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Abstract 

Late-onset GM2 gangliosidosis (LOGG) is an ultra-rare neurological disease with motor, 

cognitive and psychiatric manifestations. It is caused by mutations in the HEXA or HEXB genes. 

Although cerebellar structural and metabolic impairments have been established, global brain 

functional impairments in this disease remain unknown. In this first functional MRI (fMRI) report 

on LOGG (N=14), we took an exploratory, multi-pronged approach by assessing impairments in 

several resting-state fMRI signal characteristics: fMRI signal strength, neurovascular coupling, 

static and time-varying functional connectivity, and network topology. Contrary to the 

predominance of cerebellar aberrations in prior non-functional studies, we found more widespread 

cortical aberrations (p<0.05, FDR-corrected) mainly in cognitive control networks but also in the 

default mode and somatomotor networks. There was reduced fMRI signal strength, enhanced 

neurovascular coupling, pathological hyper-connectivity, and altered temporal variability of 

connectivity in the LOGG cohort. We also observed an imbalance between functional segregation 

and integration as seen in other psychiatric/neurological disorders, with heightened segregation 

and suppressed integration (i.e., inefficient brain-wide communication). Some of these imaging 

markers were significantly associated with clinical measures, as well as with HEXA and HEXB 

gene expression. These aberrations might contribute to psychiatric symptoms (psychosis, mood 

disturbances), cognitive impairments (memory, attention, executive function), and oculomotor 

disturbances commonly seen in LOGG. Future LOGG imaging studies should probe brain function 

in addition to structure/metabolism while looking for mechanistic insights beyond the cerebellum. 

 

 

Keywords: functional magnetic resonance imaging; Tay-Sachs and Sandhoff disease; functional 

connectivity; complex network; fALFF; hemodynamic response function 
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1. Introduction 

Functional neuroimaging has provided insight into the functional neuroarchitecture of 

neurological diseases such as Alzheimer’s disease [1], Parkinson’s disease [2] and multiple 

sclerosis [3]. Blood oxygenation level dependent (BOLD) functional MRI (fMRI) measures the 

hemodynamic response to energy demands from local neural activity with high spatial resolution 

and specificity [4]. The last two decades have leveraged this technology to study various aspects 

of brain activity and connectivity while at rest [5]. Resting-state fMRI, provides us with various 

dimensions of information, such as co-activation between pairs of brain regions (functional 

connectivity) [5], topology of whole-brain connectivity networks (complex network models) [6], 

strength of low-frequency BOLD fluctuations [7], and neurovascular coupling [8]. 

Despite the rich battery of information available through fMRI, these methods have not been 

leveraged to probe the mechanistic understanding of late-onset GM2-gangliosidosis (LOGG). 

LOGG is an ultra-rare form of GM2-gangliosidosis [9] with onset in late teens or adulthood. (It 

should be noted that LOGG’s clinical course differs considerably from classic infantile-onset [10].) 

While GM2-related disorders carry a prevalence rate of 1 in 3500, LOGG is 1 in ~300,000. LOGG 

occurs mainly, although not exclusively, in persons of Ashkenazi Jewish ancestry (about 10 

million global population and 6 million in the US) [11]. LOGG encompasses two closely related 

but distinguishable diseases, late-onset Tay-Sachs disease (LOTS) and late-onset Sandhoff disease 

(LOSD) [12]. Neurological dysfunction in LOGG is caused by lysosomal storage dysfunction 

related to mutations in the α- and β-subunits of β-hexosaminidase (HEXA or HEXB) [13], and has 

no treatment or cure. LOGG is mainly characterized by limb weakness and cerebellar ataxia, but 

cognitive impairments and psychiatric symptoms, including psychosis and mood disorder, have 

also been reported [14]. Severe psychiatric presentations have been recorded in 40% of LOGG 

patients [13]. These patients, whose severe symptoms often mimic different psychiatric disorders 

[15], respond poorly to typical psychiatric drugs [15], which could even worsen/accelerate their 

neurological symptoms [16]. Cognitive impairment has been mainly reported in LOTS, where it 

has been observed in up to 44% of cases [14], particularly involving memory and executive 

functioning [17]. Barritt et al. [18] reported deficits in processing speed, attention, and memory, 

while another study revealed severe cognitive impairment in 7 of 10 LOGG patients [19]. Another 

study found that among 63 reported cases, 30–50% exhibited psychosis, >25% exhibited mood 
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disorder, and >20% showed cognitive impairment [20], concluding that neuropsychiatric issues 

are under-recognized in this metabolic disease. Oculomotor disturbances, likely involving 

cerebellar motor and dorsal attention domains, have also been recently detailed by Stephen et al. 

[12]. In summary, LOGG is an ultra-rare degenerative neurological disease not only associated 

with motor impairments, but psychiatric and cognitive impairments as well [10]. 

Despite these complex characteristics, comprehensive population-level neuroimaging studies 

in LOGG have been scant. Fukumizu et al. [21] found low cerebral white matter density in 4 

LOGG patients using computed tomography, while Jamrozik et al. [22] reported glucose 

hypometabolism in bilateral temporal and occipital lobes using positron emission tomography. 

One study using magnetic resonance spectroscopy reported lower N-acetylaspartate (NAA) in 

LOGG patients in the thalamus and occipital white matter [23]. Our recent study on the same 

cohort found lower NAA and higher myo-inositol in the cerebellum [24]. Grosso et al.’s MRI 

study [25] involving early, juvenile and late-onset forms of Tay-Sachs disease revealed basal 

ganglia and thalamic atrophy in early Tay-Sachs, cortical atrophy in juvenile Tay-Sachs, and 

cerebellar atrophy in LOTS, indicating that the neurobiology of LOTS differs from other forms of 

Tay-Sachs disease. Cerebellar atrophy has been the most consistent finding of the few LOGG 

imaging studies conducted thus far [26] [27] [22] [28] [29] [30] (including in our data [24]), but 

atrophy was not found to be associated with clinical variables (symptom severity, disease duration, 

etc.), hinting that deeper mechanistic insights beyond cerebellar atrophy are needed to better 

understand this disease. Other infrequent imaging findings in LOGG have included cerebral 

atrophy [31], thalamic hypodensities [31], mild midbrain and brainstem atrophy [32], and white 

matter lesions [33]. 

While the above findings represent some advancements in imaging the structural and metabolic 

impairments of LOGG, to the best of our knowledge, there have been no functional neuroimaging 

studies to date (either fMRI or other modalities) that have investigated LOGG or other forms of 

GM2 gangliosidosis. Thus, we targeted this gap herein using whole-brain fMRI data obtained from 

LOGG patients and matched healthy controls. Given the lack of LOGG fMRI studies and the 

challenge of developing robust hypotheses from other modalities owing to insufficient and 

inconclusive information, we did not develop specific regional hypotheses but undertook 

exploratory analyses with various fMRI analysis techniques (low-frequency fMRI signal strength, 

neurovascular coupling, static and time-varying functional connectivity, and network topology). 
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As the first fMRI study in this disease cluster, this multi-pronged approached helped us obtain the 

landscape of functional impairments in LOGG, which will aid in developing hypothesis-driven 

studies in the future. We also probed the association of significant imaging measures with clinical 

variables and gene expression to understand the factors influencing functional impairments in 

LOGG. 

