
Whole-Genome Promoter Profiling of Plasma Cell-Free DNA 

Exhibits Predictive Value for Preterm Birth 

 

Zhiwei Guo1,*, Ke Wang1,*, Xiang Huang5,6,*, Kun Li1, Guojun Ouyang9, Xu Yang1, 

Jiayu Tan8, Haihong Shi4, Liangping Luo3, Xincai Zhang10,11,12, Min Zhang1, Bowei 

Han1, Xiangming Zhai1, Yingsong Wu1,†, Fang Yang1,†, Xuexi Yang1,7,†, Jia Tang2,3,4,† 

 
1 Institute of Antibody Engineering, School of Laboratory Medical and Biotechnology, 

Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China 

2 NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial 

Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 

510600, China 

3 Department of Public Health and Preventive medicine，School of Medicine, Jinan 

University, Guangzhou, 510260, China 

4 Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, 

Jiangmen, Guangdong, 529000, China 

5 Laboratory of Molecular Diagnostics, Affiliated Foshan Maternity & Child 

Healthcare Hospital, 528000, Foshan, China 

6 The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 

510515, China 

7 Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern 

Medical University, Guangzhou, 510280, China 

8 Central ICU of Boai hospital of Zhongshan city affiliated to Southern Medical 

University, Zhongshan, 528402, China 

9 Guangzhou Darui Biotechnology Co, Ltd., Guangzhou, 510665, China 

10 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard 

University, Cambridge, Massachusetts 02138, USA 

11 School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.20.22280143doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.09.20.22280143


02139, USA 

12 Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA 

 

 

 

* These authors contribute to this work equally 

† Correspondence authors: 

Yingsong Wu, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou 

510515, China. Tel: (86) 20-6164-8550; E-Mail: wg@smu.edu.cn 

Fang Yang, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Ave, 

Guangzhou 510515, China. Tel: (86) 20-6278-2070; E-Mail: 964175870@qq.com 

Xuexi Yang, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 

510515, China. Tel: (86)-20-6278-9355; E-Mail: yxx1214@smu.edu.cn 

Jia Tang, Guangdong Provincial Fertility Hospital, No 17. Meidong Road, Guangzhou 

510600, China; Tel: (86) 20-6278-6524; E-Mail: tony2081129@163.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.20.22280143doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.20.22280143


 

Abstract 

Preterm birth (PTB) occurs in around 11% of all births worldwide, resulting in 

significant morbidity and mortality for both mothers and offspring. Identification of 

pregnancies at risk of preterm birth in early pregnancy may help improve intervention 

and reduce its incidence. However, there exist few methods for PTB prediction 

developed with large sample size, high throughput screening and validation in 

independent cohorts. Here, we established a large-scale, multi-center, and 

case-control study that included 2,590 pregnancies (2,072 full-term and 518 preterm 

pregnancies) from three independent hospitals to develop a preterm birth classifier. 

We implemented whole-genome sequencing on their plasma cfDNA and then their 

promoter profiling (read depth spanning from −1 KB to +1 KB around the 

transcriptional start site) was analyzed. Using three machine learning models and two 

feature selection algorithms, classifiers for predicting preterm delivery were 

developed. Among them, a classifier based on the support vector machine model and 

backward algorithm, named PTerm (Promoter profiling classifier for preterm 

prediction), exhibited the largest AUC value of 0.878 (0.852–0.904) following 

LOOCV cross-validation. More importantly, PTerm exhibited good performance in 

three independent validation cohorts and achieved an overall AUC of 0.849 

(0.831–0.866). Taken together, PTerm could be based on current noninvasive prenatal 

test (NIPT) data without changing its procedure or adding detection cost, which can 

be easily adapted for preclinical tests. 
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Introduction 

Preterm birth (PTB) is a common complication of pregnancy, which was observed in 

around 11.1% of newborns worldwide 1. In addition, PTB is the main determinant of 

infant morbidity and mortality, which is responsible for approximately 35% of 

pregnancy-related deaths and can also lead to adverse maternal and fetal outcomes 

with increased long-term risks of complications, such as motor, cognitive and 

behavioral disorders 2. Importantly, the development of interventions to prevent 

premature delivery requires early identification of pregnant women at risk before 

preterm birth occurs. Since the maternal circulatory system carries both maternal and 

fetal information, multivariate screening methods based on maternal blood omics data, 

such as metabolite and cell-free RNA (cfRNA) 3, 4, 5, have recently been proposed. 

