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Abstract and keywords 

Background: Compared to exome sequencing, genome sequencing is widely appreciated for 

its superior ability to detect a wide range of genetic variations including copy-number 

variants (CNVs) and mitochondrial (mtDNA) variants. We assessed whether low-coverage 

genome sequencing, a considerably cheaper approach, would detect clinically relevant CNVs 

and mtDNA variants and would thus be a cost-efficient supplement to exome sequencing in 

rare disease diagnostics. 

Methods: To assess the level of sequencing depth needed for variant detection, first, 30x 

mean coverage genome sequencing data were subsampled to 0.5x, 1x, 2x, and 4x coverage 

files in silico followed by CNV and mtDNA detection. Based on the analysis, 2x short-read 

sequencing was selected to be performed in 16 patients with putatively pathogenic CNVs or 

mtDNA variants to assess the empirical sensitivity.  

Results: For CNV calling, 2x coverage was sufficient to detect all heterozygous CNVs 

greater than 10kb in size from in silico subsampled data. In experimental data, the results 

were similar, although a 16kb heterozygous deletion was once not detected. Regarding 

mtDNA variants, 2x coverage sufficed for variant confident variant calling and heteroplasmy 

assessment for all samples. 

Conclusions: Low-coverage genome sequencing may be used to complement exome 

sequencing for simultaneous mtDNA variant and CNV detection. 
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Introduction 

Since the first human exome sequencing study focused on finding a genetic cause for rare 

human diseases (Ng et al., 2009), novel sequencing technologies facilitating genome-wide 

simultaneous variant detections have revolutionized research and diagnostics of genetic 

disorders (Wright et al., 2018). 

Currently, many diagnostic labs are performing exome sequencing and chromosomal 

microarray (CMA) in parallel to discover most of the clinically interpretable findings, as 

exome sequencing can detect single nucleotide variants and short deletions and insertions, 

while CMA is developed for detecting copy-number variants (CNVs), which are causative 

factors for ~10% of rare genetic disorders (Žilina et al., 2014). In case of suspicion of 

mitochondrial disorders, also mtDNA sequencing is requested. 

High-depth genome sequencing can outperform CMAs in sensitivity for CNV detection, as it 

is not limited to the size resolution and can effectively detect both copy-number variants and 

balanced structural variants (e.g., translocations and inversions) (Collins et al., 2020). 

However, high computational and reagent costs challenge the usage in clinical settings. 

Generally, high-depth genome sequencing at standard 30x coverage is 3-5 times more 

expensive than exome sequencing, while CMA is cheaper than exome. Low coverage 

genome sequencing has been proposed as an alternative for CMA, as the lower coverage will 

reduce the costs proportionally while analytical sensitivity still outperforms CMA, especially 

for smaller deletions and duplications even at only 1x coverage (Dong et al., 2016; Zhou et 

al., 2018). Low-coverage genome sequencing has also been tested in prenatal settings (Wang 

et al., 2020). Several read-depth-based computational tools have been used for CNV detection 

from low-coverage genome sequencing data. Control-FREEC (Boeva et al., 2012) has shown 

the best performance with optimal computational resource usage (Smolander et al., 2021). 

Another way to increase diagnostic yield of next-generation sequencing is to simultaneously 

detect mitochondrial DNA (mtDNA) variants, as exome and genome sequencing also cover 

mtDNA as a byproduct (Duan et al., 2018, 2019). An average PCR-free clinical genome 

sequencing has a mean read depth of around 30x, which results in above 2000x mtDNA 

coverage due to a large copy number of mtDNA in cells compared to autosomes (Laricchia et 

al., 2022). By reducing genome depth, sequencing costs decrease proportionally, but mtDNA 

coverage, although lower, could still be sufficient for variant detection. A previous study 

demonstrated that average autosome coverage of 1.6x resulted in average mtDNA coverage 

of 124x on genome sequencing (Rustagi et al., 2017). The sequencing depth of 100x or more 

is sufficient for detecting variants with heteroplasmy (proportion of mtDNA molecules 

having the non-reference allele) levels over 10% covering all clinically relevant variants if 

DNA from disease-relevant tissue is sequenced. 

