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Abstract 

 

Data available for COVID-19 in the USA make it possible to assess the dynamics of disease 

spread with 20:20 hindsight. Here, we analyze archived data to explain variation among counties 

and states in the cyclicity and predictability (that is, the extent to which predictions are possible) 

of disease dynamics, using a combination of statistical and simulation models. For the period 

after the initial outbreak but before widespread vaccination (May 2020 – February 2021), we 

show that for half the counties and states the spread rate of COVID-19, r(t), was predictable at 

most 9 weeks and 8 weeks ahead, respectively, corresponding to at most 40% and 35% of an 

average cycle length of 23 weeks and 26 weeks. However, there were large differences among 

counties and states, and high predictability was associated with high cyclicity of r(t). 

Furthermore, predictability was negatively associated with R0 values from the pandemic’s onset. 

This suggests that a severe initial outbreak induced strong and sustained protective measures to 

lower disease transmission, and these protective measures in turn reduced both cyclicity and 

predictability. Thus, decreased predictability of disease spread should be viewed as a by-product 

of positive and sustained steps that people take to protect themselves and others. 

 

 

Significance statement 

 

During the COVID-19 pandemic, many quantitative approaches were employed to predict the 

course of disease spread. However, forecasting faces the challenge of inherently unpredictable 

spread dynamics, setting a limit to the accuracy of all models. For counties and states in the 

USA, we document very high variation in predictability after the initial outbreak and before 

widespread vaccination. Jurisdictions with high predictability were those that showed 

pronounced cyclic re-emergences (‘waves’). The variation in predictability can be explained by 

differences in the human responses to disease: jurisdictions in which individuals and authorities 

took strong and sustained protective measures against COVID-19 successfully curbed 

subsequent waves of disease spread, but at the same time unintentionally decreased its 

predictability.  
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Introduction 

 

Human societies have always experienced outbreaks of infectious diseases, and disease 

epidemics are expected to emerge or re-emerge more frequently in the future (1–3). The COVID-

19 pandemic, caused by the SARS-CoV-2 virus, showed the limited strategies and actions 

humans have at their disposal to prevent outbreaks of emerging diseases, and the suffering and 

death once a disease starts spreading (2, 4, 5). 

If a disease outbreak cannot be prevented, public health officials and politicians will try 

to swiftly implement measures to help minimize disease-related suffering and death (6, 7). Such 

measures can range from preparing and re-organizing medical infrastructure (e.g., increasing 

personnel for intensive care units) to enacting non-pharmaceutical interventions (NPIs), either as 

mandates or as recommendations to the public. For impending or unfolding disease outbreaks, 

forecasts have proven helpful for emergency planning (7, 8). To match the time required to plan 

and implement mitigation actions for public health needs, however, the lead-time of the forecasts 

typically ranges from one week to two or more months (7, 9). Long-term forecasts are important 

to prepare for resurgences of the disease, as has happened worldwide with COVID-19 (10, 11), 

and also to justify severe NPI mandates such as lockdowns: mandates that disrupt social and 

economic systems can be justified if the course of the disease spread is expected to last months 

and lead to a high death toll. For re-emerging influenza outbreaks, Viboud and Vespignani (9, p. 

2804) aptly use a weather forecast analogy: “the influenza forecasting community will need to 

offer weather forecasts as well as climate predictions.” 

 The COVID-19 pandemic has spurred an unprecedented effort to quantitatively 

understand disease spread and forecast spread dynamics to help public health officials implement 

protective measures such as NPIs (12, and references therein). Nonetheless, these efforts face the 

challenge that the predictability of COVID-19 spread may be inherently limited. Here, we use 

the definition that “predictability is the study of the extent to which events can be predicted” (13, 

p. 2425). Several epidemiological studies have addressed the fundamental limit to predictability 

of disease spread using model-free, entropy-based approaches (14–16). For example, Scarpino 

and Petri (15) found that for nine human diseases, there is a barrier to predictability, but that 

single outbreaks are in general predictable and that predictability depends in part on the basic 
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reproduction number, R0. Furthermore, these authors found considerable variation in 

predictability among jurisdictions for single diseases. In comparison, assessments of realized 

predictability, i.e. forecast accuracy, for influenza and COVID-19 outbreaks have shown that 

four weeks seems to be the forecast horizon beyond which the dynamics are hard to predict (9, 

17–19), implying that predicting COVID-19 resurgences two months in advance may be futile.  