However, to date there is still a lack of reliable biomarkers for pregnancy 

complications, making the identification of PTB biomarkers a critical priority. 

Plasma cell-free DNA (cfDNA) has been widely used in many clinical 

applications demonstrating its stability and applicability in clinics 6, 7. In pregnancy, 

the proportion of cell-free fetal DNA (cffDNA) in maternal cfDNA is an important 

feature of cfDNA. Pregnancies who have an elevation of cffDNA are at increased 

risks for preterm birth delivery 8. But changes in cffDNA levels have also been 

observed in many other pregnancy complications, such as preeclampsia 9. Taken 

together, these studies suggest that cfDNA has significant potential as a non-invasive 

biomarker for diverse diseases. However, it is necessary to identify novel 

disease-specific cfDNA characteristics before applying them to the prediction of 

preterm birth in early pregnancy. 

During pregnancy, plasma cfDNA is primarily derived from placental 

trophoblasts and hematopoietic cells and is released following their apoptosis during 

the enzymatic processing of the chromatin. The DNA bound to the nucleosome is 

retained, while the exposed DNA between nucleosomes is digested 10, 11. Thus, the 

resulting cfDNA comprises a nucleosome footprint carrying information about its 

tissues of origin 10, 12. For example, analysis of maternal plasma cfDNA and 
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expression profiles of both the placenta and whole blood revealed that the promoter 

regions of active genes exhibited depleted read coverage in the cfDNA implying that 

the nucleosome was less tightly bound within the promoter regions along with higher 

gene expression level 13. In addition, preterm birth is a common complication 

resulting from placental dysfunction and changes in the maternal immune system 8. 

Therefore, we hypothesized that the distribution patterns of plasma cfDNA fragments 

may carry information regarding the source tissues of origin, particularly placental 

trophoblasts and maternal hematopoietic cells and that global profiling of cfDNA 

fragments in promoter regions can be applied to identify predictive biomarkers for 

preterm birth (Figure 1). 

In this study, we carried out a large-scale, retrospective study to develop 

classifiers for predicting preterm birth using whole-genome sequencing of plasma 

cfDNA from 2,590 pregnancies across three independent hospitals. Specific promoter 

profiling was found for preterm and full-term pregnancies. We applied three 

predictive models and two feature selection algorithms to develop classifiers that 

could predict the occurrence of preterm birth. Among these classifiers, a classifier that 

relied on the SVM model and backward algorithm, named PTerm (Promoter profiling 

classifier for preterm prediction), performed well as a predictor of PTB and exhibited 

an overall AUC value of 0.849 (0.831–0.866) among all cohorts. Our findings suggest 

that cfDNA coverage across certain promoter regions detected at early gestational age 

may be helpful in the development of simple and precise methods for the prediction of 

placenta-origin pregnancy complications. 

 
 
Results 

cfDNA carries information about its origin in pregnant women 

Previous studies have reported that cfDNA carries information regarding its tissues of 

origin 10, 11, 12, 13, making it an ideal choice for evaluations around preterm birth. Thus, 

we designed these experiments to characterize the cfDNA profiles of pregnancies 

resulting in preterm and full-term births. To this end, we collected whole-genome 

sequencing data from 20 preterm and 20 full-term pregnancies (Supplemental Table 
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S4). We also collected the RNA expression profiles of both placenta and whole blood 

from preterm pregnancies (GSE73685).  

We first compared the read coverage at the pTSS between the 500 highest and 

500 lowest expressed genes in the placenta, and found that the 500 most highly 

expressed genes showed reduced depth at the pTSS regions compared with the 500 

least expressed genes (Figure 2a,b; P-value < 2.2e-16, Wilcoxon rank-sum test). In 

addition, the housekeeping genes with highly expressed levels exhibited lower read 

depth, whereas the unexpressed genes with lowly expressed levels exhibited higher 

read depth (Figure 2c,d; P-value < 2.2e-16, Wilcoxon rank-sum test). Similar patterns 

were also observed in maternal whole blood data (Supplemental Figure 1). Therefore, 

we confirmed that the coverages of plasma cfDNA at the pTSS regions were closely 

correlated with the expression profiles of its original tissues, suggesting that promoter 

profiling could reflect the expression status of its original tissues. Next, we focused on 

the cfDNA profiles of placenta-specific genes, which were closely related to placental 

functions. The results revealed that placenta-specific genes were characterized by 

reduced coverages at the pTSS regions in preterm birth pregnancies when compared 

to full-term pregnancies (Figure 1e; P-value < 2.2e-16, Wilcoxon rank-sum test), 

implying that there may be broad differences in the promoter profiling of these two 

patient groups. 