This study aims to assess whether low-coverage genome sequencing could be a reasonably 

cost-efficient solution for detecting CNVs and mtDNA variants and thus supplementing 

exome sequencing. 

Methods 

First, to assess the level of sequencing depth needed for variant detection, 30x mean coverage 

genome sequencing data from selected samples were subsampled to 0.5x, 1x, 2x, and 4x 

coverage files in silico. CNVs were detected using Control-FREEC (Boeva et al., 2012) and 
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annotated with AnnotSV (Geoffroy et al., 2018). The mtDNA variants were detected using 

the GATK4 mitochondrial pipeline (Laricchia et al., 2022) and annotated with HmtNote 

(Preste et al., 2019). The GATK4 mitochondrial pipeline also outputs theoretical sensitivity 

assessment for different heteroplasmy levels, which was used for selecting genome 

sequencing depth for the second part of the study. Five disease-causing deletions (sized 

3.4kb, 4.6kb, 7.2kb, 16kb, and 90kb) and one possibly pathogenic heteroplasmic 

(heteroplasmy level 14.7%) mtDNA variant were used to assess sensitivity for clinically 

relevant variants.  

Second, 16 samples from ten different families with known variants were selected for 2x 

genome sequencing. The chosen samples carried the following variants: eight (five unique) 

deletions, one duplication, three (one unique) inversions, and four (three unique) mtDNA 

variants (Tables 1 and 2). The sequencing run was carried out on Illumina NextSeq 500 in a 

single run using high output sequencing kit with 2x150bp paired-end reads. Fastq files were 

mapped to the hg38 reference genome using BWA MEM algorithm version 0.7.17-r1188 (Li 

& Durbin, 2009), duplicates were marked, and base quality scores recalibrated using GATK 

version 4.1.4.0 (van der Auwera et al., 2020). For quality control, genome sequencing 

metrics, including sequencing depth, were assessed with the Picards CollectWgsMetrics tool 

(http://broadinstitute.github.io/picard/). A read-depth assessment-based Control-FREEC 

software (Boeva et al., 2012) with 1kb and 10kb non-overlapping calling windows and 

Manta, combining paired and split-read evidence (Chen et al., 2016) was used to call 

structural variants from bam files. GATK4 mitochondrial pipeline (Laricchia et al., 2022) 

was used to detect mtDNA variants and assess heteroplasmy. Heteroplasmy was calculated as 

a ratio of alternate variant reads to the total sequencing depth for the same genome locus. 

Again, AnnotSV (Geoffroy et al., 2018) and HmtNote (Preste et al., 2019) were used to 

annotate structural and mtDNA variants, respectively. 

The scripts used for the analysis are available at https://github.com/SanderEST/lcwgs.  

This study was approved by the Research Ethics Committee of the University of Tartu 

(approval date 11/18/2018 and number 287M-15, and 19/10/2020 327T-3). Informed consent 

was obtained from patients or their legal guardians. 

Results 

First, in-silico subsampled data was assessed. For CNV calling, 2x coverage was sufficient to 

detect all heterozygous CNVs greater than 10kb. For smaller CNVs, even 4x coverage data 

did not suffice for CNV detection. An example of an estimated copy number using 10 kb 

windows on chromosome 13 around 16 kb deletion in both heterozygous and homozygous 

states is shown for different in silico subsampled depths in Figure 1. Regarding mtDNA 

variants, 2x coverage resulted in >99% theoretical sensitivity for heteroplasmy levels >10%. 

The possibly pathogenic heteroplasmic variant was detected with similar heteroplasmy levels 

in all depths (0.5x to 4x). We selected 2x as an aimed depth for the separate low-coverage 

genome sequencing experiment based on these results. 

The sequencing depth for 16 samples selected for the experiment ranged from 1.62 to 2.12, 

following the aimed sequencing depth of 2x. Regarding the assessed variants, FREEC 

confidently detected 90kb heterozygous deletion and 16kb homozygous deletion (Table 1, 

Figure 1). The detection was inconsistent for heterozygous 16kb deletion, and the software 
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failed to detect smaller than 10kb deletions. Manta, using different algorithms, detected the 

variants with incomplete sensitivity which was not in direct concordance with the CNV size. 