 Model-free approaches address predictability with methods heavily relying on 

information theory. We worry that public health officials facing an epidemic and planning for 

public health responses need more concrete assessment of the limits to predictability as well as 

the factors that might determine this predictability. Here, we use time series models to 

statistically fit disease spread dynamics, and then analyze the predictability of the fitted models 

using the measure predictive power, PP(t), rooted in information theory and developed in 

climatology (20) (see also (13)). An advantage of our approach is that we can associate 

predictability to specific dynamical patterns observed during the pandemic, like cyclic dynamics, 

which potentially lead to more accurate predictions (e.g. 21, 22). 

 For centuries it has been known that infectious disease outbreaks resurge regularly over 

time (see e.g. (23) for historical background). Resurgent outbreaks can have many causes such as 

seasonality, school terms, or new pathogen variants (23, 24, 25, and references therein). For 

COVID-19, too, the dynamics are characterized by ‘waves’ or cycles, not only in the USA but 

throughout the world, and different cyclic patterns have been documented, for example, at 

weekly and seasonal time scales (10, 11, 22). Moreover, for many countries in both hemispheres 

additional cycles occur with a period of approximately 4 months (3–6 months), similar to other 

communicable (viral) diseases like the Spanish flu from 1918 (approximately 5 months; (11)). 

Mitchell and Zhang (11) speculate that these cycles are caused by virus-host feedbacks, and 

other studies show that models incorporating behavioral responses to limit disease spread can 

show cyclic dynamics when these responses occur with a time delay (26–28). We investigate the 

cyclic dynamics of COVID-19 using a stochastic epidemiological model to understand how 

human responses to infection rates may affect cyclicity and predictability of disease spread. 

Specifically, we ask what factors might underlie differences in cyclic dynamics among counties 

and states in the USA. 
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Our overall goal is to understand the high variation among counties and states in 

predictability of COVID-19 spread dynamics during the period after its establishment (May 

2020) and before vaccinations became widely available (February 2021). We use this variation to 

develop an explanation for cyclicity and predictability of the COVID-19 pandemic. 

 

 

Methods 

 

Estimation of COVID-19 spread rate r(t) 

We base our analyses on the disease spread rate, r(t), of COVID-19 in the USA, estimated at the 

county and state levels (henceforth jurisdictions) using weekly death counts (29) from 9 May 

2020 to 12 February 2021 (40 weeks). We did not consider the initial outbreak (March-early 

May 2020) because there was pronounced among-jurisdiction variation in the time of onset (30), 

and because protective measures (individual behavior and NPIs) built up differently during the 

first outbreak (31). We ended the data on 12 February 2021 because vaccinations had started to 

influence the disease transmission and death rates (32). For r(t), we used the weekly difference 

between two adjacent log-transformed death counts; thus, at the original scale death count 

𝐷 𝑡 ∝ 𝐷 𝑡 − 1 exp 𝑟 𝑡 − 1 . We used death counts rather than reported cases of disease 

because death data are less likely to give biased estimates of spread rates than case data (33). 

Furthermore, predicting death rates is critical for health care in terms of both direct human costs 

and medical preparedness for increases in critical cases of infection. At the state level, we used 

data for the 49 conterminous states in the USA (including the District of Columbia), while at the 

county level we selected the 100 counties in these states with the highest population size to 

maximize estimation accuracy. To estimate r(t) using the entire time series, we used a time-

varying autoregressive model (30) with (i) death counts as observations, (ii) two process 

equations capturing the dynamics of the ‘true’ death count and the latent variable r(t), 

respectively, and (iii) state-dependent error terms. After fitting the model using the Kalman filter, 

we used the Kalman smoother (34) to generate jurisdiction-specific time series of r(t). Figure 1 

shows example data and estimated r(t) time series of three counties, and the SI Appendix (Fig. 

S1-S2) shows all estimated r(t) time series at the county and state levels grouped by similarity of 

the spread dynamics. These fits of r(t) are the best 20:20 hindsight estimates that use all data in 
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the time series. For real-time forecasting, short time series will cause uncertainty in model 

parameter estimates, but because we are interested in the inherent limit to predictability of the 

process underlying r(t), we use the best estimates possible from the entire time series. 

