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Abstract 

The SEIR model is one of modified models of SIR, especially taken into account of exposed 

people. SEIR equations can be solved numerically, but it is hard to obtain analytically. Here, 

we propose some approximate solutions of SEIR equations, one of which is related with the 

logistic formula in Biology. As the second aim, the SEIR model is applied to the 7th-wave of 

COVID-19 in Japan. The basic reproduction number (α) in the SEIR model is estimated for 

the Omicron wave. We make use of data of the removed number 𝑅(𝑡) rather than that of the 

infective number, because the latter seems to be ambiguous. This analysis gives α=10 with 

γ=1 and σ=0.5. 
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1. Introduction 

The SIR model [1] in the theory of infection is powerful to analyze an epidemic about how 

it spreads and how it ends [3-16]. In this article we consider the SEIR model [2] which is one 

of modified models of SIR, especially taken into account of exposed people. SEIR equations 

can be solved numerically, but it is hard to obtain analytically. In order to analyze infections, 

analytic solutions are important. Here, therefore, we propose some approximate solutions of 

SEIR equations, one of which is related with the logistic formula in Biology. 

As our second aim, the SEIR model is applied to the 7th-wave of Omicron-COVID-19 in 
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Japan. The basic reproduction number (α) in the SEIR model is estimated for the 7th - wave. 

We make use of data of the removed number 𝑅(𝑡) rather than that of the infective number, 

because the latter seems to be ambiguous. According to this analysis we have α=10 with γ

=1 and σ=0.5, where γ and σ are the removed and the exposed ratios, respectively. 

 

2. A logistic formula from the SEIR model 

The sequential SEIR equations are given by        

 

(1)                                             𝑑𝑆(𝑡)/𝑑𝑡 = −𝛽𝑆(𝑡)𝐼(𝑡)                        

(2)                                             𝑑𝐸(𝑡)/𝑑𝑡 = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝜎𝐸(𝑡)   

(3)                                             𝑑𝐼(𝑡)/𝑑𝑡 = 𝜎𝐸(𝑡) − 𝛾𝐼(𝑡)   

(4)                    𝑑𝑅(𝑡)/𝑑𝑡 = 𝛾𝐼(𝑡)    

 

where 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) are numbers for susceptible, exposed, infectious and  

recovered, respectively, α = 𝛽/𝛾 the basic reproduction number, 𝜎 the exposed ratio and 

𝛾 the removed ratio. Four numbers are normalized as 

 

(5)                    S(t) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1 

 

The SEIR equations can be solved numerically, when parameters 𝛽, 𝛾 𝑎𝑛𝑑 𝜎 are given. In 

Fig.1 we give four curves for 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) with 𝛽 = 10, 𝛾 = 1 𝑎𝑛𝑑 𝜎 = 0.5. 

 

 
Fig.1. Four curves for 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) with 𝛽 = 10, 𝛾 = 1 𝑎𝑛𝑑 𝜎 = 0.5. 
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  Here we propose some approximate solutions of SEIR equations, one of which is related 

with a logistic formula in Biology. From Eqs. (1) and (4) we get 𝑑𝑆/𝑑𝑅 = −𝛼𝑆, which is 

integrated to be 

 

(6)                       𝑆(𝑡) = exp [−𝛼𝑅(𝑡)] 

 

Hence we have from Eq. (5) 

 

(7)                                          𝐸(𝑡) + 𝐼(𝑡) = 1 − 𝑅(𝑡) − exp [−𝛼𝑅(𝑡)] 

 

Now, from Eq. (3) 𝐸(𝑡) can be expressed as 

 

(8)                   𝐸(𝑡) =
1

𝜎
𝑑𝐼(𝑡)/𝑑𝑡 +

𝛾

𝜎
𝐼(𝑡) 

 

Substituting 𝐼(𝑡) = 𝛾−1𝑑𝑅(𝑡)/𝑑𝑡 of Eq. (4) into Eq. (8) above, we get 

 

(9)                 𝐸(𝑡) =
1

𝛾𝜎
𝑑2𝑅(𝑡)/𝑑𝑡2+

1

𝜎
𝑑𝑅(𝑡)/𝑑𝑡 

 

so that Eq. (7) reduces to the second order differential equation of 𝑅(𝑡). 

 

(10) 𝑑2𝑅(𝑡)/𝑑𝑡2+(𝛾+𝜎)𝑑𝑅(𝑡)/𝑑𝑡+𝛾𝜎[𝑅(𝑡) + exp(−𝛼𝑅(𝑡)) − 1] = 0 (Exact) 

 

  In order to find approximate solution of the exact equation (10), we consider three cases: 

Case 1: |𝑑2𝑅(𝑡)/𝑑𝑡2 |≪ |𝑑𝑅(𝑡)/𝑑𝑡 |, 𝑅(𝑡) 

In this case the first term in Eq. (10) can be neglected so that we have 

 

(11)  𝑑𝑅(𝑡)/𝑑𝑡+
𝛾𝜎

1+𝜎
[𝑅(𝑡) + exp(−𝛼𝑅(𝑡)) − 1] = 0 (Case 1) 

 

When 𝜎 ≫ 𝛾, we find that this equation reduces to the SIR equation: 

 