 

2. Methods 

2.1. Participants 

Informed consent was obtained from all participants and the study was approved by the Mass 

General Brigham (formerly Partners HealthCare) Institutional Review Board (IRB). Seven adults 

with a genetically confirmed LOGG diagnosis were recruited either through the Leukodystrophy 

Clinic at the Massachusetts General Hospital or the National Tay-Sachs and Allied Diseases 

Association (NTSAD). The diagnosis was defined through near-absence (or absence) of HEX 

enzymatic activity (in serum or white blood cells), or mutation analysis of HEXA and HEXB genes. 

Across patients, five were diagnosed with the LOTS subtype of LOGG and two with the LOSD 

subtype. These subtypes have established differences [24], but we could not probe them within our 

cohort because of the sample sizes. Since LOGG is an ultra-rare disease, our sample size was 

understandably small but still respectable considering its prevalence of 1 in ~300,000 in the general 

population. All LOGG patients were examined by a board-certified neurologist (C.D.S., ataxia 

specialist). Seven age- and sex-matched healthy controls were carefully screened and recruited. 

Inclusion criteria were age ≥18 years, able and willing to undergo MRI, and able and willing to 

provide informed consent. 

The following clinical/behavioral measures were assessed [12]: Clinical ataxia rating scales: 

Brief Ataxia Rating Scale (BARS) [34], Scale for the Assessment and Rating of Ataxia (SARA) 

[35], Friedreich Ataxia Rating Scale (FARS) [36], and LOTS severity scale [37]; Cerebellar 

Neuropsychiatric Rating Scale (CNRS), a care-giver reported measure of psychiatric symptoms 

[38]; Cerebellar Cognitive Affective Syndrome Scale (CCAS), a specially designed cognitive 

rating scale to assess cognitive dysfunction seen in cerebellar disease [39]; sleep scales: Pittsburgh 

Sleep Quality Index (PSQI) [40] and Epworth sleepiness scale [41]; and a scale measuring 
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dysphagia, the Eating Assessment Tool (EAT10) [42]. As previously described, SARA, FARS and 

BARS scores were adjusted for clinical weakness to allow better assessment of ataxia severity 

[12]. 

 

2.2. MRI data acquisition 

BOLD fMRI data were acquired in a 3T Siemens Trio MRI scanner (Siemens Healthcare, 

Erlangen, Germany). The scan parameters were as follows: 2D echo planar imaging (EPI) 

sequence, TR = 2000 ms, TE = 30 ms, flip angle = 90o, voxel size = 2.5×2.5×4 mm3, field of view 

= 200×200 mm, scan duration = 10 min, 36 slices, with whole-brain coverage. High-resolution 

T1-weighted anatomical images were acquired with the following parameters: 3D magnetization-

prepared rapid acquisition of gradient echo (MPRAGE) sequence: TR = 2530 ms, TE = 1.64 ms, 

flip angle = 7o, TI = 1200 ms, voxel size = 1×1×1 mm3, field of view = 256×256 mm. 

 

2.3. fMRI data pre-processing 

All analyses were performed in MATLAB R2019b, with pre-processing done using CONN 

v18b [43], based on SPM12 [44]. The following steps were performed: realignment, co-

registration to MNI space, outlier detection using ARtifact detection Tools (ART) [45] (including 

identifying high-motion volumes with motion over half the voxel size), and denoising. Denoising 

was performed by regressing out the following nuisance covariates: top 10 principal components 

of white matter and CSF signals, 12 head motion parameters (3 translation, 3 rotation and their 

derivatives), and outlier volumes identified using ART. Thereafter, linear detrending and high-

pass filtering (0.01Hz) were performed. The largest permitted head motion was half the voxel size 

(1.25mm); no participants were excluded. Aggregate head motion (mean framewise displacement 

[46]) was not statistically different between the groups (p=0.29). Spatial smoothing was not 

performed because we did not conduct any voxel-level analyses, and fMRI time series were 

averaged anyway within regions of interest (ROIs) (explained later). Bandpass filtering was 

performed at a later stage in the analysis pipeline (see section 2.7) because some of the analyses 

required unfiltered data. Visual inspection was performed at every stage of processing to ensure 

that accurate and reliable outputs were generated. Of particular importance, co-registrations and 

segmentations of the cerebellum in LOGG were visually inspected to ensure correctness. 
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The fMRI signal is a convolution of the latent neural activity and the hemodynamic response 

function (HRF), where the HRF represents mechanisms occurring between neuronal firing and the 

corresponding BOLD response. The HRF is found to vary across the brain and across individuals 

[47]. This HRF variability confounds fMRI connectivity estimates [48] [49] [50]. Additionally, 

group differences in connectivity between healthy and disease groups are confounded by HRF 

variability [8] [51]. Hence, deconvolution was carried out on fMRI data [52] to estimate the HRF 

and obtain deconvolved (HRF variability minimized) fMRI data, like in several recent studies [53] 

[54] [55] [56] [57]. Deconvolved fMRI data was used in all further analyses. 

Given the high dimensionality of whole-brain 3D+time fMRI data, a functional brain 

parcellation was used for dimensionality reduction with 272 homogeneous ROIs, comprising of 

242 cortical ROIs defined by the Power atlas [5], 16 subcortical ROIs defined by the Harvard-

Oxford atlas [58], and 14 cerebellar ROIs defined by the Buckner atlas [59]. Mean time series was 

computed for each ROI by averaging data from all gray matter voxels within the ROI (50% gray 

matter mask), which were then used in further processing. 

 

2.4. Analysis framework 

The fMRI literature describes various techniques to infer clinically relevant information from 

fMRI data; we employed some of the most commonly used ones herein. Contrary to many studies 

that focus on just one technique, we used multiple techniques as this is the first fMRI study in this 

disease cluster. We first gathered observations using each technique and later interpreted the 

findings as a convergence of multiple observations, to aid hypothesis-driven studies in the future. 

We briefly introduce each of these approaches as well as their rationale. 