 

Analysis of estimated r(t) time series 

To analyze the estimated county- and state-level r(t) time series, we used an autoregressive 

moving-average (ARMA) time-series model (35, 36). Because r(t) depends on the difference in 

death counts between weeks, analyzing r(t) is qualitatively similar to analyzing death counts as a 

autoregressive integrated moving average ARIMA(p,1,q) process of log-transformed deaths 

counts (see e.g. (10)). We fit a spatial ARMA(2,2) model to both county- and state-level datasets 

separately, in which each jurisdiction had its own autoregressive coefficients, but all jurisdictions 

shared the same moving average coefficients, and random errors were assumed to be spatially 

autocorrelated. We chose the AR order p = 2 because it is a parsimonious choice to produce and 

fit cyclic dynamics (37). We chose the MA order q = p = 2 to implicitly account for observation 

error (38). The model for every jurisdiction i is 

 

𝑟! 𝑡 = 𝑏!,! + 𝑏!,!𝑟! 𝑡 − 1  + 𝑏!,!𝑟! 𝑡 − 2  + 𝜀! 𝑡 , (1a) 

𝜀! 𝑡 = 𝑎!𝛿! 𝑡 + 𝑎!𝛿! 𝑡 − 1 . (1b) 

 

Here, 𝑟! 𝑡  is the spread rate in jurisdiction i for week t, 𝑏!,! gives differences in the mean spread 

rate among jurisdictions, 𝑏!,! and 𝑏!,!  give the jurisdiction-specific AR coefficients for lag-1 and 

lag-2, 𝑎! and 𝑎! are the MA coefficients for lag-0 and lag-1, and 𝛿! 𝑡  is a multivariate Gaussian 

random variable that incorporates spatial correlation. Spatial correlation between two 

jurisdictions 𝑖 and 𝑗 is given by cor 𝛿! 𝑡 , 𝛿! 𝑡 = 1− 𝜂 exp − 𝑑!,!𝜚!!
!

, where 𝑑!,! is the 

distance between the two jurisdictions, 𝜂 is the nugget, and 𝜚 is the range (39); parameters 𝜂 and 

𝜚 were estimated along with the AR and MA coefficients.  

 

Cyclic dynamics 

The potential cyclicity of the dynamics given by eq. 1 depends on the estimated ARMA model 

parameters 𝑏! and 𝑏! (e.g. 37). For a stationary oscillatory process, the average cycle length 
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(henceforth period) is 2𝜋𝑤!!, where tan 𝑤 = |𝑏!
! + 4𝑏!|

!/!
𝑏!

!!. We further use the 

damping factor 𝑑 to characterize cyclicity; 𝑑 scales with the rate at which the amplitude of the 

cycle decreases over time in the absence of stochasticity. This can be seen in the explicit solution  

𝑟 𝑡 = 𝑑!!! 𝑟!sin 𝑡𝑤 − 𝑑𝑟!sin 𝑡 − 1 𝑤 sin!! 𝑤 , where 𝑟! and 𝑟! are the initial values of 

𝑟 𝑡  at time point 0 and 1, respectively, and 𝑑 is the damping factor; for a stationary process, 

𝑑 < 1, and values close to zero imply rapid decreases in amplitude. The damping factor can be 

expressed in terms of the autoregressive lag-2 coefficient as 𝑑! = −𝑏!. 

 

Predictive power 

To assess predictability, we use the measure predictive power, 𝑃𝑃 𝑡  (20), defined as the time-

dependent variance of the transition distribution scaled by the variance of the stationary 

distribution of the ARMA(2,2) process (SI Appendix, Fig. S3). If both variances are equal, then 

no information is available for a forecast to be ‘better’ than a randomly drawn process state 

according to the stationary distribution, and therefore predictability is said to be lost (13). 

Because the transition and stationary distributions are properties of the underlying processes that 

generate stochastic dynamics, 𝑃𝑃 𝑡  gives the theoretical limit of the predictive ability of any 

model fit to the data.  

 For a general multivariate Gaussian process, 𝑃𝑃 𝑡  is defined as 

 

𝑃𝑃 𝑡 ≔ 1− det 𝐕 𝑡 𝐕!!! ! !!, (2) 

 

where det ∙ is the determinant, 𝐕 𝑡  and 𝐕! are the covariance matrices of the transition and 

stationary distributions, and 𝑚 is the dimension; calculation of 𝐕 𝑡  and 𝐕! is outlined in the SI 

Appendix. Because our ARMA(2,2) model (eq. 1) is a univariate process, 𝐕 𝑡  and 𝐕! are 

scalars and 𝑚 = 1. Here, 𝑃𝑃 𝑡  can be related to the theoretical limit of forecast accuracy: if 

𝑅! 𝜏  denotes the coefficient of determination of a predicted value of 𝑟 𝜏  (𝜏 weeks into the 

future), then the maximum possible value of 𝑅! 𝜏  is 1− 𝐕 𝜏 𝐕!!! = 1− 1− 𝑃𝑃 𝜏 !
.  

