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ABSTRACT

As the coronavirus disease 2019 (COVID-19) spread globally, emerging variants such as B.1.1.529
quickly became dominant worldwide. Sustained community transmission favors the proliferation
of mutated sub-lineages with pandemic potential, due to cross-national mobility flows, which are
responsible for consecutive cases surge worldwide. We show that, in the early stages of an emerging
variant, integrating data from national genomic surveillance and global human mobility with large-
scale epidemic modeling allows to quantify its pandemic potential, providing quantifiable indicators
for pro-active policy interventions. We validate our framework on worldwide spreading variants
and gain insights about the pandemic potential of BA.5, BA.2.75 and other sub- and lineages. We
combine the different sources of information in a simple estimate of the pandemic delay and show
that only in combination, the pandemic potentials of the lineages are correctly assessed relative to
each other. Country-level epidemic intelligence is not enough to contrast the pandemic of respiratory
pathogens such as SARS-CoV-2 and a scalable integrated approach, i.e. pandemic intelligence, is
required to enhance global preparedness.

Introduction

The coronavirus disease (COVID-19) outbreak, caused by the SARS-CoV-2 virus and first detected in China in early
2020, likely originated from the Huanan seafood wholesale market in Wuhan [1] and continues to spread worldwide.
It has forced national governments to pursue country-level elimination strategies [2, 3, 4] or mitigation policies relying
on both non-pharmaceutical interventions (NPI) – e.g., physical distancing, wearing masks, hand hygiene, limit large
gathering of people, curfews and, in the worst cases, lockdowns [5] – and pharmaceutical ones, such as massive
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vaccination campaigns and antiviral therapies [6, 7, 8]. Early strict interventions have been shown to be more effective
than longer moderate ones in containing national outbreaks in curbing epidemic growth [9], for similar intermediate
distress and infringement on individual freedom [10].

In contrast to policy during the early stages of the pandemic, when pharmaceutical interventions were not yet available,
most current national efforts to control the virus rely on reactive strategies which alternate enhancement and lifting of
NPIs, with the ultimate goal of prevention, or reduction, of pressure on national health systems. To achieve successful
containment, such reactive strategies require high capacity for testing and sequencing to continuously monitor the
potential emergence of novel viral strains of SARS-CoV-2, whose mutations might be responsible for more severe
and/or more transmissible variants with pandemic potential [11]. We define pandemic potential as the ability of a
variant to escape population immunity acquired by vaccination or previous infections and to quickly spread worldwide.

Although the emergence of within-host variants with immune escape is likely to be relatively rare [12], sustained
community transmission might favor it. When a new variant emerges, it is crucial for policy and decision-making
to characterize novel mutations [13, 14, 15], estimate the growth advantage of the new variant with respect to the
existing ones [16] and quantify the effectiveness of currently available vaccines [17, 18]. Consequently, any delay in
identifying an emerging variant and in determining its key epidemiological parameters introduces uncertainties in the
timeline of community transmissions and imported cases which limit, if not completely prevent, effective mitigation
responses to take place, similarly to the cryptic transmission of the wild type SARS-CoV-2 which led to the first
COVID-19 wave [19]. Combined with limited testing capacity, porous travel screening [20] – at national and, overall,
cross-national levels, where international travel play a significant role to amplify the pandemic potential [21, 22, 19]
– and lifting of national NPI, the same delays might seriously hinder the timely detection of an emerging variant.
The COVID-19 pandemic has been characterized by the regular emergence of such variants [23]. Three important
questions arise during the early stages of such a variant, at which point data is missing and noisy: i) can we reconstruct
its geographical origin? ii) can we estimate how long it has been spreading undetected in that location? iii) can we
quantify the risk of importation to other locations?

In this work, we devise a protocol to quantitatively answer these questions. We show that, by integrating phylogenetic,
epidemiological and behavioral analyses within a framework for data-driven and model-informed pandemic intelli-
gence, it is possible to quantify the pandemic potential of an emerging variant and predict the dynamics of subsequent
national outbreaks with satisfactory precision. Finally, we propose a simple combination of the different sources of
information to qualitatively compare the lineages according to their pandemic delay and find that only the combined
measure can reproduce the observed differences.

Results

Blueprint for a pandemic intelligence framework. Reliably quantifying the pandemic potential of an emerging
variant requires data, and acquiring data requires time. Between the time t0 of the first undetected case and the time
t1 of the first reported case and its subsequent lineage designation at time t2, an emerging variant can silently spread
within its country of origin and beyond. For example, let us consider the B.1.1.529 lineage of the Omicron variant (also
known as BA.1). This was first reported by genomic surveillance teams in South Africa and Botswana on November
25th 2021. Priority actions have been established by the World Health Organization (WHO) for member states on
November 26th, with designation as a variant of concern (VOC) [24] required to raise the level of international alert
(t3). By December 16th 2021, there were several reports of an estimated reduction in both vaccine effectiveness
against infection and severe disease [25, 26, 27, 18, 28], together with characterisations of the epidemiology of the
variant in South Africa [29], Denmark [30] and Norway [31]. Early phylogenetic analysis placed t0 during the third
week of October 2021, about one month before t1. Three weeks later it had been identified in 87 countries [29].

Figure 1 summarizes this timeline for B.1.1.529, while highlighting the main analytical steps required to define a self-
consistent protocol to characterize the pandemic potential of an emerging variant (see Supplementary Fig. S1 for more
mechanistic scheme). Figure 1B illustrates how genomic surveillance data and epidemic modeling can be used to infer
the spatio-temporal coordinates of the variant’s origin, thus providing information on t0. This information is used
to estimate the importation risk for all countries in the world due to cross-national human flows. Finally, imported
cases are used as seeds for community transmission leading to country-level outbreaks, while accounting for the
epidemiological parameters characterizing the new variant. Unavoidable uncertainties about t0 and epidemiological
parameters are propagated through the workflow. Plausible scenarios are presented, accounting for distinct levels of
case under-reporting in each destination country (Fig. 1C).