(i) Low-frequency BOLD fMRI signal strength: BOLD activation has been commonplace with 

task fMRI, and its analogue with resting-state fMRI is called the fractional amplitude of low 

frequency fluctuations (fALFF) [7]. FALFF quantifies the magnitude of low frequency BOLD 

fluctuations (0.01–0.10 Hz) relative to the entire frequency range, and is found to be impaired in 

neurological disorders such as Parkinson’s disease [60] and multiple sclerosis [61]. This represents 

average neuronal activity and is a reasonably popular approach (PubMed: 1000+ papers until 2021, 

82% of them since 2015). We assessed fALFF impairments in LOGG, consistent with studies in 

other neurological disorders [60] [61]. 
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(ii) Neurovascular coupling: While fALFF measures BOLD signal strength, it does not 

untangle neuronal signal and neurovascular coupling (HRF) that form the BOLD signal. Typically, 

HRF is considered a confound in fMRI analysis since neural activity, not neurovascular coupling, 

is of interest in most studies. As described earlier, HRF variability confounds connectivity. 

However, the study of neurovascular coupling is of interest to the community. For instance, 

elevated strength and reduced latency of HRF was observed in posttraumatic stress disorder [8], 

while reduced strength and latency were observed in autism spectrum disorder [51] and obsessive-

compulsive disorder [62]. There have been no HRF studies on neurological disorders, although 

underlying neurochemical and extracellular mechanisms that modulate HRF are impacted by the 

degenerative nature of such diseases. Here, we assessed HRF impairments in LOGG, with the 

purpose of deriving unique and complementary information that augments observations from other 

analyses performed in this study. Interestingly, genes have been found to influence the HRF by 

24–51% [63], further suggesting its relevance for study in LOGG (a genetic disease). 

(iii) Static and dynamic functional connectivity: While fALFF and HRF quantify regional 

properties, they do not measure how the different brain regions communicate with each other. 

Functional connectivity (FC) quantifies co-activation between pairs of brain regions, and is 

sensitive to psychiatric [64] [56] and neurological [1] [2] [3] [60] disease pathology. Static FC 

(SFC) measures the strength of connectivity between regions and has been extensively utilized 

(PubMed: 11,000+ papers until 2021, 72% of them since 2015). We studied whole-brain SFC 

impairments in LOGG. 

SFC provides one value per connection for the entire scan duration spanning several minutes, 

which does not capture temporal variations in connectivity within time scales of seconds to 

minutes. For this reason, although SFC remains widely used, the study of dynamic FC (DFC) [65] 

has gained considerable traction, especially in the past 5 years (PubMed: 1500+ papers until 2021, 

78% since 2015). DFC provides fundamentally different information from SFC [66] [65]. DFC is 

sensitive to pathology [67] [68], is related to real world cognitive behaviors [69], and may be more 

useful as a biomarker than SFC [70] [71]. Reduced temporal variance of DFC (vDFC) is associated 

with psychiatric illnesses as well as lower behavioral performance in healthy people [56] [70] [72], 

that is, inability to dynamically adjust (thoughts and behaviors) to changing body and 

environmental conditions. We sought to identify whole-brain vDFC reduction in LOGG. 
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(iv) Network topology of the SFC network: fALFF and HRF characterize regional properties, 

and at the next level of complexity, FC characterizes communication between pairs of regions in 

isolation. However, they do not describe the nature of the ensemble of thousands of connections. 

Complex network modeling using graph analysis methods can quantify network topology [6]. This 

approach uses the pattern in which connections coexist to make inferences about network structure. 

Graph measures are sensitive to psychiatric and neurological disease pathology [1] [73] [74]. Much 

like HRF and DFC, this is an emerging technique (PubMed: 1800+ papers until 2021, 74% since 

2015). Along with fALFF, HRF, SFC and DFC, we sought to identify impairments in graph 

measures in LOGG. Given this description of our analysis framework, we will next describe the 

implementation of each technique. 

 

2.5. Measuring impairments in low frequency BOLD signal strength using fALFF 

FALFF was computed by applying Fourier transform to the ROI time series and calculating a 

ratio in the frequency domain. Specifically, fALFF is the ratio of low-frequency fMRI signal 

power (0.01–0.1 Hz) to the total power in entire frequency range (0–0.25 Hz for our data with 

TR=2s) [75]. Since neuronal signal correlates of fMRI reside mostly in this low frequency band 

[5], and signal outside this band (<0.01Hz and >0.1Hz) is generally considered noise, this ratio 

measures BOLD ‘activation’ at rest. FALFF was computed for each of the 272 ROIs, and group 

comparisons were performed (p<0.05, FDR corrected). All statistical tests in the entire study were 

controlled for head motion (mean framewise displacement [46]); this will not be repeatedly 

mentioned elsewhere. 

 

2.6. Measuring neurovascular coupling impairments using the HRF 

HRF shape can be characterized by three parameters: response height (RH), time-to-peak 

(TTP), and full-width-at-half-maximum (FWHM) [47] (refer to Fig.1 in [48]). RH is the HRF 

amplitude, TTP represents the latency of BOLD response, and FWHM is related to BOLD 

response duration. Given that TTP has a typical range of 2.5–6.5s and FWHM has a typical range 

of 1–2s [47], our data with TR=2s does not have satisfactory temporal resolution. Thus, only RH 

was examined here. The deconvolution step (described before) provided us the HRF parameters 

in the 3D MNI space. Mean RH values were extracted from the 272-ROI atlas mentioned earlier, 
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providing us 272 RH values per subject. A group comparison was then performed (p<0.05, FDR 

corrected) to measure RH impairments in LOGG. 

 

2.7. Static and dynamic functional connectivity modeling 

Bandpass filtering (0.01–0.1Hz) was performed on ROI time series data prior to connectivity 

modeling, using a 15th order finite impulse response filter. SFC was computed using Pearson’s 

product-moment correlation coefficient, giving us a 272×272 connectivity matrix per subject. 

Group differences in SFC are reported (p<0.05, FDR corrected).  

To compute DFC, a sliding window Pearson’s correlation approach was employed (see [76] 

for a thorough review of DFC methods). To avoid arbitrarily choosing the window length, a 

variable window length approach was used [70] to determine the window length adaptively based 

on the augmented Dickey-Fuller (ADF) test (quantifies time series stationarity). This technique 

searched for an optimal minimum window length (between 40s and 60s [76]) that preserves 

stationarity. Although Hutchison et al. [76] recommend choosing the window length within the 

range of 30−60s, 40s was chosen to ensure at least 20 data points (because TR=2s) to be able to 

reliably estimate a correlation [77]. Then, to quantify variability of connectivity over time, 

temporal variance of the DFC time series (vDFC) was computed to obtain a 272×272 vDFC matrix 

per subject. This approach has been popularized by several recent studies [56] [78] [70] [79]. 

Whole-brain group differences in vDFC were assessed (p<0.05, FDR corrected).  

 

2.8. Graph analysis using static functional connectivity networks 

To measure aberrations in brain network topology that cannot be ascertained using bivariate 

FC alone, complex network modeling was performed using graph measures. Specifically, we 

studied the pathological shift in balance between functional segregation and integration in LOGG. 