The time dependency of 𝑃𝑃 𝑡  implies a monotonic decrease in predictability with time, 

eventually approaching zero. Although the approach to zero is usually defined as the 

predictability barrier (13), from an empirical perspective we set the threshold using the link 
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between prediction 𝑅! and 𝑃𝑃 𝑡  as follows. As a rule of thumb, values of prediction 𝑅! < 0.25 

can be considered as reflecting a very weak match between true and forecasted dynamics. Thus, 

we set the threshold to compute a predictability barrier as 𝑃𝑃!"# = 1− 1− 0.25 !/! = 0.1340. 

Henceforth, we define predictability barrier as the number of weeks for which 𝑃𝑃 𝑡 = 𝑃𝑃!"# 

and where the dynamics beyond this barrier can be considered unpredictable. Finally, note that 

the computation of 𝑃𝑃 𝑡  can also include parameter estimation uncertainty (20). Nonetheless, 

because we estimated the ARMA(2,2) parameters from the full time series (40 weeks) and we 

are dealing with a low-dimensional model, parameter uncertainty is expected to have a marginal 

effect (40); nonetheless, our estimates of 𝑃𝑃 𝑡  could be considered optimistic. 

Finally, to test whether the severity of the initial outbreak (March–early May 2020) 

affected the ensuing cyclicity and predictability, we used previously estimated values of the basic 

reproduction number, R0, from death data at the county and state levels (30, 41); the time period 

for which these R0 values were estimated did not overlap with the time series used in the present 

study. The method for estimating these R0 values used the observed death counts and a statistical 

state-space modeling approach similar to our computation of r(t) in the present study. Also, the 

estimation of the R0 values in the previous studies was designed to factor out the effects of the 

timing of epidemic onset (higher spread rates occurred earlier in the epidemic) and population 

density (higher spread rates occurred at higher densities). Nonetheless, the estimates of the R0 

values are directly comparable to r(t); they use the same type of data and methodology, but 

characterize different periods of the pandemic and different dynamical characteristics; see (30) 

for further technical details. 

 

Simulations 

To help interpret the r(t) time series and investigate possible mechanisms underlying their 

cyclicity, we used a stochastic, discrete-time, age-structured Susceptible-Exposed-Infectious-

Removed (SEIR) model, parameterized with published results (30). This simulation model tracks 

the epidemic on a daily time scale and explicitly includes the time period from infection to 

subsequent transmission (infectiousness), and from infection to death when the disease is 

reported. We modified the published model to explicitly separate a constitutive disease 

reproductive number, Rc, from dynamic changes in the transmission rate that depend on the death 

count two weeks previously. In this way, we mimicked a susceptible population becoming aware 
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of increases in the death toll and, following a 2-week delay for reporting and media attention, 

taking protective measures (individual behavioral responses and/or NPIs) (26, 27, 42). We set the 

transmission rate to 

 

𝛽 𝑡 = 𝛽! 1+ 𝜔𝐷 𝑡 − 2 !!
,        (3) 

 

where 𝛽! is the transmission rate corresponding to Rc, 𝐷 𝑡 − 2  is the number of deaths two 

weeks previously, and 𝜔 scales how rapidly the transmission rate decreases with increases in 

𝐷 𝑡 − 2 . We selected this functional form to mimic the cyclicity in the observed data, although 

similar disease dynamics may be generated using other functions that decrease with 𝐷 𝑡 − 2 . 

Our modeling approach is similar to that used by Weitz et al. (28), although our model explicitly 

incorporates the dependence of transmission and death on the number of days since infection, 

making it possible to compare our simulation results with real data. For further simulation 

details, see the SI Appendix. 

 The simulation model is built on the hypothesis that cyclicity is determined by 

differences in the constitutive and/or dynamic components of the transmission rate among 

jurisdictions. Our analyses, however, do not test this hypothesis directly. Instead, by comparing 

the simulated and real dynamics, we ask whether the hypothesis is plausible.  

 

 

Results 

 

Predictability and cyclicity at the county and state levels 

Predictability measured by PP(t) varied substantially among counties and states (Fig. 2). For 

example, at the county level and for four-week-ahead forecasts, PP4 ranged from 0.03 to 0.72. 

This among-jurisdiction variation in PP(t) for any week t reflected high variation in the 

predictability barrier (Fig. 2a-b, SI Appendix, Fig. S4): counties had a median of 9 weeks 

(interquartile range 7-12 weeks), and states had a median of 8 weeks (5-11). PP4 – chosen to 

reflect the empirically found barrier of four weeks (see the Introduction) – characterizes the 

variation in predictability barrier among jurisdictions (SI Appendix, Fig. S5), and therefore we 

focus on PP4 throughout most of the remaining analyses. 
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 Of the 100 counties and 49 states, 96 and 41 showed cyclic dynamics in the stationary 

domain (SI Appendix, Fig. S6), and all analyzed jurisdictions had mean r(t) of nearly zero (not 

shown). The estimated period was similar at the county and state levels (SI Appendix, Fig. 