In the following, we describe each step of the procedure, detailing our pandemic intelligence framework and the
underlying modeling assumptions.
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Figure 1: Schematic illustration of our pandemic intelligence workflow. (A) Evolutionary dynamics of SARS-
CoV-2 variants, coded by colour. The panel is obtained from nextstrain.org, based on GISAID data. (B) For
the B.1.1.529 lineage (or BA.1, Omicron, according to the WHO nomenclature), we identify four distinct time points
in the process of characterising the variant, from the time of the first undetected case to the designation as Variant
of Concern. This illustrates how genomic surveillance data is used in combination with global human movement
data and epidemic modeling to: i) perform a spatiotemporal reconstruction of the patient zero to identify the country
of origin of an emerging variant and estimate its epidemiological parameters and ii) calculate the importation risk
for all other countries worldwide. (C) For a subset of about 50 countries worldwide (depending on sequencing data
availability), we forecast the increase in the number of cases due to the consequent community transmission according
to what-if scenarios, accounting for distinct levels of under-reporting. For a more mechanistic workflow scheme see
Supplementary Fig. S1.

Reconstructing the origin of an emerging variant in space and time. For all SARS-CoV-2 sequences belonging to
the B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529, BA.2, BA.5, and BA.2.75 (Omicron) lineages from GISAID [32, 33,
34], we retained only those generated from cases reported during the early stage of the corresponding wave from the
country of evolutionary origin, from 20 up to a total of 100 sequences per lineage. Where there were multiple candidate
countries of origin, we estimated the outbreak country by a simple trait model. We then generated 3 alignments,
comprised of respectively 20%, 50% and 100% of the sequence set. These were subsequently cleaned by trimming
the 5′ and 3′ untranslated regions and gap-only sites. Bayesian evolutionary reconstruction of the dated phylogenetic
history [35] was used to obtain posterior distributions of the growth rate t, the parameters of the molecular clock, and
the time of the most recent common ancestor (tMRCA). See Materials and Methods for details.

In this way we obtain an estimate of t0, the time of the first unreported case, as well as of other epidemic parameters
such as the growth rate. From these we estimated the effective reproduction number and generation interval. Indicating
the number of infected individuals and number of deaths at time t by I(t) and D(t) respectively, we consider the time
period during which there is co-circulation of an existing variant v and an emerging one ω. We approximate the
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epidemic evolution by

I(t0 +∆t) = Iv(t0 +∆t) + Iω(t0 +∆t)

= Iv(t0)Rv(t0)
∆t/GIv + Iw(t0)Rw(t0)

∆t/GIω , (1)

where Ix(t) is the number of infections due to variant x at time t, Rx(t0) is the effective reproduction number at time
t0, and GIx is the generation interval. Similarly, the deaths due to the co-circulating variants are approximated by
D(t) = Dv(t) +Dω(t), with

Dx(t0 + ∆t+ τx) = Ix(t0 + ∆t)× IFRx, x = v, w (2)

where IFRx denotes the infection fatality rate of variant x and τx is the time lag between infection and death. To fit
the unknown epidemiological parameters, i.e. the ones related to variant ω for which we obtain a joint probability
distribution, we use an optimization procedure (see Materials and Methods).

In the case of B.1.1.529, we obtain t0 = 29 October 2021 (95% HPD: 20 October–5 November) and a daily growth
rate estimate of 0.566 (95% HPD: 0.117–1.035) from the phylogenetic analysis and t0 = 19 October 2021 (95% CL:
15 October–23 October) from epidemic modelling, with Rt = 2.56 (95% CL: 2.16–3.19) and GI = 7.36 (95% CL:
6.12–9.17). Our results are in good agreement with the literature, reporting t0 = 9 October 2021 (95% HPD: 30
September–20 October), exponential growth rate of 0.137 (95% HPD: 0.099–0.175) per day [29] and GI = 6.84 days
(95% credible intervals: 5.72–8.60) [36].

For further details, refer to Materials and Methods and Supplementary Fig. S2.

Estimating the importation risk of an emerging variant by country. We use monthly seat capacities of flights
between airports from the Official Airline Guide [37], encoding how many people could have travelled if all seats were
occupied on flights from airport A to B in the month of the estimated t0. We indicate the corresponding flow matrix
by F, where entry Fij describes the maximal passenger flow to i from j. The travelling population in the catchment
area of an airport is obtained by Ni = Fi, with Fi =

∑
j

Fji, i.e., we assume that the population in the catchment

area of the airport is equal to the airports outflow. For each emerging variant, the resulting large-scale network of
international travels corresponding to the month of t0 is used. The import risk is calculated as in [38]: based on the
effective distance graph [22] with

Dij = d0 − log(Pij) (3)

where Pij is the transition probability from j to i and a random walk with an exit option, we estimate how likely it
is that an infected individual from the emergent variant’s outbreak country reaches any airport worldwide. To work
at country level, we aggregate the import risk of all airports of the outbreak country by computing the mean import
risk weighted by the international outflux of each airport in the outbreak country. We have performed an extensive
analysis to validate the estimated import risk against available data, such as the official arrival times as obtained from
the WHO, for each emerging variant. We find considerable correlation between arrival time and import risk distance
for different variants (Alpha, Beta, Delta, Gamma) with a median of r = 0.55 (range r ∈ [0.41, 0.56]). This median
is the largest we found, when compared with several alternative distance measures (see Supplementary Figs. S3-S5).
The stochastic nature of the reported variant arrival times (based on the by-country rate of genome sequencing, the
probabilistic distribution of infected individuals among passengers, etc.) is one possible reason for the imperfect
correlation, but another possibility is that the assumed outbreak location is incorrect. To test this, we attempted to
identify outbreak locations by recomputing the correlation for all countries (similarly to [22]). For Beta, Gamma, and
BA.1 the country declared by the WHO as the outbreak source had the greatest degree of correlation. For Delta and
Alpha the WHO candidate had the 2nd and 5th best correlation respectively (see Supplementary Figs. S6, S7). We
extended the analysis to sublineages of Omicron and previously circulating variants of interest (VOIs) by estimating
arrival times and outbreak countries from GISAID data (see Material and Methods). For 13 of 17 variants the suspected
outbreak location from GISAID had at least the 3rd-largest correlation coefficient (of 183), and for all variants the
GISAID candidate was at least on the 12th rank (see Supplementary Figs. S8,-S10).

