). IL-6 is involved 41 

in the differentiation of Th17 cells. It is possible that the lower levels of IL-6 we observed 42 

in long covid patients hindered the ability of the Th17 cells to properly differentiate. 43 

Supporting this possibility, we see significantly lower levels of IL-17 in individuals with 44 

long-COVID (p = 0.0082), the main cytokine secreted by Th17 cells.   45 

 46 
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To ensure that none of the reported differences were due to inherent sex differences we 1 

compared cytokine levels between males and females within the healthy cohort. From 2 

this, we only observed one significant difference, a 42% reduction of IL-2 in healthy 3 

males compared to healthy females (Figure 3; Table 3). This sex-associated difference 4 

in IL-2 levels between healthy males and females informed us that the most accurate 5 

way to analyze IL-2 levels in our long-COVID cohort was to only consider healthy 6 

female IL-2 values. Analyzed in this way, long-COVID females show a 55% reduction in 7 

IL-2 levels (p = 0.0028; Figure 2; Table 2). The comparison including both males and 8 

females in the healthy cohort is also significant, although the inherently lower values in 9 

males complicate the interpretation. 10 

 11 

Additionally, having re-analyzed the data to only include healthy females, it became 12 

clear that the differences that we observe between the long-COVID females, and the 13 

entire healthy population are not due solely to sex-specific differences in cytokine levels. 14 

In fact, the only cytokine that differed in having statistical significance between the 15 

healthy female to long-COVID female comparison, and the healthy male + female to 16 

long-COVID female comparison was IL-5. The removal of the male values from the 17 

analysis caused the percent change between the healthy males + females and the long-18 

COVID females to increase from 14% to 26% (between the healthy females and long-19 

COVID females) with a p-value of 0.0323 (Table 2; Figures 2 and 3).  20 

 21 

Earlier we described the heterogeneous nature of the symptoms and cytokines 22 

associated with ME/CFS. Even though the symptoms of long-COVID are thought to be 23 

similar or overlapping to those of ME/CFS, when we compare our long-COVID cytokine 24 

results to those from ME/CFS patients there are glaring differences. Specifically, the 25 

pro-inflammatory cytokines IL-1β, TNFα, and IL-6 tend to be reported as being elevated 26 

in patients with ME/CFS[32], whereas we observed significant decreases in IL-6 levels 27 

in individuals with long-COVID, and no differences in levels of IL-1β and TNFα. A 28 

detailed comparison of cytokines levels published in the context of ME/CFS[32] and our 29 

long-COVID levels is provided in Supplementary Table 1.   30 

 31 

Conclusions 32 

Based on our results we propose that immune exhaustion perpetuates long-COVID due 33 

to the seemingly complete reduction of IFNγ and IL-8, as well as significant decreases 34 

in IL-2, IL-4, IL-6, IL-13, and IL-17. Identifying these and other deficiencies will provide 35 

clues towards methods to intervene and possibly restore immune function in the context 36 

of long-COVID. Although functional assays that test the ability of immune cells from 37 

individuals with long-COVID to respond to pathogenic stimuli will be required to support 38 

this theory. 39 

 40 

 41 

 42 

 43 

 44 
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Supplemental Figure 1. Comparison of publications depicting cytokine fluctuation in 1 

ME/CFS and our long-COVID cytokine results. 2 

Cytokine 
Higher in 
ME/CFS 

Lower in 
ME/CFS 

No Change 
Total 

Studies 
Long-
COVID 

Pro-inflammatory 

IL-1b 
7 (28%) [1-
7] 

0 18 (72%) [8-25] 25 NC 

TNFa 
4 (15%) [1, 
2, 5, 21] 

0 22 (85%) [4, 6-20, 
22, 24-28] 

26 NC 

IL-6 
6 (24%) [1, 
4, 6, 7, 11, 
29] 

2 (8%) [2, 
9] 

17 (68%) [8, 10, 
12-16, 18, 19, 21, 
23, 24, 26, 30-33] 

25 Down 

Anti-inflammatory 

IL-10 
2 (13%) [1, 
2] 

1 (6%) [9] 12 (81%) [4, 6-8, 
11-16, 18, 28] 

15 NC 

IL-13 
1 (16%) [1] 0 5 (84%) [6-9, 13-

15] 
6 Down 

Th1 

IL-2 
2 (14%) 
[11, 13] 

0 12 (86%)  [1, 4, 7-
9, 13-15, 18, 21, 
25, 34] 

14 Down 

IL-12 
3 (30%) [1, 
7, 11] 

0 7 (70%) [6, 8, 9, 
13-15, 18] 

10 NC 

IFNγ 
2 (13%) [1, 
11] 

1 (6%) [2] 12 (81%) [6-10, 
13-15, 22, 23, 25, 
28] 

15 Down to 0 

Th2 

IL-5 
1 (14%) [7] 1 (14%) [1] 5 (72%) [8, 9, 11, 

13, 14] 
7 NC 

IL-4 
2 (18%) [1, 
7] 

0 9 (82%) [8, 9, 11-
16, 21] 

11 Down 

Th17 

IL-17 
0 2 (33%) [1, 

9] 
4 (66%) [7, 8, 13, 
14] 

6 Down 

NK-cell attractant 

IL-8 
3 (23%) [2, 
6, 14] 

3 (23%) [1, 
7, 9] 

7 (54%) [8, 11-13, 
15, 16, 29] 

13 Down to 0 
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Adapted from Blundell et al. 2015[35]. There is no agreement regarding changes in cytokine 1 

levels associated with ME/CFS. Although studies that do report changes tend to report 2 

cytokines as being upregulated in ME/CFS as compared to our long-COVID cytokine data 3 

showing significant decreases in cytokine levels. 4 
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