 

Promoter profiling of cfDNA reveals PTB-associated patterns 

We then investigated whether cfDNA promoter profiling of preterm and full-term 

pregnancies demonstrated any deviations in the pattern. By comparing their cfDNA 

promoter profiling, we identified 277 genes with differential coverages at pTSS 

(Figure 3a; |Log2 fold change| > 1 and FDR < 0.05). These genes included 146 genes 

with increased coverage and 131 genes with decreased coverage (Supplemental Table 

S5). Next, we used PCA on these genes and found that the samples from the same 

group had similar promoter profiling (Figure 3b). More importantly, the application of 

unsupervised clustering analysis produced the heatmap that revealed distinct 

differences in promoter coverage for preterm and full-term pregnancies (Figure 3c). 
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GO and KEGG enrichment analyses were then used to annotate the functions of 

the genes with differential coverages at pTSS. The results of GO enrichment showed 

that the GO terms associated with cell junction organization, response to mechanic 

stimulus, apoptosis, and development were closely related to embryonic development 

and premature delivery (Figure 3d). Taking the apoptotic signal pathway as an 

example, previous studies have shown that the apoptosis of fetal membranes could 

plausibly contribute to the risk of PTB 14. In addition, the results of KEGG enrichment 

analysis showed that a large proportion of the enriched pathways were closely 

associated with embryonic development and preterm birth (Figure 3e). As one 

example, premature activation of oxytocin secretion often results in preterm labor and 

oxytocin receptor antagonists could inhibit preterm birth 15. These results may suggest 

that the genes with differential coverage at pTSS may be a clinical indicator for PTB. 

Finally, we tried to find the potential key genes associated with PTB using a gene 

correlation network. The analysis of gene functional connections allowed us to 

evaluate the degree of gene influence and importance (Figure 3f), which may help us 

identify the essential genes in the occurrence and progression of PTB. Our evaluations 

identified the top 10 hub genes according to their degree values. These genes included 

ERBB2, ESR1, NFKBIA, HSPA5, PRKCB, RAF1, NFE2LE, SNAI1, GSN, and ATF3 

(Figure 3h), which were then revealed to be associated with preterm birth, embryonic 

development and pregnancy (Supplemental Table S6) throughout the literature. Take 

ESR1 as an example, its gene polymorphism is associated with premature delivery, 

with its DNA methylation patterns also showing distinct differences between preterm 

and full-term pregnancies 16. Furthermore, ESR1 could regulate the WNT4 to exert 

their effects on preterm birth 17. In particular, the expression of ATF3 is significantly 

decreased in preterm placentas and ATF3 is the regulator of soluble fms-like tyrosine 

kinase 1 (sFlt-1) and soluble Endoglin (sEng), which are important makers of 

premature delivery and preeclampsia 18. 

 

Promoter profiling of plasma cfDNA can predict preterm birth 

To further validate the potential of cfDNA promoter profiling in predicting preterm 
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birth, we established a large-scale, multi-center, and case-control study, which 

included 2,590 pregnant women, including 518 preterm and 2,072 full-term 

pregnancies, from three independent hospitals (Figure 4). Our training stage focused 

on the 277 gene transcripts with differential coverage at pTSS identified in the 

discovery stage. We then used three predictive models (SVM, LDA and LR) and two 

feature selection algorithms (backward and lasso algorithms) to develop the optimal 

predictive classifier. We found that the performance of the optimal classifiers for each 

model based on the backward feature selection algorithm was higher than those of 

classifiers with the lasso algorithm (Figure 5a–d and Supplemental Table 8; all 

P-value < 0.05, DeLong's test). More importantly, we found that a classifier that 

relied on the SVM model and backward algorithm, named PTerm, performed well as 

the best predictor of PTB (accuracy = 87.3%, sensitivity = 88.5%, and specificity = 

87.0%). PTerm exhibited the largest AUC value after LOOCV cross-validation (0.878 

[0.852–0.904]) and its AUC value was higher than those of the optimal classifiers 

produced using the LDA and LR models (Figure 5a,b; all P-values < 0.05, DeLong's 

test). 

We then evaluated the performance of PTerm across three validation cohorts, 

including one internal and two external validation cohorts. Consistent with the results 

of the training cohort, PTerm exhibited solid predictive capacity in all three cohorts. 