For example, it was able to detect 7.2 kb deletion, and 14 kb duplication, which both were not 

detected by FREEC software, but was not able to detect even 90kb deletion and 16 kb 

homozygous deletion. We also assessed Manta’s ability to detect large inversion on 

chromosome 9, which was detected in the homozygous state, and in one of the two 

heterozygous carriers. 

The known putatively pathogenic mtDNA variants were all detected from 2x genome 

sequencing. Moreover, the heteroplasmy levels were concordant with the 30x genome data 

(Table 2).  

Discussion 

Although the field of rare disease diagnostics and research is shifting toward using high-

depth genome sequencing as a first-tier test, the high cost for sequencing and computational 

demands make exome sequencing the most widely used test. Although possible, CNV 

detection from exome sequencing is challenged by the fragmented nature of the data (Pfundt 

et al., 2016). Thus, chromosomal microarrays are often used to supplement exome sequencing 

to detect clinically relevant CNVs. The detection limit of chromosomal microarrays depends 

on the array used, commonly ranging from 10kb to 100kb.  

Also, mtDNA variants are often assessed separately. Although possible to detect from exome 

sequencing, the coverage is often poor and insufficient for heteroplasmy level assessment 

(Puusepp et al., 2018). Thus, a patient with a suspected genetic disorder but without a specific 

diagnostic hypothesis commonly receives three separate genetic tests, exome, mtDNA 

sequencing, and chromosomal microarray, making comprehensive testing expensive. 

This study demonstrates that low-coverage genome sequencing can replace chromosomal 

microarray and mtDNA sequencing. However, some limitations have to be noted. For 

chromosomal microarrays, the resolution, i.e., the smallest size of a CNV that can be reliably 

detected, is provided by the manufacturer after sensitivity assessments. Similarly, low-

coverage genome sequencing has its resolution, which may depend on the sequencing 

protocol and the bioinformatics pipeline. Each lab should assess the sensitivity and specificity 

of its protocol. Importantly, natural variation of sequencing depth should be considered as the 

depth for samples in the same run is never equal (Table 1). 

Regarding mtDNA variant detection, the main limitation lies in the studied tissue. Exome 

sequencing is usually performed from the DNA extracted from the blood or saliva. In 

contrast, muscle or fibroblasts may be the preferred tissue for mtDNA variant detection due 

to differences in heteroplasmy levels between tissues. This should be noted, as it is tempting 

to use the already available DNA from exome sequencing for further studies. While the low 

heteroplasmy levels may not be detected from the low coverage genome sequencing, the 

sensitivity for heteroplasmy levels above 10% remains adequate. Thus this method is suitable 

for screening clinically relevant mtDNA variants. 

As high-coverage genome sequencing is becoming cheaper, low-coverage genome 

sequencing may not be efficient in the future, where standard genome sequencing replaces 

exome sequencing, and other variant classes may be assessed from the same data. High 

coverage genome sequencing is probably more sensitive for other variant classes like repeat 
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expansion variant detection (Ibañez et al., 2022). However, for the next few years, low 

coverage genome sequencing can serve as a cost-effective complementing analysis for exome 

sequencing, widening the scope of variant detection. 

Conclusions 

Low-coverage genome sequencing may be used to complement exome sequencing for 

simultaneous mtDNA variant and structural variant detection. However, for smaller CNVs, 

higher coverage genome sequencing is needed for comprehensive variant detection. 
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Figures 

 

Figure 1. An example of an estimated copy number using 10 kb windows on chromosome 13 

around 16 kb deletion in both heterozygous and homozygous states is shown for different in 

silico subsampled depths (0.5x, 1x, 2x, 4x) and the original 30x genome sequencing data as 

well as from the experimental 2x genome sequencing run (exp-2x). 
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Tables 

Table 1 – Cohort of patients with known structural variants selected for 2x genome 

sequencing (GS) and the results with 2 different variant callers. Control-FREEC software was 

used in two modes using either one kilobase or ten kilobase windows. Fam – family, DEL – 

deletion, DUP – duplication, INV – inversion. 