Modeling country-level epidemic spread of an emerging variant under distinct scenarios. We use results from
the previous step of the pipeline as inputs for an epidemic model in order to forecast the potential surge in cases due
to an emerging variant in a target country. First, we estimate the daily number of infected people (seeds) traveling to
the target country from the country where the VoC emerged (source country), based upon four elements: 1) results of
our phylogenetic analysis, which inform both the growth rate and the time of emergence of the variant of concern, 2)
genomic surveillance in the source country, 3) estimates of prevalence in the source country (incoporating underre-
porting), and 4) the import risk score of the target based on estimates from our analysis. Then, we produce short term

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.08.19.22278981doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.19.22278981
http://creativecommons.org/licenses/by-nc-nd/4.0/


DECEMBER 13, 2022

2021
2925 2 Nov 6 10 14

week

Import risk probability

0 0.09

A B

C

D

E

cases

1
32

1000
31622

0.03

week

data
1.13
4.03
14.88

15 Nov 29 Nov 13 Dec 27 Dec
2021

10
0

10
3

10
6

10
9

w
ee

kl
y 

in
ci

de
nc

e

EST

8 Nov 15 Nov 22 Nov
2021

10
1

10
2

10
3

10
4

10
5

w
ee

kl
y 

in
ci

de
nc

e

data
1.13
4.03
14.88

USA

Figure 2: Quantifying the pandemic potential of the B.1.1.529 lineage. (A) Phylogenetic reconstruction and
estimation of the most recent common ancestor (MRCA), identified South Africa on 28 October 2021 (95% HPD: 20
October–5 November) as the most likely MRCA. (B) Import risk map: countries are colored by their probability to
import infectious individuals carrying the B.1.1.529 (Omicron BA.1) lineage. (C, D) Projected weekly incidence in
Estonia and the U.S. obtained from epidemic modeling, under different Rt scenarios indicated by coloured lines. Line
thickness represents the range between the minimum and maximum assumed values of underreporting in the source
country (here South Africa). Points represent the observed incidence. (E) Case counts simulated using the Rt scenario
that corresponds to the mean growth rate from the phylogenetic analysis. For each country, the date of the first reported
case is indicated with a grey circle.

estimates of the daily incidence of the VoC in the target country by means of a Renewal process [39, 40, 41], in which
we take into account both the introductions of seeds from the source country and the local epidemic dynamics caused
by secondary cases. The renewal equation approach comes with three main advantages with respect to other models,
such as SIR [42]. In fact, 1) it does not require to include in the dynamics the immunological status of the population
in the target country; 2) the VoC dynamics can be considered as independent from the ones of the co-circulating VoCs,
thus avoiding the need of estimating additional parameters for concurring spreading processes; 3) the model explic-
itly includes the most relevant epidemiological observables, such as Rt, the serial interval distribution [43], and the
immune escape of the VoC. For further details we refer to Materials and Methods and Supplementary Figs. S11-S12.
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Assessing the pandemic potential of emerging variants. In Fig. 2 we show the result of each step described
above in determining the genomic and epidemiological parameters of the BA.1 lineage and, accordingly, quantify its
pandemic potential. We refer the reader to Supplementary Figs. S13-S14 for a more detailed analysis of errors in these
estimates. Figure 2A displays a time-resolved maximum clade credibility phylogeny of the lineage. Panel B is the map
of import risk across the world. Panels C and D show, for two example countries, the simulated epidemic projections,
plotted as weekly incidence. For each reproduction number, the shaded area represents the interval between the
estimates derived using the minimum and maximum values of underreporting in the source country. Panel E provides
model estimates of case counts in all considered countries.

Figure 3 shows the results obtained for the SARS-CoV-2 lineages B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529, BA.2
and BA.5 (Omicron). The date of the most recent common ancestors and the growth rate are shown, together with the
temporal evolution of the number of expected cases around 50 countries (varies depending on available sequencing
data; Alpha: 59, Delta: 55, BA.2: 51, BA.5: 49 countries). Point estimates of the mean and 95% HPD regions are
further provided in Table 1.

To assess the prediction error of our workflow we computed the normalized root-mean-square error (nRMSE) between
prediction scenarios and observations. The nRMSE is zero, if the observation lies in between the simulation scenarios.
Otherwise, the nRMSE is the RMSE between observation and the closest prediction scenario, normalized to the range
that is spanned by the observations in the respective target country (for details see Material and Methods). Figure 4
captures the absolute and relative frequency of countries according to their nRMSE. Our predictions are in very good
agreement (nRMSE = 0) for Alpha in 81.4%, B.1.1.529 in 53.1%, BA.2 in 52.9%, BA.5 in 49% and for Delta in
12.7% of all considered countries. Note that even though Delta has the smallest amount of countries with incidences
falling within scenarios prediction, more than 75% of the countries have a nRMSE ≤ 2.5.