Graph measures were computed using the 272×272 SFC network in each subject. Each SFC value 

(across subjects) was statistically compared against null (FC=0), and all non-significant 

connections (p>0.05) were forced to 0. Although we refer the readers to Rubinov and Sporns [6] 

for a detailed theoretical and mathematical rendering of these concepts, we briefly explain the 
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measures here for the benefit of the readers. Segregation (one value per ROI) was measured 

independently using the following three graph measures. 

(i) Clustering coefficient – fraction of each ROI’s neighboring connections that are neighbors 

of each other (measures dense-connectedness; higher value implies higher functional 

segregation or elevated local processing of functionally specialized subnetworks). 

(ii) Local efficiency – average of inverse shortest path lengths (i.e., reachability) between the 

given ROI and all other regions (higher value implies that other brain regions find it easier 

to communicate with the given ROI, i.e., higher segregation). 

(iii) Node strength – average connectivity value of all the connections associated with the given 

ROI (higher value implies overall higher connectivity between the ROI and rest of the 

brain). 

 

Functional integration (one value per connection) was measured independently using the 

following two measures. 

(iv) Shortest path length – length of the functional communication channel between pairs of 

ROIs (higher length implies that it is more difficult for the two regions to communicate 

with each other, i.e., poorer functional integration). 

(v) Edge betweenness – number of all shortest paths in the whole network that contain the 

given connection (higher value implies that the given connection is important for the rest 

of the brain connectome, i.e., higher integration). It is restricted to integer values. 

 

Network topological properties quantified by these measures are fundamentally different from 

bivariate SFC, and this study aimed to employ these complementary approaches to develop a 

multi-dimensional understanding of LOGG pathology. Group differences in each of these graph 

measures are reported (p<0.05, FDR corrected). 

 

2.9. Associations between fMRI measures and non-imaging data (gene expression, clinical 

variables) 

The Allen human brain atlas of gene expression [80] has been mapped to [81] the Desikan-

Killiany (DK) whole-brain parcellation (FreeSurfer) with 62 regions [82], enabling the exploration 
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of associations between imaging measures and gene expression. Traditionally, gene expression is 

derived from blood samples in the same individual and correlated with imaging values; however, 

in our analysis the Allen brain gene expression atlas provided us the spatial distribution of gene 

expressions across the brain in a normative healthy sample (taking years to develop [80]), which 

was correlated with the spatial distribution of imaging measures. Given that LOGG is a genetic 

disorder [12], we probed the associations between the DK parcellation gene expression map and 

the maps of regional fMRI measures in the DK parcellation space (fALFF, HRF RH, and 

segregation measures). As stated before, LOGG is known to be caused by single gene mutations 

[13], with LOTS due to mutations in HEXA and LOSD due to mutations in HEXB. 

We first computed mean imaging values among all voxels within each DK parcellation ROI, 

giving us one value for each DK-ROI in each subject. We then computed fALFF, HRF RH, and 

segregation graph measures for each ROI, giving us a spatial distribution of these imaging 

measures across the brain. These maps were then averaged across subjects to obtain one spatial 

map for LOTS and another map for LOSD (separately for each measure). Finally, by vectorizing 

the 3D maps into 1D vectors and correlating them, we examined the association (p<0.05, FDR 

corrected) between imaging maps and gene expression maps (HEXA in LOTS and HEXB in 

LOSD), revealing the variance of HEX genetic information in our imaging findings. Such an 

approach has been adopted by imaging studies recently [83] [84]. We also assessed the associations 

between sixteen clinical/behavioral measures (mentioned earlier) and significant fMRI 

observations (significant fALFF, HRF, connectivity, and graph measures) (p<0.05, FDR 

corrected). 
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3. Results 

Table 1 provides participant demographics and clinical scores (thoroughly presented in an 

earlier study on the same cohort [12]). Age was not significantly different between groups (p = 

0.95, Z = −0.06, Wilcoxon rank-sum test). 

 

Table 1. Demographics and clinical variables. Other than age and sex, all remaining measures 

pertain to the LOGG group alone. 

Variable mean ± SD Range 

Disease demographics  

Age (LOGG) (years) 42.9 ± 7.4 22 ⎼ 62 

Sex (LOGG) 4 M, 3 F - 

Age (control) (years) 42.7 ± 7.2 23 ⎼ 62 

Sex (control) 4 M, 3 F  - 

Age at disease onset 15 ± 3.6 8 ⎼ 26 

Disease duration (y) 27.9 ± 4.5 12 ⎼ 39 

Clinical rating scales 

BARS 5.4 ± 2.3 1.5 ⎼ 15 

SARA 10.4 ± 1.9 4.5 ⎼ 16.5 

FARS 33.1 ± 6.5 18 ⎼ 55.5 

LOGG severity score  7.1 ± 1.5 4 ⎼ 13 

Cognitive/psychiatric scales 

CCAS 98.9 ± 5.9 76 ⎼ 114 

CNRS (total) 24.9 ± 6.1 6 ⎼ 43 

Attentional control a 7.7 ± 1.5 2 ⎼ 11 

Emotional control a 5.4 ± 1.2 2 ⎼ 9 

Social skillset a 6 ± 2.6 2 ⎼ 16 

Autism spectrum a 2.1 ± 1.4 0 ⎼ 8 

Psychosis spectrum a 3.7 ± 1.6 0 ⎼ 10 

Sleep scales 

PSQI 7.9 ± 3.2 2 ⎼ 20 
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ESS 9.7 ± 3.1 2 ⎼ 21 

Other scales 

EAT10 9 ± 4.3 0 ⎼ 22 
a These are subscales of CNRS. 
LOGG = late-onset GM2 gangliosidosis; CNRS = cerebellar neuropsychiatric rating scale; CCAS = cerebellar 
cognitive affective syndrome scale; FARS = Friedreich ataxia rating scale; BARS = brief ataxia rating scale; 
SARA = Scale for the Assessment and Rating of Ataxia; EAT10 = eating assessment tool; PSQI = Pittsburgh 
sleep quality index; ESS = Epworth Sleepiness Scale. 

 

 

3.1. BOLD signal strength (fALFF) and neurovascular coupling (HRF) results 

Overall hypo-activity was observed in LOGG as fALFF was lower in LOGG vs. controls in 

somatosensory and frontoparietal regions (somatomotor, frontoparietal and default mode networks 

[DMN]). On the other hand, HRF RH was higher in LOGG in the middle temporal (DMN) region 

(Figure 1, Figure 4, Table 2). 

 

 
Figure 1. fALFF (red) and HRF response height (RH) (blue) results. fALFF was reduced and RH 
was elevated in LOGG, implying reduced BOLD signal strength and elevated neurovascular 
coupling strength in the respective regions. In the figure, both region names and corresponding 
network assignments are shown, with the network mentioned within parentheses. This convention 
also applies to Figures 2 and 3. The visualizations in Figures 1, 2 and 3 were generated using 
BrainNet Viewer [85]. Inf = inferior; sup = superior. 
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Table 2. fALFF and HRF results (whole-brain LOGG vs. control). FALFF was reduced in LOGG 

in all three regions. HRF response height was elevated in LOGG in the one region. Inf = inferior; 

sup = superior; mid = middle. 