S7a,b): counties had a median of 23 weeks (interquartile range 20–29), and states had a median 

of 26 weeks (20–33). The damping factor (d) was also similar (SI Appendix, Fig. S7c,d): counties 

had median d = 0.91 (0.85–0.96), and states had median d = 0.91 (0.83–0.94). 

 Expressing the predictability barrier as a fraction of the median period (23 weeks and 26 

weeks, see above) shows that for half the counties with stationary cyclic dynamics, at most 40% 

of a cycle is predictable, while at the state level it is 35% (Fig. 2c-d). Furthermore, only 10% of 

counties and 5% of states had a fully predictable cycle (‘wave’) or beyond. Second, we found a 

strong association between predictability and damping factor (Fig. 2e,f) (counties: Spearman's 𝜚 

= 0.83, P < 10-10; states: 𝜚 = 0.52, P = 0.0001); note that this result is not a mathematical 

inevitability: for example, near-random-walk dynamics are non-cyclic yet still imply high 

damping factors. In contrast to this association, we could not find a significant relationship 

between predictability and period (SI Appendix, Fig. S8), and therefore we will use the damping 

factor as a measure of cyclicity to investigate what causes the joint variation in cyclicity and 

predictability. 

  

Simulation results 

The simulation model mimics the cyclic dynamics shown in the data (Fig. 3). Increases in 

cyclicity and predictability in the simulations are generated by increasing the constitutive 

reproduction number, Rc. Because higher Rc values correspond to higher maximum values of r(t), 

more pronounced cyclicity and increased predictability occur when there is greater potential for 

rapid increases in disease spread rates. In the specific model realizations, increasing the Rc value 

from 1.4 (Fig. 3d) to 1.8 (Fig. 3f) increases PP4 from 0.11 to 0.55. 

 To compare with the county-level data, we simulated time series of 40 weeks using 

values of Rc randomly distributed between 1.4 and 1.8 (Fig. 4). Analyzing the simulated data in 

the same way as the real data, these simulations spanned the range of PP4 observed in the county 

data (Fig. 4a). In the simulations, the association between the damping factor d and PP4 (Fig. 4b) 

was very close to that found for the county data (Fig. 4e). The periods estimated from the 

simulated data were less variable than for the real data, although most fell between 20 and 30 
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weeks (Fig. 4c,f).  

 The key feature of the simulations generating cycles is the decrease in the transmission 

rate caused by increases in the death count two weeks beforehand (eq. 3). This feature of the 

simulation can be recovered statistically from the simulated time series by performing a 

conditional least-squares regression of 𝑟 𝑡  against 𝑟 𝑡 − 1  and 𝐷 𝑡 − 2 . For the 100 

simulated counties, the regression coefficients ranged between –1 and –0.4 (Fig. 4d). For the 

county data, these regression coefficients ranged between –0.4 and –0.05 (Fig. 4g), and all but 

one (for a non-cyclic time series) are statistically significantly below zero (p < 0.05).  

 

R0 and variation in predictability 

At both the county and state levels, the R0 values and PP4 were strongly negatively associated 

(Fig. 5a,b; counties: Spearman's 𝜚 = -0.63, P < 10-10; states: 𝜚 = -0.52, P = 0.001): more severe 

initial outbreaks were followed by disease spread dynamics with lower predictability. This is the 

opposite pattern from what would be expected if high R0 values were followed by high 

constitutive Rc values; in the simulations, higher Rc values were associated with higher PP4 (Fig. 

4a). These results imply that higher R0 values gave rise to ensuing dynamics with lower Rc 

values, suggesting that populations were constitutively more cautious in counties and states that 

had experienced a severe COVID-19 outbreak at the start of the pandemic. 

 Figure 5c overlays county estimates of PP4 on a map of the county estimates of R0 values 

from the initial outbreaks. A cluster of counties with low PP4 occurs along the northeastern coast 

where R0 values were high, while counties with high PP4 and pronounced cyclicity occur in 

southern states and in California.  
 

 

Discussion 

 

The COVID-19 pandemic has stimulated the development of numerous quantitative models to 

help understand and forecast disease dynamics, and to assist public health decision-making (e.g. 

12, 22, 43). Rather than develop methods for making predictions, in this study we have focused 

on the inherent unpredictability of COVID-19 dynamics. Our goals have been both to address the 

limits to which predictions are possible for communicable diseases like COVID-19, and to 
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understand the dynamical characteristics of epidemics that make predictions more or less 

accurate.  