SARS-CoV-2 Lineage tMRCA [95% HPD] Growth Rate [95% HPD]

B.1.1.7 (Alpha) 10 Sep 2020 [28 Aug 2020–19 Sep 2020] 0.091 [0.008–0.202]
B.1.617.2 (Delta) 25 Aug 2020 [5 Jul 2020–10 Oct 2020] 0.020 [0.008–0.033]
B.1.1.529 (Omicron) 29 Oct 2021 [20 Oct 2021–5 Nov 2021] 0.566 [0.117–1.035]
BA.2 (Omicron) 24 Oct 2021 [4 Oct 2021–9 Nov 2021] 0.136 [0.046–0.262]
BA.5 (Omicron) 10 Jan 2022 [19 Dec 2021–29 Jan 2022] 0.110 [0.051–0.177]
BA.2.75 (Omicron) 5 Apr 2022 [11 Mar 2022–23 Apr 2022] 0.092 [0.037–0.162]

Table 1: Phylogenetic estimates of the time of most recent common ancestor (tMRCA) and daily growth rate for
SARS-CoV-2 B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529, BA.2, BA.5 and BA.2.75 (Omicron) lineages. Values are
expressed as medians and 95% high posterior density intervals.

The pandemic delay as a simple integrative measure for variant classification. Despite the simplicity of the
projection approach, the numerical simulation on country level makes it difficult to summarize an emergent variant’s
pandemic potential in simple terms. To close this gap, we introduce the pandemic delay ty , that combines phylogenetic,
connectivity and epidemic information in a single equation by assuming that the new variant has a fitness advantage
∆f against the preexisting strains and is competing for the infected population estimated via a simple logistic growth
equation (see Material and Methods for a detailed derivation). The pandemic delay ty estimates the time between
tMRCA and when the new variant reached a fraction y of all sequenced probes in the target country m:

ty(m) = − 1

∆f
ln

(
1− y

[1/x0(m)− 1]y

)
. (4)

The phylogenetic information is encoded in the fitness advantage ∆f = lnR−ln 1 with R as the phylogenetic estimate
of the reproduction number, i.e. we assume that the population behaviorally and/or medically adapted to the preexisting
strains resulting in a R̂ = 1. The initial fraction x0(m) encodes the connectivity between outbreak and target country
and their epidemic state, i.e. it estimates how many cases are at tMRCA imported relative to the current case number.
Figure 5A shows a qualitative agreement between our estimated ty and the observed pandemic delay t̂y (r ≈ 0.85, p ≪
0.001) and suggests a linear relation considering all but the Delta lineage’s overestimated delay. Note that also within
the lineages, the correlation between estimated and observed delay is in general high and significant ([r-, p-value]:
Alpha [0.5, 0.001], Delta [0.3, 0.06], BA.1 [0.52, 0.02], BA.2 [0.14, 0.47], BA.2.75 [0.97, 0.002], BA.5 [0.44, 0.008]),
which highlights the importance of the additional connectivity information. The rank correlation between median
estimated ty and the phylogenetic estimate of R (Figure 5B) is almost perfect, with the Alpha lineage as an exception
that has a shorter pandemic delay (rank 2) than expected if solely R would be considered (rank 4) because of the
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Figure 3: Pan-viral pandemic potential: comparing multiple lineages. (A–B) tMRCA and growth rate estimates
for Alpha, Delta, BA.1 (B.1.1.529), BA.2, BA.2.75 and BA.5 from phylogenetic analysis. (C–F) Estimates of case
numbers in all the considered countries for the same variants. For each lineage and country, the epidemic simulation
starts at the time of infection t0 of the first undetected case as identified using the phylogenetic analysis. The simulation
stops at the third date at which sequences belonging to the considered lineages are greater than zero. Results are
provided in logarithmic scale and dates at which the first case is reported are marked with grey circles.

particularly high outflux per capita of its outbreak country (Great Britain). Again, it illustrates that the combination of
all information is necessary to gain a realistic estimate of an emergent lineage’s pandemic potential.

Discussion and conclusions

We presented an integrated framework that combines phylogenetic analysis of genomic surveillance data with in-
ternational human mobility data and large-scale epidemic modeling, in order to characterize in nearly real time the
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pandemic potential of an emerging variant. This concept is intended to provide quantitative indicators about the ability
of a variant to escape population immunity acquired by previous infections and/or vaccination, and quickly spread at
a global level through human activities.

Our framework naturally deals with missing and noisy information to infer, through a Bayesian approach, the most
likely origin – in space (on the country level) and time – of an emerging variant and its growth rate. Spatial and
temporal coordinates are used to feed an analytical technique to estimate the probability that a given number of
infectious individuals, departing from the country where the variant first appeared, travel to other countries with no
exposure to it. This crucial step is based on international travel data, providing information about human movements
between countries. Note that our approach is more powerful than naive estimates based only origin-destination pairs:
in fact, we make full use of the knowledge we have about the underlying international travel network and its latent
geometry [22, 44, 45], known to play a crucial role to amplify the spread of an emerging pathogen [19]. The last stage
of our framework is to use importation risk to quantify the number of imported infectious cases to each country and,
accordingly, estimate the consequent unfolding of the epidemic due to the emerging variant. The epidemic model is
intended to quantify undetected infections that occur well before the first genomic sequence is isolated from a case
in a country. Finally we validate our estimate of the pandemic delay, that allows a simple to interpret qualitative
comparison between variants incorporating phylogenetic, epidemic and connectivity information. The estimation is
based on a logistic growth equation for the relative fraction of a new variant. These predictions will be less accurate if
growth advantages in different countries are heterogeneous, for example due to immune escape.

Only the early phase of spread of a new lineage is estimated and the proposed model can safely take advantages of
assumptions like a homogeneous mixing and the lack of feedback loops in the epidemic dynamics.

