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Abstract 20 

Background: Whether vaccination or natural infection provides greater benefit regarding the 21 

development of sustained immunity against SARS-CoV-2 remains unknown. Therefore, the aim 22 

of this study was to provide a direct comparison of IgG durability in vaccinated and 23 

unvaccinated adults. 24 

Methods: This was a prospective, cross-sectional study of antibody durability in 1087 individuals 25 

with a median (IQR) age of 42 (35, 52) years who were unvaccinated and previously infected 26 

with SARS-CoV-2 (Arm 1, n=351) or vaccinated against the virus (Arm 2, n=737). Participants 27 

self-reported vaccination and infection history and provided self-collected serology samples 28 

using mailed collection kits.  29 

Results: Anti-S1 IgG seroprevalence was 15.6% higher in vaccinated versus unvaccinated, 30 

previously-infected individuals across intervals ranging from 1 to 12 months and antibody 31 

survival was sustained near 100% through 12 months in the vaccinated group.  32 

Conclusions: These findings suggest that vaccination as opposed to natural infection alone 33 

provides significant advantages in terms of sustained and effective immunity against prior 34 

variants of SARS-CoV-2. Future efforts to characterize SARS-CoV-2 immune responses should 35 

address hybrid immunity, booster status and formulation, and protection against (sub)variants of 36 

Omicron and future lineages, as well as weigh the potential impact of other immune system 37 

mechanisms. 38 

 39 

  40 

 41 

 42 
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Introduction 43 

Throughout the course of the Coronavirus Disease 2019 (COVID-19) pandemic, the widespread 44 

adoption of vaccination has been promoted for its potential to significantly curtail health and 45 

economic burdens related to the spread of SARS-CoV-2, and ultimately, key to bringing the 46 

pandemic to an end (1, 2). In less than a year from the World Health Organization (WHO) 47 

declaring the pandemic, following an unprecedented development effort, vaccines were available 48 

to most adults in western societies. However, vaccination campaigns were met with varying 49 

degrees of hesitancy in portions of the population (3-5). In the intervening months, researchers 50 

documented Immunoglobulin G (IgG) seroconversion and fluctuating levels of sustained 51 

immunity resulting from natural infection and/or vaccination (6-15), and established a positive 52 

relationship between anti-spike antibodies and clinical protection from SARS-CoV-2 (16-18). 53 

 54 

 However, the current literature does not provide a clear difference in antibody profiles acquired 55 

through vaccination and natural infection. This distinction is of renewed importance at a time 56 

when nearly 60% of the United States (US) population (including 75% of US children) are 57 

reported to show serological evidence of community exposure (19) and the sense of urgency 58 

related to vaccination has waned. Despite a growing body of literature, availability of data 59 

directly comparing antibody responses following vaccination versus natural infection is limited. 60 

Prospective evaluations tend to be limited in sample size (12, 14, 20-22), have short serological 61 

monitoring periods,(9, 20, 22) or analyses were completed retrospectively (23, 24). Many studies 62 

utilize populations of healthcare workers who may encounter infectious agents – including 63 

SARS-CoV-2 – more frequently than other members of the community, limiting generalizability 64 

of results due to potential repeated exposures and subclinical infections (9, 12, 20, 25).  Several 65 
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quality studies have evaluated the effectiveness of vaccination- and/or infection-acquired 66 

immunity over time, but have lacked a serological component (24-26). Therefore, in the current 67 

study, we aimed to provide a direct comparison of IgG durability in vaccinated and unvaccinated 68 

individuals in a prospective US sample. This work presents the largest such comparison in a 69 

prospectively-collected, population-wide sample to date. 70 

  71 

Methods 72 

Ethics approval and consent to participate 73 

This protocol was approved by WCG IRB (IRB registration #20210763). All participants 74 

provided written informed consent prior to enrollment in the study. 75 

 76 

Study design 77 

This was a prospective, cross-sectional study of antibody durability in individuals who were 78 

previously infected with SARS-CoV-2 (Arm 1) or vaccinated against the virus (Arm 2). The 79 

study utilized electronic questionnaires and self-collected dried blood spot (DBS) samples to 80 

gather data remotely from participants within the US. Upon enrollment, participants answered 81 

questions about COVID-19 diagnosis and vaccination history, symptom and treatment 82 

information, and other relevant medical history such as comorbid conditions and medication use. 83 