We found considerable variation in predictability among jurisdictions (Fig. 2, SI 

Appendix, Fig. S4), as also found by (15). In contrast to (15), however, we found that for the 

majority of analyzed counties and states, the predictable fraction of a cycle (that is, an outbreak 

in (15)) is much less than one (Fig. 2). Our estimated cycle lengths are in good agreement with 

previous findings (10, 11). In addition, we show that predictability is strongly related to the rate 

at which cycles are damped, with weakly damped cycles giving regular patterns in the data that 

allow predictions: this rate of cycle damping has been largely neglected in previous analyses. 

Finally, we show that protective measures against COVID-19 reduced both the cyclicity and 

predictability of disease dynamics. Thus, variation in cyclicity and predictability among 

jurisdictions gives valuable information about factors governing the dynamics of COVID-19. 

In analyses of forecast accuracy, single studies and reviews of the many studies 

forecasting COVID-19 dynamics have focused on identifying the best forecasting methods (e.g. 

12, 19). Our analyses of inherent unpredictability focus on how much information is available in 

a time series, rather than the ability of a model to fit the time series and make forecasts. 

Therefore, our estimates of the limits to forecasts in principle should apply to all forecasting 

models. Furthermore, our demonstration of the high variation in predictability among time series 

from different counties and states in the USA implies that the ability to forecast COVID-19 

likely depends more on the dynamics in a particular dataset than on the forecasting methods 

used. 

Our simulation model showed that cyclic dynamics similar to those observed in the 

county and state data can be mimicked when changes in the transmission rate occur as a 2-week 

delayed response to increases in the death toll. We acknowledge that this is not categorical 

evidence that time-delayed changes in the transmission rate in response to death counts are 

responsible for the cycles, because any form of cyclicity in D(t) will drive cyclicity in r(t). 

Nonetheless, this pattern is consistent with the hypothesis under which the simulation model was 

built. The simulation model shows the plausibility of the hypothesis that more pronounced 

cyclicity occurs in jurisdictions with higher constitutive Rc values, because a higher Rc allows 

more rapid changes in the transmission rate that are necessary to generate cycles. Finally, 

jurisdictions that experienced severe outbreaks at the onset of the pandemic, measured by high 
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values of R0 before widespread public protective measures were put in place, had less cyclic and 

less predictable COVID-19 dynamics in the subsequent period before vaccination became 

widespread. The association between a high R0 value and lack of predictability suggests that a 

severe initial outbreak led to high levels of constitutive protective measures which individuals 

took to reduce disease transmission. Moreover, the variation in predictability had a clear 

geographical pattern, with many counties having unpredictable dynamics occurring in the 

Northeast (Fig. 5). 

 The hypothesis embodied by our simulation model is that cyclicity arises from protective 

measures people take in response to rising death tolls (cf. 27), that is, a negative feedback loop 

much like "predator-prey" dynamics in ecology which has recently attracted increased attention 

in epidemiology (26, and references therein). Because death tolls are highly correlated with case 

counts, human responses could equally depend on the awareness of rising cases, reports in the 

media, word-of-mouth, etc. Maps of current cases and deaths from COVID-19 were publicly 

available throughout the time period we analyzed, and reports of case counts occurred regularly 

in the news. Some responses to increased spread of COVID-19 were taken by policy-makers, 

such as mask mandates and restaurant closures. Other responses were taken by individuals to 

reduce contact and abide mandates. We have shown that if the ‘background’ constitutive 

transmission rate of COVID-19 is high, then the human response to increasing disease spread 

will generate pronounced cyclic dynamics. In contrast, if the constitutive transmission rate is 

kept low, then cycles do not appear, because the disease dynamics are not as responsive to 

changes in protective measures. This implies that lack of cyclicity and predictability are caused 

by people continuously take greater precautions against COVID-19, rather than showing an on-

and-off response to changes in death tolls or case counts. 

 Our analyses are based on observed disease dynamics to make inferences about 

differences in protective measures taken by citizens of states and counties. There has been 

considerable research effort to assess attitudes, such as surveys on mask use (44) and vaccination 

hesitancy (45), and to identify effective proxies of protective behaviors, such as analyses of 

government policies (31) and changes in individual movement patterns using cell-phone signals 

(46). While acknowledging the value of these studies, our approach of analyzing the dynamics of 

COVID-19 focuses on the effects of protective behaviors, rather than the protective behaviors 

themselves. Even though our approach cannot make a mechanistic link between behaviors and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2022. ; https://doi.org/10.1101/2022.09.28.22280465doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.28.22280465
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 / 24 

 
 
 
Bozzuto C, Ives AR (2022): Differences in COVID-19 cyclicity and predictability among U.S. counties and states 
reflect the effectiveness of protective measures. Preprint posted on medRxiv, url: https://www.medrxiv.org/ 

 

dynamics, it nonetheless gives insight into differences in how COVID-19 was experienced by 

different jurisdictions. 