  Network Region / node MNI centroid p-value T statistic a Effect size 

   fALFF: LOGG vs. control 

1 Somatomotor Postcentral L (-54, -23, 43) 0.0007 −4.41 2.34 

2 Default mode Frontal Sup R (22, 39, 39) 0.0003 −4.88 2.26 

3 Frontoparietal task control Parietal Inf L (-28, -58, 48) 0.0049 −3.38 1.99 

   HRF response height: LOGG vs. control 

1 Default mode Temporal Mid R (65, -31, -9) 0.0096 3.03 1.59 
a Positive T statistic: Higher in LOGG compared to controls; negative T statistic: lower in LOGG. 

 

3.2. Static functional connectivity (SFC) results 

Overall hyper-connectivity was observed in LOGG with all four identified connections 

(Figure 2, Figure 4, Table 3). With an uncorrected threshold of p<0.05, 62.9% of all SFC values 

were higher in LOGG; with p<0.001 uncorrected, 73% were higher in LOGG, corroborating the 

pattern observed with corrected statistics. The four connections were mainly associated with 

cognitive control networks (attention, task control, salience), primarily in prefrontal and lateral 

parietal regions. Half the connections were within the attention networks. 
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Table 3. Static functional connectivity results (whole-brain LOGG vs. control). LOGG group 

exhibited hyperconnectivity; all four connections, mainly associated with attention and task 

control networks, were elevated in the disease. Inf = inferior; sup = superior; junc = junction. 

  Network connectivity Connection MNI centroids p-value T stat a Effect size 

1 Somatomotor ↔ 
Frontoparietal task control 

Precentral L ↔  
Frontal Inf L 

(-16, -46, 73) ↔  
(-41, 6, 33) 9.5 × 10-5 5.54 3.06 

2 Salience ↔  
Dorsal attention 

Cingulum Mid R 
↔ Parietal Sup R 

(5, 23, 37) ↔  
(10, -62, 61) 6.9 × 10-5 5.73 3.17 

3 Ventral attention ↔  
Dorsal attention 

Temporo-parietal 
Junc. R ↔ 

Parietal Sup R 

(54, -43, 22) ↔  
(22, -65, 48) 9.7 × 10-5 5.53 3.05 

4 Dorsal attention ↔  
Dorsal attention 

Frontal Mid R ↔ 
Parietal Sup L 

(22, -65, 48) ↔  
(-32, -1, 54) 1.1 × 10-4 5.45 3.02 

a Positive T statistic: Higher connectivity in LOGG compared to controls; negative T statistic: lower in LOGG. 
 

 

3.3. Dynamic functional connectivity (vDFC) results 

Four connections were identified with impaired vDFC in LOGG (Figure 2, Figure 4, Table 

4) associated with cognitive control (attention, task control, salience), DMN and somatomotor 

networks, primarily in supplementary motor and lateral prefrontal regions. Contrary to our 

expectation of finding lower variability of connectivity, two connections exhibited lower vDFC 

while two others showed higher vDFC in LOGG. However, with an uncorrected threshold of 

p<0.05, 61% of all vDFC values were lower in LOGG; with p<0.001 uncorrected, 67.7% were 

lower in LOGG. This implied that although only half of the identified significant connections had 

lower vDFC in LOGG, a general pattern of lower vDFC was noticeable by examining the numbers 

with uncorrected stats, corroborating previous vDFC studies [56]. Because of the specific 

involvement of the cerebellum in LOGG pathology [24], SFC and vDFC impairments only within 

the cerebellum were additionally assessed as a tertiary analysis (see Supplemental Information 

section S1). 
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Table 4. Dynamic functional connectivity results (whole-brain LOGG vs. control). LOGG group 

exhibited both reduced and elevated variability of connectivity. Three of four connections involved 

the supplementary motor area, and two connections involved the middle frontal gyrus. Inf = 

inferior; mid = middle; suppl = supplementary. 

  Network connectivity Connection MNI centroids p-value T stat a Effect size 

1 
Frontoparietal task 
control ↔ Dorsal 

attention 

Parietal Inf L ↔  
Frontal Mid R 

(-28, -58, 48) ↔  
(29, -5, 54) 1.3 × 10-5 −6.78 3.64 

2 Somatomotor ↔  
Salience 

Postcentral L ↔  
Suppl. Motor Area L 

(-21, -31, 61) ↔  
(-1, 15, 44) 9.9 × 10-5 −5.52 3.01 

3 Cingulo-opercular task 
control ↔ Default mode 

Suppl. Motor Area R ↔ 
Cerebellum Crus1 R 

(7, 8, 51) ↔  
(28, -77, -32) 6.6 × 10-5 5.76 3.12 

4 Somatomotor ↔  
Dorsal attention 

Suppl. Motor Area R ↔ 
Frontal Mid R 

(10, -17, 74) ↔  
(24, -4, -18) 9.8 × 10-5 5.52 3.01 

a Positive T statistic: Higher variability of connectivity in LOGG vs. controls; negative T statistic: lower in LOGG. 
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Figure 2. Functional connectivity results. (a) Regions associated with static FC (red) and variance 
of dynamic FC (blue) impairments in LOGG. (b) Impaired connections in LOGG. Bottom-left: 
elevated static FC impairments are shown in green; bottom-right: reduced dynamic FC 
impairments are shown in yellow and elevated dynamic FC impairments are shown in pink. Sup 
= superior; inf = inferior; mid = middle; SMA = supplementary motor area; jcn = junction.  
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3.4. Graph analysis results 

Functional segregation was significantly higher in LOGG across the board (Figure 3, Figure 

4, Table 5) in lateral prefrontal and visual regions. Specialized densely connected local processing 

is especially predominant in prefrontal and visual regions of the healthy brain [64], the former for 

cognitive control and the latter for visual perception. With an uncorrected threshold of p<0.05, 

100% of all segregation measures were higher in LOGG. 

 

Table 5. Functional segregation (graph analysis) results (whole-brain LOGG vs. control). LOGG 

group exhibited elevated segregation in task control and visual regions, implying abnormally 

heightened processing within specialized prefrontal and visual subnetworks. Mid = middle. 