Fam Relation Known variant 

from 30x GS 

Mean 

depth 

Control-

FREEC 

10kb 

window 

Control-

FREEC 

1kb 

window 

Manta 

1 Proband HOM 16kb DEL in 

WBP4 

2.12 Detected Detected Not 

detected 

1 Mother HET 16kb DEL in 

WBP4 

2.05 Not detected Not 

detected 

Not 

detected 

1 Father HET 16kb DEL in 

WBP4 

1.82 Detected Not 

detected 

Not 

detected 

2 Proband HET 3.4kb DEL in 

CTCF 

1.94 Not detected Not 

detected 

Not 

detected 

3 Proband HET 7.19kb DEL in 

TRAPPC9 

1.86 Not detected Not 

detected 

Detected 

3 Father HET 7.19kb DEL in 

TRAPPC9 

1.86 Not detected Not 

detected 

Not 

detected 

4 Proband HET 90.1kb DEL in 

RBFOX1 

1.82 Detected Detected Not 

detected 

5 Proband HET 4.63kb DEL in 

NIPBL  

1.98 Not detected Not 

detected 

Not 

detected 

6 Proband HET 14.2kb DUP in 

SQOR 

1.95 Not detected Detected Detected 

7 Proband HOM 9Mb INV on 

chr 9 

1.62 Not 

applicable 

Not 

applicable 

Detected 

7 Mother HET 9Mb INV on 

chr 9 

1.78 Not 

applicable 

Not 

applicable 

Not 

detected 

7 Father HET 9Mb INV on 

chr 9 

1.74 Not 

applicable 

Not 

applicable 

Detected 

Table 2 - Cohort of patients with mitochondrial DNA variants selected for 2x genome 

sequencing (GS) and the results for the known variants. 

Fam Relation Known mtDNA 

variant  

Mean 

genome 

depth 

Mean 

mtDNA 

depth 

Heteroplasmy from 

2x GS 

8 Proband m.9176T>C  

95% heteroplasmy 

2.16 166 93.8% (183/195) 

9 Proband m.3243A>G  

9.5% heteroplasmy 

1.79 202 7% (15/213) 

10 Proband m.15866A>G 

14.7% heteroplasmy 

2.07 299 17% (60/352) 

10 Mother m.15866A>G  

5.6% heteroplasmy 

2 225 4.5% (11/246) 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.20.22280155doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.20.22280155
http://creativecommons.org/licenses/by/4.0/


References 

Boeva, V., Popova, T., Bleakley, K., Chiche, P., Cappo, J., Schleiermacher, G., Janoueix-Lerosey, I., 

Delattre, O., & Barillot, E. (2012). Control-FREEC: a tool for assessing copy number and allelic 

content using next-generation sequencing data. Bioinformatics, 28(3), 423–425. 

https://doi.org/10.1093/BIOINFORMATICS/BTR670 

Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Källberg, M., Cox, A. J., Kruglyak, S., 

& Saunders, C. T. (2016). Manta: rapid detection of structural variants and indels for germline 

and cancer sequencing applications. Bioinformatics, 32(8), 1220–1222. 

https://doi.org/10.1093/BIOINFORMATICS/BTV710 

Collins, R. L., Brand, H., Karczewski, K. J., Zhao, X., Alföldi, J., Francioli, L. C., Khera, A. v., Lowther, C., 

Gauthier, L. D., Wang, H., Watts, N. A., Solomonson, M., O’Donnell-Luria, A., Baumann, A., 

Munshi, R., Walker, M., Whelan, C. W., Huang, Y., Brookings, T., … Talkowski, M. E. (2020). A 

structural variation reference for medical and population genetics. Nature 2020 581:7809, 

581(7809), 444–451. https://doi.org/10.1038/s41586-020-2287-8 

Dong, Z., Zhang, J., Hu, P., Chen, H., Xu, J., Tian, Q., Meng, L., Ye, Y., Wang, J., Zhang, M., Li, Y., Wang, 

H., Yu, S., Chen, F., Xie, J., Jiang, H., Wang, W., Choy, K. W., & Xu, Z. (2016). Low-pass whole-

genome sequencing in clinical cytogenetics: a validated approach. Genetics in Medicine, 18(9), 

940–948. https://doi.org/10.1038/gim.2015.199 

Duan, M., Chen, L., Ge, Q., Lu, N., Li, J., Pan, X., Qiao, Y., Tu, J., & Lu, Z. (2019). Evaluating 

heteroplasmic variations of the mitochondrial genome from whole genome sequencing data. 