 Our explanation for the joint variation in cyclicity and predictability is a hypothesis that 

is consistent with our statistical evidence. Direct evidence is a challenge, however, because 

variation among jurisdictions in the constitutive protective measures that individuals take are 

hard to document. Nonetheless, the remarkable negative association between predictability and 

R0 (Fig. 5) suggests differences in personal protective measures among jurisdictions. Before 

performing our analyses, we hypothesized that R0 values would be positively associated with 

predictability, because a high R0 value implies the potential for rapid increases in disease spread 

if protective measures were dropped. Our finding of a negative association suggests that 

populations experiencing severe initial outbreaks saw a fundamental shift in later transmission 

rates. An alternative explanation for this shift is that the initial outbreak generated sufficient 

acquired immunity to reduce future transmission rates (11). Arguing against this explanation, 

however, is that during the period we analyzed the number of COVID-19 cases as a proportion 

of the population ranged from 1–14% among counties and 2–13% among states. Furthermore, 

there was no relationship between the cumulative per capita number of cases and PP4 for either 

county (Spearman’s 𝜚 = 0.12. p = 0.22) or state data (𝜚 = 0.23. p = 0.11). Even though cases 

were likely under-reported, serological studies show that, for example, the proportion of the adult 

population in New York City having contracted COVID-19 between 19 April and 5 July, 2020, 

was approximately 20% – similar results have been found for metropolitan France 

(approximately 15% of adults by January 2021) – which is likely not high enough to affect the 

subsequent predictability of the dynamics (47, 48). It is also possible that cyclicity was driven by 

successive SARS-CoV-2 variants each with higher transmission rates (25). While different 

variants are associated with differences in R0 among jurisdictions at the start of the pandemic 

(30), and successive variants were more transmissible (49), the successive variants spread 

geographically quickly throughout the conterminous USA. While new variants might have added 

to the broad pattern of cyclicity of COVID-19 in the USA, we cannot think of how new variants 

could explain the negative association between R0 values and subsequent cyclicity. Given that 

acquired immunity and SARS-CoV-2 variants are unlikely explanations for the negative 

association between R0 and predictability across jurisdictions, our best alternative is changes in 

protective measures taken by individuals. 
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What are the implications of our findings for decision-making in public health 

emergencies? The USA experienced repeated waves of COVID-19 after the initial spread of the 

pandemic, and these waves caused large numbers of infections and deaths. Nonetheless, after the 

initial rapid outbreaks, the spread rates were lower (compare the results in (30) to SI Appendix, 

Fig. S1). This suggests that steps taken by policymakers and individuals to reduce transmission 

rates – such as mask wearing, social distancing, and other NPIs – were effective. Indeed, the lack 

of predictability can be viewed as a consequence of the successful maintenance of low 

transmission rates. If COVID-19 spread rates are predictable, it means that protective measures 

have been dropped and therefore have to be restarted. Although the consequence of a population 

taking continuous protective measures is lack of predictability, lack of predictability itself is an 

indicator of effective transmission management. Our results further indicate that one of the first 

epidemic-related metrics computed at the early stages of an epidemic, namely R0, allows 

anticipating the predictability of the ensuing dynamics (Fig. 5). For outbreaks of newly emerged 

diseases this information could be complemented by jurisdiction-specific data indicating how 

well NPIs in the past have been successful, in terms of swift implementation and adherence by 

the population (e.g. 31, 43): this would give information about how strongly protective measures 

will affect disease dynamics and consequently their predictability. Finally, all our results are 

similar at the county and state levels, implying that at the onset of outbreaks, information from 

different jurisdictional levels could be helpful to gauge the limit to forecasting accuracy. 

The human response to disease spread likely affects its predictability, and the pandemic 

might be similar to stock markets in which unpredictability is generated by human behavior (50). 

We should anticipate that future pandemics will be similarly unpredictable if they elicit 

widespread behaviors to reduce transmission. Unpredictability is just a by-product of positive 

steps that people take to protect themselves and others. 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2022. ; https://doi.org/10.1101/2022.09.28.22280465doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.28.22280465
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 / 24 

 
 
 
Bozzuto C, Ives AR (2022): Differences in COVID-19 cyclicity and predictability among U.S. counties and states 
reflect the effectiveness of protective measures. Preprint posted on medRxiv, url: https://www.medrxiv.org/ 

 

 

Data availability: After acceptance of the manuscript, data that support the findings of this 
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Figures 

 

 
 

Fig. 1. Death data from three illustrative counties in the USA and estimated disease spread 

rates. Weekly death count data and resulting estimates of r(t) are given for (a,d) New York (five 

boroughs), New York, (b,e) Maricopa County, Arizona, and (c,f) El Paso County, Texas. In 

panels (a-c), points give the data from (29), and the lines give the fit from the Kalman smoother. 