  Network Region / node MNI centroid p-value T stat a Effect size 

        Clustering coefficient 

1 Frontoparietal task control Frontal Mid L (-42, 45, -2) 0.0043 4.11 2.20 

              Local efficiency 

2 Frontoparietal task control Frontal Mid L (-42, 45, -2) 0.0035 4.22 2.25 

3 Visual Calcarine L (cuneus) (-18, -68, 5) 0.0085 3.71 1.98 

               Node Strength 

4 Frontoparietal task control Frontal Mid L (-42, 45, -2) 0.0068 3.41 1.82 
a Positive T statistic: Higher in LOGG compared to controls; negative T statistic: lower in LOGG vs. control. 
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Functional integration was significantly lower in LOGG (Figure 3, Figure 4, Table 6) in 

cognitive control (attention, task control), DMN, and somatomotor networks. Five of these seven 

connections involved the DMN (mainly connected to control/sensory networks). With an 

uncorrected threshold of p<0.05, 55% of all values indicated lower integration in LOGG. Lastly, 

upon correlating all significant imaging findings across the board with age, we found that none of 

the measures were influenced by age (p>0.05). 

 

Table 6. Functional integration (graph analysis) results (whole-brain LOGG vs. control). LOGG 

group exhibited reduced integration. All connections, mainly associated with default mode, 

attention, and task control networks, were associated with poorer integration in LOGG. Higher 

shortest path length implies poorer integration, so does lower edge betweenness. Inf = inferior; 

sup = superior; mid = middle; post = posterior; ctrl = control. 

  Network connectivity Connection MNI centroids p-value Statistic a Effect size 

   Shortest path length (T statistic reported from Student's T test) 

1 Default mode ↔  
Default mode 

Temporal Mid R ↔ 
Temporal Inf R 

(43, -72, 28) ↔ 
(65, -12, -19) 2.2 × 10-6 8.01 4.27 

2 Default mode ↔ 
Frontoparietal task control 

Frontal Medial R ↔  
Parietal Inf R 

(6, 67, -4) ↔  
(49, -42, 45) 3.8 × 10-5 6.09 3.26 

   Edge betweenness centrality (Z statistic reported from Wilcoxon rank-rum test) 

3 Auditory ↔  
Default mode 

Temporal Sup L ↔  
Frontal Medial R 

(-49, -26, 5) ↔  
(6, 54, 16) 1.4 × 10-5 −6.73 3.61 

4 Somatomotor ↔  
Ventral attention 

Paracentral R ↔  
Temporal Sup R 

(2, -28, 60) ↔  
(52, -33, 8) 4.8 × 10-4 −4.62 2.47 

5 Default mode ↔ 
Frontoparietal task control 

Cingulum Post L ↔  
Frontal Orb R 

(-2, -35, 31) ↔  
(34, 54, -13) 5.3 × 10-4 −4.57 2.48 

6 Default mode ↔  
Dorsal attention 

Temporal Mid L ↔ 
Temporal Mid R 

(-58, -30, -4) ↔  
(46, -59, 4) 5.3 × 10-4 −4.57 2.45 

7 Somatomotor ↔  
Cingulo-opercular task ctrl 

Precentral R ↔ 
Insula R 

(44, -8, 57) ↔  
(49, 8, -1) 6.4 × 10-4 −4.46 2.38 

a Positive statistic: Higher value in LOGG compared to controls; negative statistic: lower in LOGG.  
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Figure 3. Graph analysis results. (a) Regions associated with functional segregation (red) and 
functional integration (blue) impairments in LOGG. (b) Connections with impaired integration in 
LOGG: connections with reduced edge betweenness are shown in brown, connections with 
elevated shortest path length are shown in black. Prominent right lateralization was observed. 
Orb = orbital; med = medial; mid = middle; sup = superior; inf = inferior; post = posterior.  
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Figure 4. Boxplots of all presented results. Top row: fALFF (left) and HRF RH (right). Middle 
row: SFC (left) and vDFC (right). Bottom row: segregation (left) and integration (right). The red 
line represents the median, the box extends from 25th to 75th quartile, the dotted lines extend from 
1st to 99th quartile, and the rare ‘+’ markings represent the outliers.  
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3.5. Associations between fMRI measures and clinical variables 

We found significant associations between certain LOGG imaging measures and clinical 

variables (Figure 5, Table 7). The figure shows LOSD patients in a different color, from which it 

appears that these associations were not driven by differences between LOTS and LOSD; however, 

we could not demonstrate this statistically because there were only two LOSD patients. Cognitive 

control networks were featured in 4 of the 6 associations. Among the clinical variables were 

neurocognitive measures, ataxia scales, disease duration, and age at disease onset. All associations 

followed the expected pattern of clinically worse imaging values relating to higher severity in 

clinical measures. Supplemental Information section S2 shows associations with subscales of 

certain clinical metrics. 

 

Table 7. Significant associations between clinical variables and fMRI measures in LOGG. 

  Clinical variable Network Connection / Node R-value R2 value p-value 

   fALFF 

1 EAT10 Default mode Frontal Medial R −0.94 0.88 0.002 

2 BARS Frontoparietal task control Parietal Inf L −0.84 0.7 0.019 

   Static functional connectivity 

3 CCAS Salience ↔ Dorsal attention Cingulum Mid R ↔  
Parietal Sup R 0.81 0.65 0.029 

   Variance of dynamic functional connectivity 

4 Age at disease 
onset 

Cingulo-opercular task control  
↔ Default mode 

Suppl. Motor Area R 
↔ Cerebellum Crus1 R −0.81 0.66 0.027 

   Complex network measures 

5 CCAS Clustering coefficient: fronto-
parietal task control Frontal Mid L −0.93 0.86 0.003 

6 Disease duration SPL: Default mode ↔ 
Frontoparietal task control 

Frontal Medial R ↔  
Parietal Inf R 0.84 0.7 0.019 

 EAT10 = eating assessment tool, BARS = brief ataxia rating scale, CCAS = cerebellar cognitive affective syndrome 
scale, SPL = shortest path length, sup = superior, inf = inferior, mid = middle, suppl = supplementary. 
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Figure 5. Associations between clinical variables and fMRI measures. Top row: fALFF vs. EAT10 
(left, R=−0.94, p=0.002) and fALFF vs. BARS (right, R=−0.84, p= 0.019). Middle row: SFC vs. 
CCAS (left, R=0.81, p=0.029) and vDFC vs. age of disease onset (right, R=−0.81, p=0.027). 
Bottom row: segregation vs. CCAS (left, R=−0.93, p=0.003) and integration vs. disease duration 
(right, R=0.84, p=0.019). EAT10 = eating assessment tool, BARS = brief ataxia rating scale, 
CCAS = cerebellar cognitive affective syndrome scale. The two LOSD patients are shown as red 
points; it is apparent that the associations were not driven by differences in LOTS and LOSD.  
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3.6. Associations between fMRI measures and gene expression 

We found significant negative association between local efficiency and HEXB gene expression 

in LOSD patients (R=−0.55, p=4×10-6), but no significant association with HEXA in LOTS 

patients (R=−0.005, p=0.97) (Figure 6). HRF RH was significantly positively associated with 

both HEXA in LOTS (R=0.29, p=0.0225) and HEXB in LOSD (R=0.29, p=0.0229). These 

observations suggest a genetic basis for neurovascular coupling patterns in the brains of patients 

with LOTS and LOSD (about 8.5% variance in HRF RH explained by these genes), as well as a 

genetic basis for the ease of communication in the brains of those with LOSD (30.3% variance in 

local efficiency explained by HEXB in LOSD). Figure 7 illustrates a flowchart of our entire 

analysis strategy and corresponding results. 
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Figure 6. Associations between the spatial distribution of fMRI measures across the brain and the 
spatial distribution of gene expressions (HEXA in LOTS and HEXB in LOSD). (a) Local efficiency 
vs. HEXA in LOTS (R=−0.005, p=0.97), (b) local efficiency vs. HEXB in LOSD (R=−0.55, 
p=0.000004), (c) HRF response height vs. HEXA in LOTS (R=0.29, p=0.0225), (d) HRF response 
height vs. HEXB in LOSD (R=0.29, p=0.0229). Lower local efficiency and higher HRF RH were 
related to higher gene expression (with significant associations). Each data point corresponds to 
one of the 62 brain regions from the Desikan-Killiany whole-brain atlas. 
 