Gene, 699, 145–154. https://doi.org/10.1016/j.gene.2019.03.016 

Duan, M., Tu, J., & Lu, Z. (2018). Recent advances in detecting mitochondrial DNA heteroplasmic 

variations. In Molecules (Vol. 23, Issue 2). MDPI AG. 

https://doi.org/10.3390/molecules23020323 

Geoffroy, V., Herenger, Y., Kress, A., Stoetzel, C., Piton, A., Dollfus, H., & Muller, J. (2018). AnnotSV: 

an integrated tool for structural variations annotation. Bioinformatics, 34(20), 3572–3574. 

https://doi.org/10.1093/BIOINFORMATICS/BTY304 

Ibañez, K., Polke, J., Hagelstrom, R. T., Dolzhenko, E., Pasko, D., Thomas, E. R. A., Daugherty, L. C., 

Kasperaviciute, D., Smith, K. R., Deans, Z. C., Hill, S., Fowler, T., Scott, R. H., Hardy, J., Chinnery, 

P. F., Houlden, H., Rendon, A., Caulfield, M. J., Eberle, M. A., … Zarowiecki, M. (2022). Whole 

genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a 

retrospective diagnostic accuracy and prospective clinical validation study. The Lancet 

Neurology, 21(3), 234–245. https://doi.org/10.1016/S1474-4422(21)00462-

2/ATTACHMENT/B961BC1C-0911-45C2-B327-EA0431A8E1DB/MMC1.PDF 

Laricchia, K. M., Lake, N. J., Watts, N. A., Shand, M., Haessly, A., Gauthier, L., Benjamin, D., Banks, E., 

Soto, J., Garimella, K., Emery, J., Rehm, H. L., MacArthur, D. G., Tiao, G., Lek, M., Mootha, V. K., 

& Calvo, S. E. (2022). Mitochondrial DNA variation across 56,434 individuals in gnomAD. 

Genome Research, 32(3), 569–582. https://doi.org/10.1101/GR.276013.121/-/DC1 

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 

Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., Shaffer, T., Wong, M., 

Bhattacharjee, A., Eichler, E. E., Bamshad, M., Nickerson, D. A., & Shendure, J. (2009). Targeted 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.20.22280155doi: medRxiv preprint 

https://doi.org/10.1093/BIOINFORMATICS/BTR670
https://doi.org/10.1093/BIOINFORMATICS/BTV710
https://doi.org/10.1038/s41586-020-2287-8
https://doi.org/10.1038/gim.2015.199
https://doi.org/10.1016/j.gene.2019.03.016
https://doi.org/10.3390/molecules23020323
https://doi.org/10.1093/BIOINFORMATICS/BTY304
https://doi.org/10.1016/S1474-4422(21)00462-2/ATTACHMENT/B961BC1C-0911-45C2-B327-EA0431A8E1DB/MMC1.PDF
https://doi.org/10.1016/S1474-4422(21)00462-2/ATTACHMENT/B961BC1C-0911-45C2-B327-EA0431A8E1DB/MMC1.PDF
https://doi.org/10.1101/GR.276013.121/-/DC1
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1101/2022.09.20.22280155
http://creativecommons.org/licenses/by/4.0/


capture and massively parallel sequencing of 12 human exomes. Nature, 461(7261), 272–276. 

https://doi.org/10.1038/nature08250 

Pfundt, R., del Rosario, M., Vissers, L. E. L. M., Kwint, M. P., Janssen, I. M., de Leeuw, N., Yntema, H. 

G., Nelen, M. R., Lugtenberg, D., Kamsteeg, E.-J., Wieskamp, N., Stegmann, A. P. A., Stevens, S. 