The AUC for the internal validation1 cohort was 0.845 (0.799–0.891), and the AUCs 

for external validation2 and validation3 cohorts were 0.833 (0.802–0.863) and 0.812 

(0.761–0.863), respectively (Figure 5e,f). In addition, PTerm produced an AUC of 

0.849 (0.831–0.866) across all cohorts when discriminating between preterm and 

full-term pregnancies with a sensitivity of 84.4% and specificity of 85.3% (Figure 

5e,f). 

 

PTerm combined with clinical features 

Previous studies have reported that certain clinical features could be applied to predict 

preterm birth, such as fetal fraction (FF) and BMI before pregnancy (BMI). In our 

data, we found that the AUCs of BMI (0.527 [0.503–0.551]) and FF (0.526 
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[0.502–0.550]) were significantly lower than that of PTerm (Figure 5g,h; all P-value < 

0.05, DeLong's test). To attempt to improve the performance of our classifier, we 

further combined BMI and FF with PTerm. The AUCs of the combined classifiers 

(PTerm+BMI, PTerm+FF and PTerm+BMI+FF) were 0.842 (0.824–0.860), 0.837 

(0.819–0.855) and 0.834 (0.815–0.852), which were also significantly lower than that 

of PTerm (Figure 5g,h; all P-value < 0.05, DeLong's test). 

 
Discussion 

In this study, we described the application of the promoter profiling of plasma cfDNA 

to predict premature delivery. We found that promoter profiling of cfDNA could 

reflect the expression status of its tissues of origins and broad changes in promoter 

profiling were observed between preterm and full-term pregnancies. Given this, we 

hypothesized that the differential read-depth patterns of cfDNA at promoters should 

supply sufficient information regarding placenta-origin diseases way before any 

clinical symptoms would appear (Figure 1). Thus, we developed a series of predictive 

classifiers using data from large-scale multi-center cohorts (n=2,590), which included 

pregnancies across three independent centers (Figure 4). These classifiers were 

developed using three different machine learning models and two different feature 

selection methods to ensure optimal performance. This development produced a 

robust prediction classifier, PTerm, which was shown to be able to predict PTB with 

an overall AUC of 0.849 (0.831–0.866). These findings highlight the potential values 

of promoter profiling of cfDNA as a non-invasive assessment for predicting preterm 

delivery at early gestational age. 

Recent studies have made pioneering attempts to use maternal blood omics data 

(cfDNA, cfRNA and metabolite) to predict future complications in pregnancy, such as 

preterm birth and preeclampsia 3, 4, 5, 13, 19, 20. A biomarker study requires a large 

sample size, high-throughput screening, and independent cohort validation. So far, 

few studies have recruited more than 2,500 samples with high-throughput screening, 

and performed validation in multiple independent cohorts. In this study, 2,590 

whole-genome sequencing of plasma cfDNA derived from 518 preterm and 2,072 
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full-term pregnancies were collected from three independent hospitals to train and 

validate the classifiers for predicting preterm birth. In addition, useful biomarkers for 

disease prediction need to be stable, non-invasive, and low-cost. cfDNA meets these 

needs and the detection of cfDNA (noninvasive prenatal test, NIPT) has been widely 

used for fetal trisomy detection worldwide. In 2018, 10 million NIPT tests were 

performed in more than 60 countries 21. Since PTerm could be based on current NIPT 

data without changing its procedure or adding detection cost, it can be easily adapted 

for preclinical tests. However, previous studies have revealed that the risk factors of 

premature delivery among different ethnic backgrounds tend to vary. More samples 

from other ethnicities are needed to test whether PTerm is suitable for other ethnic 

backgrounds.  

There exist 83 genes in the PTerm classifier and these genes were closely 

associated with development, pregnancy and premature delivery (Supplemental Table 

S7). Firstly, these 83 genes were selected from the genes with differential coverages, 

of which GO and KEGG enrichment results showed that a substantial portion of GO 

terms and pathways were closely related to preterm birth, including apoptotic and 

oxytocin signaling pathways (Figure 3d,e). In addition, 4 of the 10 hub genes (ERBB2, 

NFKBIA, RAF1 and GSN) were retained in the classifiers and their changes in 

expression levels or DNA polymorphism were closely related to preterm birth 

(Supplemental Table S6). Take NFKBIA as an example, the degradation of 

IκBα could activate NF-κB resulting in production of proinflammatory IL-6 and 

inflammation is closely associated with preterm birth 22. More importantly, research 

revealed that a substantial proportion of the genes in the PTerm were closely 

associated with development, pregnancy and premature delivery (Supplemental Table 

S9). These results may indicate that cfDNA promoter profiling can not only be used 

to predict preterm birth, but also help to determine potential therapeutic targets. 