Participants received a COVID-19 Antibody Home Collection Kit (Everlywell, Inc., Austin, TX) 84 

to provide samples for qualitative IgG detection. Baseline data were captured to complete the 85 

primary analysis of comparative IgG durability between study arms. In addition, Arm 2 86 

participants repeated questionnaires and serology tests during a follow-up period for up to 9 87 

months, facilitating a secondary survival analysis of vaccine-acquired IgG.  88 
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 89 

Participant eligibility and enrollment 90 

Participants were enrolled in the study between March and November 2021. Inclusion criteria for 91 

Arm 1 included prior infection with SARS-CoV-2 (evidenced by a positive diagnostic test) and 92 

unvaccinated status. Eligibility for Arm 2 required receipt of at least one dose of a SARS-CoV-2 93 

vaccine. All participants were required to be age 18 years or older, reside within the continental 94 

US, and have access to an email account and internet service. Exclusion criteria included known 95 

conditions or ongoing treatments associated with immune impairment (e.g., chemotherapy) and 96 

residents of New York state. All participants provided written informed consent prior to 97 

enrollment in the study, which was approved by WCG IRB (IRB study #20210763). 98 

 99 

Serology Testing 100 

DBS samples were self-collected at baseline and follow-up timepoints for serology testing using 101 

the Anti-SARS-CoV-2 ELISA Assay (EUROIMMUN, Germany).  102 

  103 

Study Endpoints 104 

The primary endpoint was the expected difference in S1-binding IgG seropositivity between Arm 105 

1 (unvaccinated, naturally infected individuals) and Arm 2 (vaccinated individuals) over 106 

time. The secondary endpoints included: S1-binding IgG survival percentages at 4 and 12 107 

months since last exposure to a vaccine product in Arm 2.  108 

 109 

Statistical Analysis 110 
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Multiple linear regression was used to evaluate the effect size and significance of each study arm 111 

(vaccination vs natural infection) on estimated seropositivity over time (binned as the number of 112 

months since last vaccine dose or infection). Estimates per study arm per time interval that 113 

included fewer than 3 serology values were considered under sampled and dropped prior to 114 

analysis. 115 

 116 

Additionally, a discrete-time analysis was conducted using independent z-tests of proportions at 117 

1, 3, 6, 9, and 12 months to evaluate differences in seropositivity between Arms 1 and 2. P-118 

values are reported and interpretable using a Bonferroni-adjusted value of 0.005. To further 119 

evaluate S1-binding IgG durability associated with vaccination, survival analysis was performed 120 

using the Kaplan-Meier method. Percent survival at 4 and 12 months is reported with 95% 121 

confidence intervals. This analysis was conducted in two ways, reflecting (1) time from the most 122 

recent vaccination dose (i.e., a booster dose reset the interval clock), and (2) time from the initial 123 

vaccination dose.  124 

 125 

Results 126 

S1-binding IgG Cross-Sectional Analysis 127 

A total of 1,087 participants enrolled in the study and completed all required baseline 128 

assessments for inclusion in the analysis: 351 were assigned to Arm 1 and 737 were assigned to 129 

Arm 2 at baseline. Over three quarters of participants included in the cross-sectional analysis 130 

were female, and the median (IQR) age was 42 (35, 52) years. Over two thirds of vaccinated 131 

participants reported no previous SARS-CoV-2 infection prior to entering the study. Baseline 132 

participant characteristics are summarized in Table 1. 133 
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 134 