(12)  𝑑𝑅(𝑡)/𝑑𝑡+𝛾[𝑅(𝑡) + exp(−𝛼𝑅(𝑡)) − 1] = 0 (SIR) 

 

Case 2: When 𝛼𝑅(𝑡) ≪ 1 , we can use the approximate formula exp(−𝛼𝑅) ≅ 1 − 𝛼𝑅 +

𝛼2𝑅2/2, then Eq. (10) reduces to 
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(13) 𝑑2𝑅(𝑡)/𝑑𝑡2+(𝛾+𝜎)
𝑑𝑅(𝑡)

𝑑𝑡
− 𝛾𝜎(𝛼 − 1)𝑅(𝑡) [1 −

𝛼2

2(𝛼−1)
𝑅(𝑡)] = 0 (Case 2) 

 

Case 3: A combination of Case 1 and Case 2 gives 

 

(14)  𝑑𝑅(𝑡)/𝑑𝑡 −
𝛾𝜎

1+𝜎
(𝛼 − 1)𝑅(𝑡) [1 −

𝛼2

2(𝛼−1)
𝑅(𝑡)] = 0 (Case 3 : Logistic equation) 

 

 

 
Fig. 2  Curves of approximate solutions for Cases 1, 2 and 3, against the Exact equation. 

solution. The Case 3 is for the logistic equation. 

 

  In Fig. 2, we draw curves of approximate solutions for Cases 1, 2 and 3, against the Exact 

equation (10). Here we find that the contribution of the second order differential part, 

𝑑2𝑅(𝑡)/𝑑𝑡2, into any case is very small. The last equation (14), Case 3, is nothing but the 

logistic equation. 

 

 

3. The basic reproduction number of COVID-19 in Japan  
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Fig. 3.  The red line shows a curve of 𝑅(𝑡) with 𝛼 = 10, 𝛾 = 1 𝑎𝑛𝑑 𝜎 = 0.5. Blue bar charts 

stand for the 7th-wave data of 𝑅(𝑡). 

 

Table 1. The number above corresponds with the date below for each. 

 

  Let us estimate the basic reproduction number in the SEIR model for the 7th-wave of 

COVI-19 in Japan. We make use of data [17] of the removed number 𝑅(𝑡) rather than that 

of the infective number, because the latter seems to be ambiguous. In Fig. 3, the red curve of 

𝑅(𝑡) for the 7th-wave is drawn with 𝛼 = 10, 𝛾 = 1 𝑎𝑛𝑑 𝜎 = 0.5 in the SEIR model.  Blue 

bar charts stand for the 7th-wave data of 𝑅(𝑡). The number on the horizon axis corresponds 

with the date for each in Table 1.  

  In Fig. 3, we see that a coincidence between both curves is fairly well. So, we conclude that 

the basic reproduction number in the SEIR model is 𝛼 = 10  𝑤𝑖𝑡ℎ  𝛾 = 1 𝑎𝑛𝑑 𝜎 = 0.5 for the 

7th-wave of COVID-19 in Japan. 

 

4. Conclusion 

   We have found some approximate solutions of SEIR equations. First, when 𝜎 ≫ 𝛾 in Case 

1, the SEIR equation reduces to the SIR equation (12).  Approximate solutions are given by 

Case1, Case 2 and Case 3, and their curves are drawn in Fig. 2, where Case 3 is known to be 

the logistic formula in Biology. Here we find that the contribution of the second order 

differential part, 𝑑2𝑅(𝑡)/𝑑𝑡2, into any case is very small.  
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The logistic equation (14) can be rewritten as 

(1)     𝑑𝑅(𝑡)/𝑑𝑡=𝐴𝑅(𝑡)[1 − 𝑅(𝑡)/𝐾],      𝐴 =
𝛾𝜎(𝛼−1)

𝛾+𝜎
,   𝐾 =

2(𝛼−1)

𝛼2  

Then its explicit solution is easily obtained by 

(2)     𝑅(𝑡) =
𝐾

1+exp (−𝑧)
 ,  𝑧 = 𝐴(𝑡 − 𝑇), 𝑇 being a constant 

Hence, we have useful formulas 

(3)     𝐼(𝑡) =
1

𝛾
𝑑𝑅(𝑡)/𝑑𝑡 =

𝐴𝐾/(2𝛾)

1+cosh 𝑧
 

from Eq. (4) in Sec. 2, and 

(4)     𝐸(𝑡) =
1

𝛾𝜎
𝑑2𝑅(𝑡)/𝑑𝑡2+

1

𝜎
𝑑𝑅(𝑡)/𝑑𝑡 =

𝐴𝐾/(2𝜎)

1+cosh 𝑧
 

from Eq. (9) in Sec. 2, by neglecting the second order differential part, 𝑑2𝑅(𝑡)/𝑑𝑡2.  

The second aim is the estimation of 𝛼, the basic reproduction number in the SEIR model 

for the 7th-wave of Omicron COVID-19 in Japan. We have made use of data of the removed 

number 𝑅(𝑡)  rather than that of the infective number, because the latter seems to be 

ambiguous. We have obtained 𝛼 = 10  𝑤𝑖𝑡ℎ  𝛾 = 1 𝑎𝑛𝑑 𝜎 = 0.5. 
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