We have validated our integrated framework on existing variants, including B.1.1.7 (Alpha), B.1.617.2 (Delta),
B.1.1.529 (BA.1), BA.2, BA.2.75 and BA.5 (Omicron), finding excellent agreement with independent estimates of
the relevant phylogenetic and epidemiological parameters. By accounting for different scenarios in the progress of the
epidemic in each country, we provide quantifiable indicators to inform decision makers and support pro-active policy
interventions to mitigate the potentially harmful effect of an emerging variant. For the current variant of most concern,
BA.5, we estimate that its most recent common ancestor existed in early January 2022 (10 January 2022, 95% HPD:
19 December 2021–29 January 2022), with a daily growth rate of 0.110 (95% HPD: 0.051–0.177).

Overall, our findings show that it is possible to aim at pandemic intelligence, even with partial and noisy data. We
must caution that the estimates of the pandemic potential of an emerging SARS-CoV-2 variant are largely driven by
the uncertainty in the spatio-temporal coordinates of its origin. The Delta lineage is our most unreliable estimate (Fig-
ures 3-5), possibly due to the low genomic surveillance at the tMRCA in the outbreak country India, even if Delta and
Alpha have a comparable sequencing rate corrected for underreporting (Supplementary Table S1), because the under-
reporting is based on COVID-mortality that is known to be again underestimated in India by a factor of 6 to 7 [46].
Another reason especially for the overestimation of Delta’s pandemic delay (Figure 5) is its low phylogenetic growth
rate estimate, which implies that during the long time till the Delta dominates, additional mutations can happen that
potentially speed up the process. Importantly, note that only the validation of our scenario predictions relies on large
enough sequencing rates in the target country, but not its application. That means our framework is perfectly suitable
for low- and middle-income countries with little to no genomic surveillance, as long as disease related mortality is
monitored.

Failures in international cooperation with a view to finding global solutions have undoubtedly shaped the COVID-
19 pandemic. We have provided robust evidence that epidemic intelligence at country level is not enough, alone, to
contrast the pandemic of respiratory pathogens such as SARS-CoV-2, in the absence of well-coordinated genomic
surveillance – especially in low-income and middle-income countries currently lacking and adequate response capac-
ity [47] – and global projections of variant’s pandemic potential. Our approach is inherently integrated and scalable,
adding to ongoing modeling efforts and pan-viral analyses [48, 49, 50, 51, 23, 11] and responding to global calls for
coordinated action [47, 52, 53]. The data-driven approach provides a vital step in the path towards pandemic intelli-
gence – where the interconnected and interdependent nature of human activities [22, 19, 54] is naturally accounted for
at a global level – as well a means of enhancing global preparedness against future emerging variants.

References

[1] Michael Worobey, Joshua I. Levy, Lorena Malpica Serrano, Alexander Crits-Christoph, Jonathan E. Pekar,
Stephen A. Goldstein, Angela L. Rasmussen, Moritz U. G. Kraemer, Chris Newman, Marion P. G. Koopmans,
Marc A. Suchard, Joel O. Wertheim, Philippe Lemey, David L. Robertson, Robert F. Garry, Edward C. Holmes,
Andrew Rambaut, and Kristian G. Andersen. The Huanan Seafood Wholesale Market in Wuhan was the early
epicenter of the COVID-19 pandemic. Science, 377(6609):951–959, aug 2022.

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.08.19.22278981doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.19.22278981
http://creativecommons.org/licenses/by-nc-nd/4.0/


DECEMBER 13, 2022

[2] Juanjuan Zhang, Maria Litvinova, Yuxia Liang, Yan Wang, Wei Wang, Shanlu Zhao, Qianhui Wu, Stefano Merler,
Cécile Viboud, Alessandro Vespignani, et al. Changes in contact patterns shape the dynamics of the covid-19
outbreak in china. Science, 368(6498):1481–1486, 2020.

[3] Matteo Chinazzi, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, Stefano Merler, Ana Pastore
y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun, et al. The effect of travel restrictions on the spread of the 2019
novel coronavirus (covid-19) outbreak. Science, 368(6489):395–400, 2020.

[4] Moritz UG Kraemer, Chia-Hung Yang, Bernardo Gutierrez, Chieh-Hsi Wu, Brennan Klein, David M Pigott, Open
COVID-19 Data Working Group?, Louis du Plessis, Nuno R Faria, Ruoran Li, et al. The effect of human mobility
and control measures on the covid-19 epidemic in china. Science, 368(6490):493–497, 2020.

[5] Nicola Perra. Non-pharmaceutical interventions during the COVID-19 pandemic: A review. Physics Reports,
913:1–52, may 2021.

[6] John S Tregoning, Katie E Flight, Sophie L Higham, Ziyin Wang, and Benjamin F Pierce. Progress of the
covid-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nature Reviews
Immunology, 21(10):626–636, 2021.

[7] Rishi R. Goel, Mark M. Painter, Sokratis A. Apostolidis, Divij Mathew, Wenzhao Meng, Aaron M. Rosen-
feld, Kendall A. Lundgreen, Arnold Reynaldi, David S. Khoury, Ajinkya Pattekar, Sigrid Gouma, Leticia Kuri-
Cervantes, Philip Hicks, Sarah Dysinger, Amanda Hicks, Harsh Sharma, Sarah Herring, Scott Korte, Amy E. Bax-
ter, Derek A. Oldridge, Josephine R. Giles, Madison E. Weirick, Christopher M. McAllister, Moses Awofolaju,
Nicole Tanenbaum, Elizabeth M. Drapeau, Jeanette Dougherty, Sherea Long, Kurt D’Andrea, Jacob T. Hamil-
ton, Maura McLaughlin, Justine C. Williams, Sharon Adamski, Oliva Kuthuru, Ian Frank, Michael R. Betts,
Laura A. Vella, Alba Grifoni, Daniela Weiskopf, Alessandro Sette, Scott E. Hensley, Miles P. Davenport, Paul
Bates, Eline T. Luning Prak, Allison R. Greenplate, and E. John Wherry. mRNA vaccines induce durable immune
memory to SARS-CoV-2 and variants of concern. Science, 374(6572), dec 2021.