In summary, our data suggest that promoter-profiling based classifier (PTerm) 

could provide valuable PTB predictions in early pregnancy. Our method is also easily 

applicable to routine NIPT data and does not require any additional tests or detection 

costs making it feasible in clinical practice. Given this, we believe that our method 
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provides a critical stepping stone toward the development of a non-invasive 

diagnostic for the early prediction of pregnancy complications. 

 
 
Methods 

Participant characteristics 

In total, we collected 2,590 plasma samples from preterm and full-term pregnancies. 

These plasma samples were collected at 12–28 weeks of gestation from three 

independent hospitals across China, including Jiangmen maternal & child healthcare 

hospital (JM), Foshan maternal & child healthcare hospital (FS), and Nanfang 

hospital of southern medical university (NFY). These samples were then 

retrospectively assigned to a birth outcome group based on their subsequent delivery 

time with PTB defined as birth < 37 weeks of gestation. More details about the 

definition and selection of preterm birth and full-term controls are shown in the 

Supplemental materials. Of the 2,590 participants, 518 women experienced a preterm 

delivery while the remaining 2,072 women delivered at full-term (Table 1). The 

participants from JM were collected between Jan 2017 and Dec 2020. The 

participants enrolled at FS, were recruited between Dec 2018 and Dec 2020. The 

participants from NFY enrolled between May 2016 and May 2020.  

All participants were singleton pregnancies and pregnancies were excluded: (1) 

chromosomal or congenital abnormalities; (2) infection; (3) pregnancies with uterine 

fibroids or uterine malformation; (4) history of heparin, aspirin, or other drug use. 

Gestational age was determined according to the last menstrual period. The 

institutional ethics committees of all hospitals approved this retrospective analysis, 

and the requirement ethics committees abandoned the requirement of informed 

consent. 

 

DNA-Seq processing and promoter profiling analysis 

The procedure of sample collection, cfDNA isolation and DNA sequencing are in the 

Supplemental Materials. We estimated the fetal fraction using the proportion of all 

sequencing reads from the Y chromosome or the seqFF method. Gene information 
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was obtained from the RefSeq of the University of California Santa Cruz (UCSC) 

Genome Browser Database 23. For each transcript, the promoter region, spanning from 

−1 KB to +1 KB around the transcriptional start site, was defined as pTSS regions. 

The pTSS regions found to overlap with the Duke blacklist region were removed 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/). 

After sequencing, the raw reads were aligned to the human reference genome, hg19, 

using bwa-mem (ver. 0.7.4). The polymerase chain reaction (PCR) duplicates were 

removed using the rmdup function of SAMtools (ver. 1.2). The GC-bias correction 

was implemented using deeptools (ver. 3.5.0) with its default settings. The read 

coverage for each pTSS region was extracted using bedtools (ver. 2.17.0). We then 

normalized the read coverage data using the following formula. 

 

Gene expression profile analysis and gene information acquisition 

Placenta and whole blood expression profiles for preterm pregnancies (GSE73685) 

were downloaded from the Gene Expression Omnibus (GEO) database 24 and then 

normalized using GEOquery (ver. 3.3.1). The 500 most highly expressed genes and 

least expressed genes in the placenta and whole blood were then identified by 

analyzing their expression profiles (Supplemental Table S1). Placenta- and 

blood-specific genes were annotated using PaGenBase (Supplemental Table S2). 

Housekeeping and unexpressed genes 11 were obtained from the supplemental 

materials of previous studies (Supplemental Table S3). 

 

Genes with significant differential promoter coverages 

At the discovery stage, we selected 20 PTB cases and 20 full-term pregnancies 

(Supplemental Table S4) and then completed whole-genome sequencing of their 

cfDNA. After data processing and normalization, pTSS coverages between preterm 

and full-term samples were compared to calculate the P-value using Wilcoxon 

rank-sum test. The raw P-values were adjusted to the false discovery rate (FDR) using 

the Benjamini-Hochberg procedure. Gene transcripts with log2 |fold change| ≥ 1 and 

FDR ≤ 0.05 were considered to have significant differential coverages in the pTSS 
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regions (Supplemental Table S5). 

 

Sample clustering and gene function annotation 

The principal component analysis (PCA) was performed using the rgl package (ver. 