J. C., Rodenburg, R. J. T., Simons, A., Mensenkamp, A. R., Rinne, T., Gilissen, C., Scheffer, H., … 

Hehir-Kwa, J. Y. (2016). Detection of clinically relevant copy-number variants by exome 

sequencing in a large cohort of genetic disorders. Genetics in Medicine, August, 1–9. 

https://doi.org/10.1038/gim.2016.163 

Preste, R., Clima, R., & Attimonelli, M. (2019). Human mitochondrial variant annotation with 

HmtNote. BioRxiv, 600619. https://doi.org/10.1101/600619 

Puusepp, S., Reinson, K., Pajusalu, S., Murumets, Ü., Õiglane-Shlik, E., Rein, R., Talvik, I., Rodenburg, 

R. J., & Õunap, K. (2018). Effectiveness of whole exome sequencing in unsolved patients with a 

clinical suspicion of a mitochondrial disorder in Estonia. Molecular Genetics and Metabolism 

Reports, 15, 80–89. https://doi.org/10.1016/j.ymgmr.2018.03.004 

Rustagi, N., Zhou, A., Watkins, W. S., Gedvilaite, E., Wang, S., Ramesh, N., Muzny, D., Gibbs, R. A., 

Jorde, L. B., Yu, F., & Xing, J. (2017). Extremely low-coverage whole genome sequencing in 

South Asians captures population genomics information. BMC Genomics, 18(1), 396. 

https://doi.org/10.1186/s12864-017-3767-6 

Smolander, J., Khan, S., Singaravelu, K., Kauko, L., Lund, R. J., Laiho, A., & Elo, L. L. (2021). Evaluation 

of tools for identifying large copy number variations from ultra-low-coverage whole-genome 

sequencing data. BMC Genomics, 22(1), 1–15. https://doi.org/10.1186/S12864-021-07686-

Z/TABLES/2 

van der Auwera, G., O’Connor, B., & Safari, an O. M. Company. (2020). Using Docker, GATK, and WDL 

in Terra. Genomics in the Cloud, 300. https://www.oreilly.com/library/view/genomics-in-

the/9781491975183/ 

Wang, H., Dong, Z., Zhang, R., Chau, M. H. K., Yang, Z., Tsang, K. Y. C., Wong, H. K., Gui, B., Meng, Z., 

Xiao, K., Zhu, X., Wang, Y., Chen, S., Leung, T. Y., Cheung, S. W., Kwok, Y. K., Morton, C. C., Zhu, 

Y., & Choy, K. W. (2020). Low-pass genome sequencing versus chromosomal microarray 

analysis: implementation in prenatal diagnosis. Genetics in Medicine, 22(3), 500–510. 

https://doi.org/10.1038/S41436-019-0634-7 

Wright, C. F., FitzPatrick, D. R., & Firth, H. v. (2018). Paediatric genomics: Diagnosing rare disease in 

children. In Nature Reviews Genetics (Vol. 19, Issue 5, pp. 253–268). Nature Publishing Group. 

https://doi.org/10.1038/nrg.2017.116 

Zhou, B., Ho, S. S., Zhang, X., Pattni, R., Haraksingh, R. R., & Urban, A. E. (2018). Whole-genome 

sequencing analysis of CNV using low-coverage and paired-end strategies is efficient and 

outperforms array-based CNV analysis. Journal of Medical Genetics, 55(11), 735–743. 

https://doi.org/10.1136/jmedgenet-2018-105272 

Žilina, O., Teek, R., Tammur, P., Kuuse, K., Yakoreva, M., Vaidla, E., Mölter-Väär, T., Reimand, T., 

Kurg, A., & Õunap, K. (2014). Chromosomal microarray analysis as a first-tier clinical diagnostic 

test: Estonian experience. Molecular Genetics & Genomic Medicine, 2(2), 166–175. 

https://doi.org/10.1002/mgg3.57 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.20.22280155doi: medRxiv preprint 

https://doi.org/10.1038/nature08250
https://doi.org/10.1038/gim.2016.163
https://doi.org/10.1101/600619
https://doi.org/10.1016/j.ymgmr.2018.03.004
https://doi.org/10.1186/s12864-017-3767-6
https://doi.org/10.1186/S12864-021-07686-Z/TABLES/2
https://doi.org/10.1186/S12864-021-07686-Z/TABLES/2
https://www.oreilly.com/library/view/genomics-in-the/9781491975183/
https://www.oreilly.com/library/view/genomics-in-the/9781491975183/
https://doi.org/10.1038/S41436-019-0634-7
https://doi.org/10.1038/nrg.2017.116
https://doi.org/10.1136/jmedgenet-2018-105272
https://doi.org/10.1002/mgg3.57
https://doi.org/10.1101/2022.09.20.22280155
http://creativecommons.org/licenses/by/4.0/