[8] David S. Khoury, Deborah Cromer, Arnold Reynaldi, Timothy E. Schlub, Adam K. Wheatley, Jennifer A. Juno,
Kanta Subbarao, Stephen J. Kent, James A. Triccas, and Miles P. Davenport. Neutralizing antibody levels are
highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine, 27(7):1205–
1211, jul 2021.

[9] Benjamin F Maier and Dirk Brockmann. Effective containment explains subexponential growth in recent con-
firmed covid-19 cases in china. Science, 368(6492):742–746, 2020.

[10] Laura Di Domenico, Chiara E. Sabbatini, Pierre-Yves Boëlle, Chiara Poletto, Pascal Crépey, Juliette Paireau,
Simon Cauchemez, François Beck, Harold Noel, Daniel Lévy-Bruhl, and Vittoria Colizza. Adherence and sustain-
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Figure S1: Schematic mechanistic pipeline workflow. The three pieces of our pipeline (black dashed boxes) are
illustrated and what input they get from external data sources (orange colored) or from the output of earlier parts of
the pipeline (blue arrows). The t0 close to the orange arrows means that data from the external sources is used at or
prior to t0, which is the estimated time of the most recent ancestor (the output of the first part of the pipeline, the
phylogenetic reconstruction).

Materials and Methods

I Phylogenetic Reconstruction

I.1 Genomic dataset compilation

We retrieved all SARS-CoV-2 sequences belonging to the Alpha B.1.1.7, Delta B.1.617.2, Omicron B.1.1.529 (BA.1),
BA.2, BA.5, and BA.2.75 lineages from GISAID. Each genomic dataset was filtered by only retaining those sequences
that were generated from cases reported during the initial wave and from the country of evolutionary origin, up to a
total of 100 sequences per lineage. We then generated 3 alignments using MAFFT 7.505 [1], each comprised of
20%, 50% and 100% of the total number of sequences, which were subsequently cleaned by trimming the 5′ and 3′

untranslated regions and gap-only sites.

I.2 Phylogenetic estimates of epidemiological parameters

We performed a common Bayesian evolutionary reconstruction of timed phylogenetic history using BEAST 1.10.5 [2]
that was source compiled from its GitHub repository (https://github.com/beast-dev/beast-mcmc). We
modelled the nucleotide substitution process according to a HKY 85 + Γ parameterisation, setting a strict molecular
clock and an exponential growth model as coalescent prior. We used a Lognormal(µ = 9 × 10−4, σ2 = 1 × 10−5)
prior for the molecular rate of evolution, a Laplace(µ = 0, b = 100) prior for the rate of exponential growth and a
Lognormal(µ = 5.7, σ2 = 2.3) prior for the exponentially growing viral population size. We further set an initial
calibration for the time of the most recent common ancestor (tMRCA) at an age of ∼ 6 months before the most recent
sample included in the alignment. All the remaining priors were left at their default values.

Bayesian inference through Markov chain Monte Carlo (MCMC) was performed for 2 × 108 generations, sampling
every 20,000 generations and using the BEAGLE 3.1.2 library to increase computational performance [3]. MCMC
convergence and mixing properties were inspected using Tracer 1.7.2 [4] to ensure that effective sample size (ESS) val-
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ues associated with estimated parameters were all >200. After discarding 10% of sampled trees as burn-in, estimates
of the growth rate, molecular clock and tMRCA were extracted along with their posterior distributions (Figure S2).

I.3 Estimates based on epidemic modeling

We obtain an independent estimate for t0, the time of the first unreported case, and for other epidemic parameters,
such as the effective reproduction number and the generation interval. By indicating with I(t) the number of infected
individuals at time t and with D(t) the number of deaths, we consider the stage with the co-circulation of an existing
variant v and the emerging one ω. Since we consider the final stage of the contagions due to v and the early stage of
the contagions due to ω, we approximate the epidemic evolution by

I(t0 + ∆t) = Iv(t0 + ∆t) + Iω(t0 + ∆t) =

= Iv(t0)Rv(t0)
∆t/GIv + Iw(t0)Rw(t0)

∆t/GIω , (S1)

where Ix(t) is the number of infections due to variant x at time t, Rx(t0) is the effective reproduction number at time
t0 and GIx is the generation interval. Similarly, the deaths due to the co-circulating variants are approximated by

Dv(t0 + ∆t+ τv) = Iv(t0 + ∆t)× IFRv, (S2)
Dω(t0 + ∆t+ τω) = Iv(t0 + ∆t)× IFRw, (S3)

D(t) = Dv(t) +Dω(t) (S4)

where IFRx denotes the infection fatality rate of variant x and τx is the lag between infection and death. To fit the
unknown parameters, i.e. the ones related to variant ω, we use particle swarm optimization [5] to minimize the loss
function

ϕ(θ) =
1

2

√
Var [log(1 + I(t))− log(1 + Iobs(t))]√

Var [log(1 + Iobs(t))]
+

1

2

√
Var [D(t)−Dobs(t)]√

Var [Dobs(t)]
, (S5)

where Iobs(t) and Dobs(t) are the number of infected individuals and deaths from empirical data [6], Var indicates the
variance in time and θ = {t0;Rω(t0);GIω; IFRω; τω} is the vector of the epidemiological parameters characterizing
the emerging variant, for which we obtain a joint probability distribution.
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Figure S2: Pan-variant phylogenetic analysis. Posterior distributions of the time of the most recent common
ancestor (tMRCA), daily growth rate and doubling time estimated for each of the Alpha B.1.1.7, Delta B.1.617.2,
Omicron B.1.1.529 (BA.1), BA.2, BA.5, and BA.2.75 SARS-Cov-2 lineages using alignments of 20, 50 and 100
sequences.
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II Import Risk estimation

II.1 International travel dataset compilation

We retrieve the monthly seat capacities between airports from the OAG (Official Airline Guide). Note, that it does not
represent the actual passengers that flew from airport A to B in one month, but the maximal capacity, i.e. how many
could have travelled if all seats were occupied. It is therefore an upper limit for the passenger flux and we refer to it as
the flow matrix F, where Fij describes the maximal passenger flow to i from j. We estimate the travelling population
in the catchment area of an airport by Ni = Fi, with Fi =

∑
j Fji, i.e. we assume that the population is proportional

to the outflux of the airport. For each variant, we use the WAN at the month of the outbreak day of the respective
variant.