0.1). Hierarchical clustering of the coverage data with the complete linkage clustering 

algorithms was implemented using the pheatmap package (ver. 1.0.2). The enrichment 

analysis of Gene Ontology (GO) and KEGG was completed using Metascape (ver. 

20220101) 25 and clusterProfiler (ver. 3.18.1) 26 with their default settings. To 

construct the gene correlation network, the relationship of gene function was obtained 

from the string database (ver. 11.5) 27 and then the network was drawn with 

Cytoscape (ver. 3.8). To find the hub genes in the network, the gene degree of the 

network was analyzed using Cytohubba (ver. 0.1) 28. 

 

Predictive classifier construction and validation 

To develop classifiers for predicting preterm birth (Figure 4), we implemented 

whole-genome sequencing of cfDNA on 2,590 pregnant women, including 518 

preterm and 2,072 full-term pregnancies from three independent hospitals, including 

JM, FS, and NFY. The samples collected from JM (n=1,310) were randomly divided 

into training (n=915, training cohort [n=915]: 183 cases and 732 controls) and internal 

validation cohorts (validation1 cohort [n=395]: 79 cases and 316 controls) at a ratio of 

7:3, while the samples collected from FS (validation2 cohort [n=930]: 186 cases and 

744 controls) and NFY (validation3 cohort [n=350]: 70 cases and 280 controls) were 

taken as external validation cohorts (Figure 4). The clinical characteristics of the 

preterm and full-term pregnancies were well matched among four cohorts (Table 1). 

Since many studies have reported that discrete data may improve the predictive 

performance 29, before the classifiers were built, the read coverage of each pTSS 

identified in the discovery cohort was discretized according to the optimal cut-off 

point with the largest AUC value in the training cohort (Supplemental Table S7). The 

read coverage for each promoter in each subject was then set to one when it was 

larger than the corresponding optimal cut-off; Otherwise, it was set to zero. Then the 
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sigFeature package (ver. 1.8.0) was used to evaluate the importance of the pTSS 

regions. 

We then evaluated three predictive models, including support vector machine 

(SVM), logistic regression (LR), and linear discriminant analysis (LDA) as the base 

for developing a novel predictive classifier for PTB. The SVM model was constructed 

using the linear kernel in the e1071 package (ver. 1.7.9) with the default settings. 

While the glm and lda functions from the MASS package (ver. 7.3.53) were used to 

develop LR and LDA classifiers. We then combined each of these predictive models 

with either backward or lasso algorithms for feature selection. For lasso feature 

selection, the best lamda was identified using 10-fold cross validation with the 

cv.glmnet of glmnet package (ver. 4.1) and then the features with non-zero 

coefficients were selected. Finally, classifiers for preterm birth prediction were 

developed. The robustness of trained classifiers was assessed using the leave-one-out 

cross validation method (LOOCV). Briefly, each subject in the training cohort was 

withheld in turn, and the remaining subjects were submitted to the training classifier. 

The trained classifier was used to predict the class of the withheld subject. This 

process continued until all subjects in the training cohort have been judged. 

According to the AUC after cross-validation (CV), the classifier with the largest AUC, 

named PTerm, in the training cohort was selected. 

To further assess the performance of PTerm, the whole-genome sequencing data 

from one internal validation (JM, validation1 cohort) and two external validation 

cohorts (FS, validation2 cohort; NFY, validation3 cohort), was implemented. The 

performance of PTerm was further evaluated using the data from these internal and 

external cohorts. 

 

Statistical analyses 

Wilcoxon rank-sum test was used to compare the continuous variables between the 

preterm and full-term groups, while Pearson’s χ2 and Fisher’s exact tests were used 

for comparisons of categorical variables. The Wilcoxon rank-sum test was used to 

identify genes with differential read coverages within the pTSS regions and P-values 
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of < 0.05 in two-sided tests were considered to be statistically significant. ROC curves 

and the significant differences in their AUC, sensitivity and specificity were plotted 

and calculated using the pROC package in R. 
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Figure 1. Schematic overview describing the prediction of preterm pregnancies using 

promoter profiling of plasma cfDNA. During pregnancy, the plasma cell-free DNA (cfDNA) is 

mainly derived from placental trophoblasts and maternal hematopoietic cells, which is released by 

their apoptotic cells. Exposed DNA not bound to a nucleosome is digested, whereas 

nucleosome-bound DNA escapes digestion and enters into the maternal circulation. By 

implementing whole-genome sequencing, we found that the read coverages at pTSS regions 