 

 

 

 

 

Figure 7. Flowchart illustrating our analysis strategy and corresponding results. 
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4. Discussion 

As the first fMRI study of LOGG (or any other variant of GM2 gangliosidosis), we used a 

multi-dimensional approach by studying LOGG impairments in strength and variability of 

functional connectivity as well as brain network topology, BOLD signal strength, and 

neurovascular coupling. We found evidence for widespread cortical aberrations in LOGG and their 

relation to gene expression and clinical presentation. Amalgamating the different arms of our 

analysis framework, our findings converge to a single conclusion of cortical functional 

impairments in cognitive control, DMN, and somatomotor regions amongst the LOGG cohort. 

Cognitive control networks were featured in 4 of the 6 clinical associations, which taken together 

with imaging findings, underscore the importance of these networks (attention, task control, 

salience) for LOGG neurobiology. We posit that these may contribute to the psychiatric/cognitive 

symptoms presenting in a majority of LOGG patients.  

Severe psychiatric presentations (such as psychosis and altered mood) have been reported in 

LOGG [13] [86] [20]. Significant cognitive impairment in memory, verbal, and executive function 

domains have also been reported [17] [14] [19] [20]. Deficits in processing speed, attention, and 

memory are also noted [18]. Oculomotor disturbances have also been observed [12], likely 

involving the dorsal attention network. Although cerebellar impairment has been the central 

observation in prior non-fMRI LOGG studies, extra-cerebellar abnormalities have also been 

described. These include cerebral white-matter hypo-density [21] and atrophy [31], reduced 

glucose metabolism in bilateral temporal and occipital lobes [22], and impaired occipital neuronal 

health [23]. With this background, we set out to discuss findings from each fMRI measure. 

FALFF: We found reduced fALFF in the DMN, somatomotor, and frontoparietal regions. 

Lower fALFF in the DMN has also been observed in other degenerative movement disorders, such 

as Parkinson’s disease [60], wherein it is interpreted as pathological malfunction of the region due 

to cellular breakdown. There has not been precise identification of the stated regions in the limited 

LOGG literature, but it is possible that ganglioside deposition could lead to cellular breakdown 

and subsequently reduced fALFF. This should be further investigated using multimodal imaging. 

HRF: Although impaired HRF has been noted in psychiatric conditions [87] [78] [51] [62] [88] 

[89] [90], this is, to the best of our knowledge, the first study to report HRF impairments in a 

neurological disease. We observed higher HRF RH in a middle temporal (DMN) region. We do 
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not have a reference for HRF aberrations in similar neurological diseases. However, higher RH 

has been reported in psychiatric disorders such as posttraumatic stress disorder [91], attributed to 

disrupted metabolism arising from pathology [89]. It is possible that a similar mechanism in a 

metabolic disease like LOGG leads to impaired neurovascular coupling. In fact, one LOGG study 

has already reported reduced glucose metabolism in the temporal cortex [22]. 

SFC: We observed pathologically higher SFC in LOGG, almost exclusively in cognitive 

control networks (mainly the dorsal attention network). SFC has been a robust marker of 

neurological disease pathology [1] [2] [3] [60], and such hyper-connectivity has been frequently 

reported in several diseases [56] [92]. The understanding is that fMRI hyper-connectivity is a result 

of neurological disruption [92]. Neuronal dysfunction in these regions and/or damage to 

connecting white-matter fibers results in aberrant communication between them – sometimes 

observed as reduced higher frequency electrical activity and increased lower frequency activity 

(local field potential from invasive electrodes) [93] [94]. The pathological low frequency activity 

in these regions presents as higher synchronization between them and thus higher fMRI 

connectivity [93] [94] [95]. In LOGG, both white-matter lesions [33] and lower white-matter 

density [21] have been reported in the cortex, coupled with cortical atrophy [31] and neuronal 

damage, possibly linked to ganglioside deposition [9]. Interestingly, the dorsal attention network 

was most affected by higher SFC. This network is chiefly responsible for visual attention and 

oculomotor function. Oculomotor disturbances have been previously described in LOGG but were 

not part of our current assessment  [12]. Overall, our SFC result hints at a model of neuronal 

dysfunction (through ganglioside deposition and/or cortical atrophy) and/or white matter 

hypodensity/lesions, leading to pathologically higher connectivity in the dorsal attention network 

(and some other cognitive control networks), possibly resulting in oculomotor disturbances in 

LOGG. Additionally, since other cognitive control networks were also involved here, higher SFC 

might also contribute to the presentation of cognitive impairments and psychiatric presentations 

observed in almost half of all LOGG patients [13] [14] [17] [18]. Interestingly, SFC between 

salience and dorsal attention networks was significantly associated with CCAS (R=0.81), a 

measure of executive function, spatial cognition and affect regulation deficits. Pathologically 

higher SFC was related to worse symptoms. However, given our small sample size, it is possible 

that we missed the detection of some other important SFC impairments, which future studies in 

larger samples must probe further. 
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DFC: Impairments in vDFC were observed in frontal and parietal regions associated largely 

with cognitive control networks. The supplementary motor area was notably involved in 3 of the 

4 connections. DFC provides fundamentally different information from SFC [66] [65]. Psychiatric 

disorders largely present with reduced vDFC [56] [70] [72], although higher vDFC has been 

reported once [96]. DFC research has not been able to conclude the precise meaning of lower 

vDFC yet, but mounting evidence suggests that lower vDFC indicates the inability to dynamically 

adjust mental processes to changing body and environmental conditions [56] [70] [78] [97] [98] 

[99] [100]. The meaning of pathologically higher vDFC remains unknown. We found reduced 

vDFC of dorsal attention and somatomotor networks with cognitive control networks, which again 

might relate to oculomotor disturbances and cognitive impairments in LOGG. Lower vDFC is a 

biomarker of poorer cognitive performance [69] [70] [72] and worse psychiatric symptoms [56]. 