Table 1: Participant demographics and diagnostic test history 135 

Characteristic 
Overall 

N = 1088 
Arm 1 

N = 351 
Arm 2 

N = 737 
Sex    
  Female 831 (76%) 258 (74%) 573 (78%) 
  Male 255 (23%) 93 (26%) 162 (22%) 
  Unknown 2 (0.2%) 0 (0%) 2 (0.3%) 
Age    
  Median (IQR) 42 (35, 52) 43 (34, 54) 42 (35, 51) 
  Unknown 2 (0.2%) 0 (0%) 2 (0.3%) 
COVID Diagnostic History    
  Known Infection 566 (52%) 351 (100%) 215 (29%) 
  No Known Infection 508 (47%) 0 (0%) 508 (69%) 
  Unknown/NA 14 (1.3%) 0 (0%) 14 (1.9%) 
Vaccine Product    
  Ad26.COV2.s (Johnson & 
Johnson) 

56 (5.1%) 0 (0%) 56 (7.6%) 

  BNT162b2 (Pfizer) 396 (36%) 0 (0%) 396 (54%) 
  mRNA-1273 (Moderna) 280 (26%) 0 (0%) 280 (38%) 
  NVX-CoV2373 (Novavax) 1 (<0.1%) 0 (0%) 1 (0.1%) 
  Not Applicable 351 (32%) 351 (100%) 0 (0%) 
  Unknown 4 (0.4%) 0 (0%) 4 (0.5%) 

 136 

 137 

Nearly all Arm 2 participants entered the study fully vaccinated, defined as having received all 138 

doses in the primary series of the applicable vaccine, with only 3.7% reporting partial 139 

vaccination (or only having received one dose of a two-dose primary vaccination regimen) at 140 

baseline. No participants reported receiving a booster dose prior to enrollment. The difference in 141 

time between participants’ most recent confirmed exposure (positive diagnostic test date or 142 

vaccination date for Arm 1 or 2, respectively) and baseline serology test date ranged from 1 to 15 143 

months (median) after dropping under-sampled time intervals (N=1,007). 144 

 145 
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Population-wide seropositivity remained high across time intervals. The seropositivity effect size 146 

associated with vaccination was 15.6% greater than the reference arm (Arm 1), independent of 147 

time since vaccination (Figure 1 and Table 2).  148 

  149 

Table 2: Difference in seropositivity by exposure mode  150 

Time 
Interval 

Difference in Arm 2 (Vaccinated) versus 
Arm 1 (Unvaccinated/Natural Infection) Z-score p-value 

1 month +11.9% -28.06 1.37x10-173 
3 months +14.3% -125.62 0.00 
6 months +15.6% -66.93 0.00 
9 months +13.5% -13.58 2.71x10-42 
12 months +11.1% -4.33 7.34x10-6 

 151 

S1-binding IgG Longitudinal Analysis in vaccinated individuals (Arm 2) 152 

A total of 1,605 samples from 737 vaccinated individuals were available for antibody survival 153 

analysis. Antibody survival (with 95% CI) ranged from 99.4% (99.0%-100%) at 4 months to 154 

95.5% (91.7%-99.5%) at 12 months when measured in time since the last dose received, and 155 

from 99.7% (99.3% - 100%) at 4 months to 98.4% (97.1%-99.7%) at 12 months when measured 156 

from the first dose. No further loss of IgG detectability was observed beyond 12 months in either 157 

analysis.   158 

  159 

Discussion      160 

This study aimed to provide the first direct comparison of IgG durability in vaccinated and 161 

unvaccinated individuals in a large, prospective, population-wide US sample. Both vaccination 162 

against COVID-19 and natural infection with SARS-CoV-2 are associated with seroconversion 163 

in most people. However, we found IgG seropositivity was significantly higher, more consistent, 164 
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and declined less rapidly in vaccinated individuals than in those who were unvaccinated and 165 

previously infected with the virus. This pattern was evident one-month post-exposure (the 166 

earliest time interval evaluated) and persisted through 12 months post infection or most recent 167 