(−1KB to +1KB around the transcription start site [TSS]) could reflect the gene expression 

patterns of its tissues of origins. Since premature delivery is closely associated with dysfunction 

and changes in the placenta and maternal immune system, we proposed that cfDNA coverages at 

pTSS regions could be used to predict the occurrence of preterm birth at early gestational age. We 

tested this hypothesis using high-throughput whole-genome sequencing of plasma cfDNA from 

2,590 preterm and full-term pregnancies across three independent hospitals. By comparing their 

promoter profiling, we found that the promoter profiling was different between preterm and 

full-term pregnancies. Then we used the genes with differential promoter coverage and three 

different machine learning models to develop predictive classifiers for PTB. To show greater 

differences, all nucleosomes in the promoter regions of highly expressed genes are depleted. The 

nucleosome-depleted region is usually found within the nucleosome upstream of the TSS. 
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Figure 2. cfDNA profiles of the promoter regions reflect nucleosome positioning in pregnant 

women. (a) Average expression of the 500 most- (Top500, red) and least-expressed genes 

(Bottom500, blue) in the placenta of preterm birth pregnancies. (b) Read depth of whole-genome 

sequencing across pTSS regions (-1 KB to 1 KB around the TSS) from the 500 most- (Top500, red 

line) and least-expressed (Bottom500, blue line) genes. The read depth of the Top500 genes was 

lower than that of the Bottom500 genes (P-value < 2.2e-16, Wilcoxon rank-sum test). (c) Average 

expression levels of the housekeeping (red) and unexpressed (blue) genes in the placenta. (d) Read 

depth of whole-genome sequencing at the pTSS region (−1KB to +1KB around TSS) of the 

housekeeping genes (red line) was lower than that of unexpressed genes (blue line) in the placenta 

(P-value < 2.2e-16, Wilcoxon rank-sum test). (e) Sequencing read depth of placenta-specific genes 

was shown to be more depleted in the preterm (yellow line) pregnancies than full-term (green line) 

pregnancies (P-value < 2.2e-16, Wilcoxon rank-sum test). Placenta-specific, unexpressed, top500, 

and bottom500 genes are shown in Supplemental Table S1-S3. The pTSS region (−1KB to +1KB 

around the TSS) is denoted by the grey dashed lines. PTB = preterm birth, TSS = transcriptional 

start site, cfDNA = cell-free DNA. 
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Figure 3. Differences in pTSS profiles of preterm and full-term pregnancies. (a) Volcano 

plots describing the gene transcripts with differential read coverages within the pTSS regions 

between 20 preterm birth (PTB) and 20 full-term pregnant women. A total of 277 transcripts with 

differential read coverages at pTSS regions were identified (|log2 fold change| > 1 and false 

discovery rate [FDR] < 0.05). The red, blue and grey dots indicate transcripts with increased, 

decreased, and non-differential coverage, respectively. The X- and Y-axes represent the log fold 

change and P-value calculated by the Wilcoxon rank-sum test, respectively. The raw P-value was 

adjusted to the false discovery rate (FDR) using the Benjamini-Hochberg procedure. (b) Principal 

Component Analysis (PCA) of these genes. (c) Heat map describing the z-scores of the genes with 
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differential read coverages at pTSS as generated by the pheatmap package (ver. 1.0.2) when 

applied using the complete-linkage clustering algorithm. (d) Gene Ontology enrichment of 

transcripts with differential coverage between PTB and preterm birth groups using Metascape (ver. 

20220101). (e) KEGG pathway enrichment of transcripts with differential coverage between PTB 

and term groups using clusterProfiler (ver. 3.18.1). (f) Gene correlation network for transcripts 

with differential coverage between PTB and term groups, with gene correlation evaluated using 

the String database (ver. 11.5) and network visualization by Cytoscape (ver. 3.8). Here, we merely 

showed the major correlation network. (g) Correlation network for the hub genes, with each hub’s 

degree of significance determined using cytohubba (ver. 0.1). (h) Degrees and heatmap of hub 

genes interconnection within the correlation network. 