Panels (d-f) give the corresponding estimates of r(t) from the Kalman smoother, with the shaded 

band encompassing the 66% confidence interval. Values of r(t) within the hatched region at the 

start and end of the time series were removed for our analyses to exclude the initial outbreak and 

possible effects of vaccination on the dynamics. 
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Fig. 2. Predictive power and cyclicity. Predictive power, PP(t) (eq. 2), for (a) 98 counties and 

(b) 46 conterminous states with stationary dynamics for a forecast horizon ranging from 1 to 40 

weeks. The lowest value of the y-axes in (a-b) is the threshold PPlim = 0.134, used to compute 

the predictability barrier (cf. SI Appendix, Fig. S4). The three highlighted counties in (a) are 

those in Fig. 1 and Fig. 3: New York (five boroughs), New York; Maricopa County, Arizona; El 

Paso County, Texas. Panels (c-d) show the distribution of the estimated predictability barriers of 

jurisdictions with cyclic dynamics (cf. panels (a-b) and SI Appendix, Fig. S4) as a fraction of the 

average cycle length (counties: 23 weeks, states: 26 weeks), along with the cumulative 

proportion of jurisdictions. Finally, for both (e) counties and (f) states, PP4 was closely 

associated with the strength of cyclicity as measured by the damping factor d; the latter 

corresponds to the characteristic return time (38) for non-cyclic jurisdictions (red dots).  
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Fig. 3. Comparison between r(t) estimated for three illustrative counties and for three 

simulated populations. The three counties are those in figure 1: (a) New York (five boroughs), 

New York, for which PP4 = 0.03, (b) Maricopa County, Arizona, with PP4 = 0.32, and (c) El 

Paso County, Texas, with PP4 = 0.72. For the simulations, 𝛽! was selected to give three values of 

Rc (eq. 3): (d) Rc = 1.4, PP4 = 0.11, (e) Rc = 1.6, PP4 = 0.28, and (f) Rc = 1.8, PP4 = 0.55. In all 

panels, black lines give the estimates of r(t) and red lines give the z-transformed log number of 

deaths per week incorporating a 2-week time lag. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2022. ; https://doi.org/10.1101/2022.09.28.22280465doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.28.22280465
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 / 24 

 
 
 
Bozzuto C, Ives AR (2022): Differences in COVID-19 cyclicity and predictability among U.S. counties and states 
reflect the effectiveness of protective measures. Preprint posted on medRxiv, url: https://www.medrxiv.org/ 

 

 

 
 

Fig. 4. Comparison between dynamical characteristics of r(t) for simulated and real time 

series. One-hundred time series of r(t) were simulated for randomly selected values of the 

transmission rate  𝛽! (eq. 3) to give values of Rc ranging from 1.4 to 1.8. (a) Predictability 

measured by PP4 increased with Rc implying that simulations in which the potential for increases 

in the spread rate were greatest (those with highest Rc) had the most predictable dynamics. 

Simulated time series that were identified as non-cyclic are shown in red, and time series with 

period > 40 weeks are shown in blue, respectively. The association between predictability and 

cyclicity for (b) the simulated data was similar to that for (e) the real data. For simulated 

counties, (c) the period showed less variation than (f) the real data, although the overall 

relationship with PP4 was similar. No simulated time series was non-stationary, and the two non-

stationary county time series are excluded because PP is undefined. Finally, (d) and (g) show the 

ranked regression coefficients for the effect of 𝐷 𝑡 − 2  on 𝑟 𝑡  for the simulated counties and 

county data, where bars give standard errors.  
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Fig. 5. Effect of R0 on predictability. (a–b) Predictability as measured by PP4 is plotted against 

the R0 values estimated at the onset of the pandemic from death count records (30, 41). For 

county-level data, R0 values were computed for 124 counties, and those counties overlapping 

with the counties in the present study are shown as open points; the gray points correspond to 

counties for which values of R0 were interpolated using population density and geographical 

location. (c) The map gives the log-transformed county-level estimates of R0, originally ranging 

from 1.3 to 4.5 (white to dark red; (30)), with county-level estimates of PP4 depicted by circles, 

with circle diameter from smallest to largest corresponding to PP4 from 0.03 to 0.72. 
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