vaccination dose. One possible explanation for the discrepancy between vaccinated and naturally 168 

infected groups could be the controlled dose of target antigen provided (indirectly, in many 169 

cases) through vaccination, versus the inconsistent “dose” of various viral antigens acquired 170 

through natural infection. In a within-subject survival analysis, vaccine-acquired IgG antibodies 171 

persisted for up to 12 months (or more) in nearly all cases. This provides within-subject support 172 

for strong antibody durability out to 12 months when compared to the vaccinated group (Arm 2) 173 

in the cross-sectional analysis.  Collectively, these analyses suggest that IgG antibodies raised 174 

through vaccination are more reliably durable than those induced by a natural SARS-CoV-2 175 

infection in most individuals.  176 

 177 

Compared to prior research, our estimated rate of seropositivity decline in the unvaccinated 178 

group was steeper. Alfego et al. found seropositivity decline to be approximately -0.004% per 179 

day, or approximately -0.12% per month (11), while we observed a decline of -0.93% per month. 180 

This may be reflective of our smaller sample size or due to an important distinction between each 181 

studies’ methods. Alfego et al. evaluated seropositivity from the time of a participant’s first 182 

recorded infection (positive diagnostic test) and did not take subsequent exposure events into 183 

account, whereas in the current study, we measured seropositivity from the time of the most 184 

recent confirmed infection. Nevertheless, the rate of seropositivity decline in the vaccinated 185 

cohort was much lower than in the unvaccinated cohort. This holds true whether we compare this 186 

rate to those estimates from Alfego et al. or to our own rate estimates for Arm 1 in the present 187 
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study. Collectively, this suggests that S-protein antibodies raised through vaccination are more 188 

reliably durable than those induced by a natural SARS-CoV-2 infection in most individuals.  189 

 190 

While neutralizing antibody (NAb) titer is a closer surrogate for immune protection, Anti-S IgG 191 

testing offers an advantage in scalability as the requisite immunoassays are less burdensome in 192 

terms of time, cost, complexity, and availability than functional NAb assays.  Published works 193 

by Harvala et al. and Lumley et al. lend support to the clinical relevance of IgG values. The 194 

former reported that detection of IgG with the Euroimmun assay highly correlated with NAb 195 

titers above 1:100 in convalescent blood samples (27), while the latter observed a connection 196 

between S-binding IgG and protection from reinfection with earlier variants of SARS-CoV-2 in 197 

previously-infected healthcare professionals followed up to 6 months (18).  198 

 199 

Given the correlation of IgG levels with NAb titers and that NAb concentration correlates with 200 

protection against infection and severe disease (16, 17), our observations suggest that vaccine-201 

acquired immunity may also be more protective than an immune response triggered by natural 202 

infection alone. Our findings support similar observations made in Congolese individuals at 2 203 

months post vaccination (with Ad26.COV.2 or BBIP-CorV) compared to 2, 3, or 6 months post 204 

natural infection (21). However, whether a vaccine-induced IgG response provides an advantage 205 

over the longer term remains unclear. For example, in a previous evaluation of purely vaccine-206 

induced NAb activity in 62 healthcare workers, which excluded cases of prior exposures or 207 

breakthrough infections, Decru et al. found significant waning of neutralization activity 10 208 

months after receiving a second dose of BNT162b2 (12). If NAb follows similar patterns as anti-209 

S IgG, it may be that hybrid immunity provides the most durable NAb response. More research 210 
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is needed to clarify which approach produces the longest enduring neutralization capability. 211 

Furthermore, the limitation remains that without more prevailing use of a common reference 212 

standard it is difficult to determine what level of titer is necessary for protection, whether that 213 

involves full immunity or simply protection from severe disease. In addition, the contribution of 214 

other immune factors (e.g., IgA and mucosal immunity) on overall protection should not be 215 

overlooked, especially considering those responses may follow different patterns than IgG after 216 

vaccination or natural infection. 217 

 218 

One problem that warrants further study is the impact of symptom severity on antibody 219 

responses in previously-infected individuals who become vaccinated (hybrid immunity) 220 

compared to those who remain unvaccinated, given that binding IgG and NAb responses during 221 

and after severe disease are higher functioning and longer lasting than when symptoms are mild 222 