 

 

 

 

 

Figure 4. Pipeline for preterm birth classifier construction. In this study, 2,590 plasma cfDNA 

samples (518 preterm birth and 2,072 full-term pregnancies) were collected from three 

independent hospitals, including Jiangmen maternal & child healthcare hospital (JM)a, Foshan 

maternal & child healthcare hospital (FS)b, and Nanfang Hospital of Southern Medical University 

(NFY)c. These samples were collected at 12-28 weeks of gestation. According to their subsequent 

delivery time, the pregnant women were categorized as preterm or full-term groups. We then used 

the whole-genome sequencing data to develop classifiers for predicting PTB via three-step 

processes, including discovery, training, and validation. In the discovery stage, we identified 277 

transcripts with differential coverage at pTSS regions (-1 KB to +1 KB around TSS) between 

these two groups. In the training stage, we applied non-linear support vector machine (SVM), 

linear discriminant analysis (LDA), and logistic regression (LR) models augmented with 
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backward and lasso feature selection algorithms to develop a set of predictive classifiers. The 

performance of these classifiers was assessed using leave-one-out cross-validation method 

(LOOCV). The predictive classifier, denoted by PTerm, achieved the largest AUC was identified 

and its performance was further validated in the three validation cohorts, including one internal 

cohort (validation1, JM: n = 395) and two external cohorts (validation2 derived from FS: n = 930; 

Validation3 derived from NFY: n = 350). Additional details about participant definition and 

classifier construction are given in the method section and supplemental materials. PTB = preterm 

birth. GA = gestational age. 

 

 

 

 

 
Figure 5. Performance of the classifiers in predicting preterm birth. (a) Receiver operating 

characteristic (ROC) curves for each of the predictive classifiers using backward feature selection 

algorithm. (b) Performance of each of the predictive classifiers using backward algorithm. (c) 

ROC curves for the predictive classifiers using the lasso feature selection algorithm. (d) 

Performance of the classifiers with lasso feature selection algorithm. (e) ROC curves of the 

optimal classifier, PTerm. (f) Performance of PTerm across each cohort. (g) Performance of 

different combination. (h) AUCs of different combination.  
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Table 1. Clinical characteristics of pregnancies in four cohorts 

 Training 

cohort 

(n=915) 

 Validation 

cohort1 

(n=395) 

 Validation 

cohort2  

(n=930) 

 Validation 

cohort3 

(n=350) 

P-value 

Full-term pregnancies 

n 732  316  744  280  

Gestational age at 

sampling (weeks) 
15.1+3.2  15.3+3.3  15.5+3.5  15.5+3.7 0.353 

Gestational age of 

birth (weeks) 
39.7+0.8  39.7+0.8  39.6+0.8  39.6+0.8 0.264 

Maternal age (years) 29.8+4.7  30.3+4.6  30.5+4.1  30.5+4.6 0.056 

BMI (kg/m2) 20.8+2.8  20.6+2.9  20.6+1.1  20.6+2.7 0.479 

Birth length (cm) 49.1+1.5  49.1+1.4  49.2+0.6  49.1+1.4 0.491 

Birth weight (kg) 3.2+0.3  3.2+0.3  3.2+0.1  3.2+0.3 0.100 

Previous Birth, No. (%)  0.099 

0 312 (42.6%)  147 (46.5%)  329 (44.2%)  128 (45.7%)  

1 392 (53.6%)  161 (50.9%)  370 (49.7%)  143 (51.1%)  

>2 28 (3.8%)  8 (2.6%)  45 (6.1%)  9 (3.2%)  

Preterm Pregnancies 

n 183  79  186  70  

Gestational age at 

sampling (weeks) 
15.1+3.2  15.3+3.3  15.5+3.5  15.5+3.5 0.803 

Gestational age of 

birth (weeks) 
35.3+1.8  35.2+1.7  34.7+2.6  34.7+2.6 0.066 

Maternal age (years) 30.7+5.1  30.1+4.8  30.5+4.8  30.5+4.8 0.797 

BMI (kg/m2) 21.2+3.1  21.1+3.0  20.6+1.2  20.6+1.2 0.619 

Birth length (cm) 46+2.7  45.9+3.0  46.1+1.6  46.1+1.6 0.345 

Birth weight (kg) 2.46+0.51  2.42+0.47  2.47+0.37  2.47+0.37 0.768 

Previous Birth, No. (%) 0.069 

0 82 (44.8%)  32 (40.5%)  98 (52.7%)  29 (41.4%)  

1 94 (51.4%)  43 (54.4%)  73 (39.2%)  35 (50.0%)  

>2 7 (3.2%)  4 (5.1%)  17 (9.1%)  6 (8.6%)  

Data are mean ± standard deviation. BMI = pre-pregnancy body mass index. Wilcoxon rank-sum 
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test was used for the comparison of continuous variables. Pearson χ2 test and Fisher exact test (*) 

were used for the comparison of categorical variables. 
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