Figure S3: Distance measures vs. arrivals for Alpha variant. The distance measures are the geographic distance
Dgeo (A), the import risk distance DIR (B), the effective distance D

(N)
eff,MP (C), the random walk distance D

(N)
RW,MP

(D) and the information diffusion distance D(N)
ID,MP (E) whereby the latter three (C, D, E) are generalized to weighted

multiple paths.

II.2 Quantifying the Import Risk

The import risk method is introduced in a separate study [9] where it is compared to another data-driven estimate.
Here we present a short outline of the method. To know how many passengers leave at node j given they started
at node i, we introduce the shortest path exit probability q(j|i) (SPEx). It is based on the shortest path tree of the
effective distance [10], and combines the exit probability with all possible paths that end in j. The resulting import
risk is therefore an extension of the SPEx.

In order to compute the SPEx we first define, with the flow matrix (maximal passenger flux) F and the travelling
population of the catchment area Ni, the transition matrix P, where the element Pij = Fij/

∑
i Fij = Fij/Fj is the

probability to transition to i from j. Now, the effective distance graph [10] is Dij = d0 − log(Pij), with d0 as the
distance offset which we set to d0 = 1 (the larger d0 the more Dij increases with increasing hop-distance). Let T(n0)

5
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Figure S4: Correlation comparison between different distance measures. The distance measures are the ge-
ographic distance Dgeo, the import risk distance DIR, the effective distance D

(N)
eff,MP , the random walk distance

D
(N)
RW,MP and the information diffusion distance D

(N)
ID,MP whereby the latter three are generalized to weighted multi-

ple paths.

Figure S5: Correlation of arrival times of variants with the import risk distance DIR. For the import risk distance
DIR(m|n0) = − log(p∞(m|n0)) the WAN of the WHO outbreak month is used and the WHO outbreak location as
source country. The arrival times are taken from the ”cov-lineages.org” [7, 8] project.

be the shortest path tree on D for the point of origin n0. With respect to node n the downstream nodes Ω(n|n0) are
those nodes that can be reached from the source n0 through node n on T(n0).

Now we compute the SPEx q(i|n0) by assuming that all passenger that start at n0, travel along the shortest path
tree T(n0) and distribute to other airports according to their respective populations Nn. We assume that the exit
probability at i is proportional to the ratio of the population at i (i.e. Ni) to the population of all of i’s downstream
nodes

∑
n∈Ω(i|n0)

Nn plus Ni:
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Figure S6: Arrival prediction (r-value) for the 10 best outbreak candidate. The r-value between the import risk
distance DIR(m|n0) = − log(p∞(m|n0)) and the arrival time for the 10 best ranked outbreak countries (n0). The
2 Letters in the circles are the countries ISO alpha-2 codes. The red circle marks the country declared as outbreak
country by the WHO.

Figure S7: Arrival prediction performance (r-value) for the outbreak country candidates. The frequency of
the r-value between the import risk distance DIR(m|n0) = − log(p∞(m|n0)) and the arrival time for all possible
outbreak countries. The red vertical line marks the r-value using the country declared as outbreak country by the
WHO.

q(i|n0) =
Ni

Ni +
∑

n∈Ω(i|n0)
Nn

. (S6)

Now, we use the SPEx on a random walk that starts at n0 and the walker exits at node i with probability q(i|n0) or
continues its walk with probability 1− q(i|n0). Thus, the probability to be at node m if the walker was before at node
m− 1 is

S(m,m− 1|n0) = Pm,m−1(1− q(m− 1|n0)) . (S7)
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Consequently, the probability to take a path Γ starting at n0 and exiting at m is

p(Γ) = q(m|n0)
∏

(i,j)∈Γ

S(i, j|n0) . (S8)

The probability to exit at node m from all possible paths (of all possible lenghts) is

p∞(m|n0) = q(m|n0)

[ ∞∑
k=1

Sk(n0)

]
m,n0

(S9)

= q(m|n0)
[
(1− S(n0))

−1 − 1
]
m,n0

. (S10)

Note that Sk(n0)m,n0
is the probability sum of all paths that started in n0 and end after k steps in m. We aggregate all

airports of the same country by computing the weighted mean with weights

wn =
Nn∑

m∈C(i) Nm
(S11)

with C(n) as the set of airports that belong the same country as node n does.

II.3 Relation to distance and arrival time

In order to assess the quality of the import risk, we compare it with the arrival time of past variants. Clearly, the higher
the import risk to a country, the earlier it is to arrive and the direct relation between the probability of travel to a city
m from a city n0 and the mean first arrival time t1 is

t1(m|n0) = d0 − c log(P (m|n0)) (S12)

which is the effective distance [10, 11]. Thus, we define the import risk distance as

DIR(m|n0) = − log(p∞(m|n0)) (S13)

which is proportional to the mean first arrival time.