(28-30). Future research may also look at the relationships between viral variants and population-223 

wide antibody profiles in vaccinated and unvaccinated cohorts, as well as how antibody 224 

characteristics connect to clinical outcomes and transmissibility in each group. Moreover, 225 

additional focus should be paid to hybrid immunity and the impact of repeated (or breakthrough) 226 

infections and boosters, including extended follow-up (8, 20) for antibody durability and titer 227 

beyond one year from each type of exposure in the general population. Flexible study designs 228 

that can more easily accommodate adjustments made in response to a rapidly changing viral 229 

variant landscape would help future studies maintain relevance over time as SARS-CoV-2 230 

transitions from pandemic to endemic circulation. 231 

 232 

Limitations 233 
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The data for Arm 1 are cross-sectional, therefore individual rates of seroreversion could not be 234 

evaluated in direct comparison to Arm 2. Additionally, limited sample sizes at later time 235 

intervals reduced statistical confidence in some time-specific point estimates of seropositivity, 236 

and limited cases with confirmed hybrid immunity prevented us from evaluating those 237 

individuals as a separate group. Furthermore, this study relied on self-reported infection and 238 

vaccination history, and only took confirmed exposures (those that resulted in a positive 239 

diagnostic test) into account. There is a high likelihood that additional exposures to SARS-CoV-240 

2 went undetected and were not reflected in the self-reported COVID-19 diagnostic data; 241 

however, we expect that such events would have inflated serology values most frequently in the 242 

unvaccinated group. As such, these findings give a conservative estimate of the differences 243 

between vaccination and natural infection in terms of antibody response. Finally, our study 244 

largely coincided with circulation of the Delta variant, and reflected immune responses triggered 245 

by exposure to Alpha, Beta, or Delta variants in previously-infected individuals. The Omicron 246 

(BA.1) variant was discovered as this study concluded and has exhibited greater transmissibility 247 

than previous variants due to a highly mutated spike protein and consequent immune evasion and 248 

increased receptor affinity (31). Subsequent sublineages (BA.1.1, BA.2, BA.3, BA.4, and BA.5) 249 

have since been identified and show similar or greater transmissibility and evasion of antibodies 250 

compared to the parent variant (32, 33). Furthermore, a new vaccine formulation that offers more 251 

protection against Omicron has been made available as a booster dose. It is uncertain how 252 

combinations of variant/subvariant exposures and primary/booster vaccine formulations may 253 

affect immune responses acquired through natural infection, vaccination, or hybrid exposure in a 254 

rapidly shifting landscape that continues to challenge the pace of science. 255 

  256 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 2, 2022. ; https://doi.org/10.1101/2022.09.28.22280476doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.28.22280476


 13

Conclusions 257 

This study was one of the first to directly compare population-level antibody durability acquired 258 

through vaccination or natural infection in a nationwide sample and supports the conclusion that 259 

completing the primary series of vaccination triggers a more durable and protective antibody 260 

response compared to a known single infection with early variants of SARS-CoV-2. This study 261 

further supports the importance of broad vaccination campaigns over relying upon natural, 262 

infection-driven herd immunity alone in the fight against SARS-CoV-2. Future work 263 

investigating antibody profiles resultant to booster doses, hybrid immunity, as well as repeat and 264 

variant specific infections are critical in our continued understanding of SARS-CoV-2 and 265 

COVID-19. 266 

 267 

Abbreviations 268 

COVID-19: Coronavirus Disease 2019 269 
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IgG: Immunoglobulin G 271 
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Figure 415 

Figure 1. Anti-S1 seropositivity in unvaccinated/naturally infected (Arm 1) and vaccinated (Arm 416 

2) groups417 
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