It remains unclear what higher vDFC seen in two other connections means, although one study has 

reported higher vDFC in a psychiatric condition before [96]. One such connection between 

supplementary motor area and cerebellum crus 1 was significantly associated with the age of 

disease onset (R=−0.81), with earlier onset related to pathologically higher vDFC between these 

motor-related regions. 

Graph measures: These measures have shown sensitivity to neurological disease pathology [1] 

[73] [74]. We found higher segregation in a prefrontal task control region, implying pathological 

over-connectivity between this region and the rest of the brain. We also found 7 connections 

exhibiting impaired functional integration with cognitive control networks dominating our fMRI 

findings. Summing all brain regions assessed from Tables 2 through 6, 21 of the 38 regions 

belonged to cognitive control networks. They also made up a third of the regions involved in 

impaired integration. Two additional important observations remain regarding the DMN (9 of 38 

regions) and somatomotor network (6 of 38 regions). The DMN mainly exhibited impaired 

functional integration in LOGG (6 regions), although it did not feature in SFC or vDFC 

impairments. The DMN is involved in self-referential processing and plays a role in switching 

between task-positive and task-negative networks depending on external circumstances (task 

switching) [5] [95] [101]. Impaired DMN activity and connectivity have been linked to most 

psychiatric and neurological conditions [102] [103]. The fact that we did not find SFC/vDFC 

impairment in DMN but saw lower integration implies that specific DMN connections were not 

sufficiently affected (sub-threshold, not crossing our SFC/vDFC significance threshold). However, 
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they had a significant impact on the remainder of the brain network through reduced functional 

integration. Both DMN-DMN and DMN-task control connections were impacted, implying that 

both self-referential processing and task switching were likely affected, respectively. In fact, the 

shortest path length between DMN and task control networks was significantly associated with 

disease duration (R=0.84), with a higher value (poorer integration) related to longer disease 

duration. The DMN also showed impaired fALFF and HRF. As in psychosis [104] and depression 

[105], these DMN impairments may contribute to the psychosis and mood disorders in LOGG [13] 

[86]. Unfortunately, we did not acquire validated clinical metrics of psychiatric disease from our 

patients to correlate with the functional results. Cognitive impairments in memory and processing 

speed also involve DMN aberrations [106] [107] and were also observed in LOGG [17] [14] [18] 

[19], which may also be explained by the DMN impairments. The somatosensory/motor network 

also had impaired connectivity and integration, which may relate to the dominant ataxia symptoms 

in LOGG. Although none of the ataxia scales correlated with somatomotor fMRI findings, future 

studies with larger sample sizes must not discount this possibility because ataxia is among the 

primary clinical presentations in LOGG, particularly in LOTS [9]. 

Substantial lateralization was noticed in graph measures, with 100% of segregation regions 

being in the left hemisphere and 79% of integration regions involving the right hemisphere. 

Additionally, a unanimous pattern of higher segregation and lower integration was observed, 

implying that LOGG is characterized by an imbalance in segregation/integration. The fine balance 

between segregation and integration (metastability) [108], is essential for healthy cognitive 

functioning [108], and is destabilized in psychiatric [74] [79] and neurological disorders [73]. In 

these disorders, the destabilized profile is that of higher segregation (pathologically elevated 

localized processing) and lower integration (pathologically reduced communication between 

localized subnetworks). This profile was also observed in LOGG. 

Cerebellum: The absence of cerebellar abnormalities in our results (except one vDFC 

connection) is notable. While structural and metabolic cerebellar abnormalities are a hallmark of 

LOGG [24] [26] [27] [22] [28] [29] [30], functional impairments observed in this study were 

dominated by cortical regions, mainly in cognitive control but also DMN and somatomotor 

regions. This implies damage to the brain beyond known structural or metabolic abnormalities, 

and affecting regions other than the cerebellum. Such damage could help explain the etiology of 

psychiatric, cognitive, and motor issues in this debilitating disease. 
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Associations with gene expression: LOGG is a genetic disorder [12], and HEXA and HEXB 

gene expression were significantly associated with HRF RH in respective groups (R=0.29 and 

0.29) and explained 8.5% of the variance in RH. Pathologically higher RH was related to higher 

gene expression. Interestingly, genes influence RH and TTP of the HRF (taken together) by 24–

51% [63] in healthy adults. Although we do not know more about this gene-HRF link in LOGG, 

it can be postulated that dysfunction in these genes may contribute to pathological amplitude of 

neurovascular coupling (which is, in turn, modulated by metabolites [109] [110]). Local efficiency 

was also associated with HEXB gene expression in LOSD (R=−0.55), with reduced ROI-brain 

communication related to higher gene expression. 

The Allen brain atlas of gene expression [80] has opened new doors in imaging genetics. Our 

approach, involving correlating spatial maps of gene expression and imaging data, is gaining 

attention in recent years [83] [84]. Although using gene expression maps generated from a 

normative healthy sample and not our disease group is not the ideal approach, the alternative 

approach of obtaining genetic data from blood samples is also marred with imperfections as it does 

not inform us of gene expression in relevant brain regions (or even generally in the brain for that 

matter). Both approaches may be complementary, as one has spatial specificity and the other 

patient specificity. Thus, future studies in LOGG should probe gene-imaging relationship in 

greater detail. 

Limitations: Our study has three main limitations: (i) A small sample size. However, we have 

a relatively large cohort compared to prior literature on this disease (typically N=1–3). Sample 

sizes are commonly small because of the ultra-rare nature of LOGG (prevalence≈0.0003% [111]). 

Despite this, the current study is among the largest studies to have ever been conducted in LOGG 

with any imaging modality. (ii) We were unable to provide more granular differentiation between 

LOTS and LOSD as there were only two LOSD patients. (iii) Our data with TR=2s did not have 

satisfactory temporal resolution as HRF RH and DFC are particularly impacted by sampling rate. 

HRF TTP and FWHM were therefore ignored. The sensitivity of DFC to faster variations was also 

reduced [76] [77]. Despite these limitations, our findings provide a valuable starting point for 

future researchers to conduct more advanced hypothesis-driven studies in LOGG, ultimately for 

superior diagnostic assessments, disease monitoring, and therapeutic interventions. 
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5. Conclusions 

In this first fMRI study of LOGG, we found widespread cortical aberrations chiefly in 

cognitive control networks (attention, task control), but also in the default mode and somatomotor 

networks. Some of these findings were significantly associated with certain clinical variables and 

gene expression of HEXA and HEXB. These functional aberrations might contribute to the 

psychiatric, cognitive, and oculomotor issues observed in the majority of LOGG patients. These 

primarily cerebral findings represent a paradigm shift from cerebellar structural and metabolic 

impairments reported in earlier LOGG studies. Future studies with larger samples are needed to 

assess functional impairments further and look for mechanistic insights beyond the cerebellum. 
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