II.4 Alternative distance measures

There are alternative measures to estimate the arrival time [10, 12, 13], and we want to compare our import risk
distance to these established measures. However, please note that the alternative measures have a clear qualitative
relation to the arrival time, but it is not possible to directly infer the number of passengers that travel between airports
from them (what the import risk is especially designed for). The already introduced alternative measure is the effective
distance [10] that uses the flow between airports to estimate the probability to travel from airport n to m

deff (m,n) = d0 − log(Pm,n) . (S14)

Now, the distance along a specific path Γ that connects m and n0 is the sum of the path elements distances

deff (Γ) =
∑

(m,n)∈Γ

deff (m,n) . (S15)

Finally the effective distance from airport n0 to m, also not directly connected airports, is the minimal effective
distance of all possible paths Ω(m,n0) they are connected through

Deff (m|n0) = min
Γ∈Ω(m,n0)

(deff (Γ)) . (S16)

An extension to the effective distance is the random-walk effective distance [13] that considers all possible paths
connecting two airports Ω(m,n0) instead of only taking the dominant path with the shortest distance:

DRW (m|n0) = − ln

 ∑
Γ∈Ω(m,n0)

e−deff (Γ)

 . (S17)

Note that the sum of path distances via their exponential is due to the linkage to the arrival time as explained in [13].

We also add a comparison with a metric derived from Diffusion Distance [12] which exploits the definition of a random
walk Laplacian on top of the WAN. We further explain this Information Distance DID in the dedicated section V.
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Country-Level aggregation.

The country-level aggregation of the import risk distance DIR is done by first aggregating the import risk on country-
level (as described in Sect. II.2) and then applying Eq. S13.

To aggregate the other distances (Deff , DRW ) we could either take (along the line of Deff ) the minimal distance
between two countries (of all relevant airport pairs), or use a weighted multipath approach as used in the derivation of
DRW . We will highlight the latter in the following; however, we also computed the minimal measure and found that
it is outperformed by the multipath distance (not shown, but it is the basic finding in [13]).

As shown in [11], the effective distance of two paths combined is

e−Deff ({Γa,Γb}) = e−deff (Γa) + e−deff (Γb) . (S18)

Thus, the multipath (MP) effective distance that considers all shortest paths from country S to M is:

Deff,MP (M |S) = − ln

 ∑
m∈M ,s∈S

e−Deff (m|s)

 (S19)

with M as the set of all target airports in country M and S all source airports of country S.

Since the distance of source airports with a larger population are more important, we additionally weight the source
airport with wi = Fi/

∑
s∈s Fs, which represents the probability of an infected to start in location n. Now, we

compute the population weighted multipath effective distance by

D
(N)
eff,MP (M |S) = − ln

 ∑
m∈M ,s∈S

wse
−Deff (m|s)

 . (S20)

Note that the weighting for the effective distance can be reformulated to

D
(N)
eff,MP (M |S) = − ln

 ∑
m∈M ,s∈S

ws

∏
k,l∈Γm,s

e−d0Pk,l

 (S21)

which corresponds to multiplying the probability to start at the source airport s to the first step of each path. Analo-
gously the

II.5 Data for arrival time and outbreak region

We compare the import risk to measured arrival times of different variants. Therefore, we need to define the outbreak-
country and -month and the arrival times. We defined these variables in different ways.

(I) external sources Here we rely on peer reviewed [8] or official [14] sources. The outbreak country and the outbreak
month are taken from the website of the World Health Organization (WHO) ”Tracking SARS-CoV-2 variants”[14] and
the arrival times of the variants Alpha, Beta, Delta, Gamma and Omicron were externally computed with ”grinch”[8]
and taken from their project website[7]. If arrival times are before the official outbreak they are removed from the
analysis (for Delta=1, Gamma=1 and Omicron=19 countries are removed).

(II) GISAID data To also use the other variants to validate our import risk method we design a simple arrival time
algorithm. First, we need to define the outbreak day. Instead of relying on an official definition from the WHO, we
use GISAID data. The outbreak time TX,out of variant X is defined by

TX,out = T (FX(t) ≥ g ·max(FX))− 30days (S22)

with FX(t) being the fraction of variant X to all sequenced probes at time t and T (FX(t) ≥ g ·max(FX)) the time
when FX(t) crosses the first time the threshold gcdotmax(FX) where g ∈]0, 1[ and we set g = 0.025. In other
words, the outbreak is defined by 30 days before the variant reached 2.5% of its worldwide peak. We estimate the
arrival time of variant X in an country by the most simple way: the first time the variant is detected (according to
GISAID data). In Fig. S8 the estimated outbreak time, official WHO and arrival times of each country are shown.
Since for some variants (Alpha, Delta, BA.2) many arrival times fall clearly before our estimated and even the official
outbreak date, we recomputed for these countries the arrival time to the first GISAID-detection after the outbreak date.
We argue that either (i) the sequencing of the variant in these countries was error-prone (1. count is very sensitive to
any wrong detection) or (ii) the spreading was slow and the variant did not dominate the local epidemic until it reached
a susceptible country (low NPIs) from where it did spread more easily (probably the case for Delta).
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Figure S8: Outbreak defined by fraction of all sequenced probes. The outbreak date (black dashed vertical line) of
a variant can be defined by the first time the fraction of a variant X of all sequenced probes reaches 2.5% of its current
worldwide peak. To exclude maldetections of 1st. arrival times in countries, we exclude all arrival times (blue short
vertical lines) that are before the outbreak date and set the arrival time as the first detection in the respective country
after the outbreak date. The official outbreak date by WHO is marked by a red dashed vertical line.

II.6 Outbreak detection based on 1st count GISAID data

If we repeat the outbreak detection method using all variants and the arrival times estimated via GISAID data (arrival
by first detection, Fig. S8), we see that the outbreak detection via the best correlation between import risk distance
DIR and arrival times Tarrival in general confirms the outbreak regions declared by the WHO (see Figs. S10, S9).
There is a discrepancy for Delta. While using WHO and ”cov-lineages.org” data, the official outbreak country India
(IN) was second best, it is only on rank 12 if our GISAID estimates are used. A possible explanation is, that our
outbreak date estimation is 5 months after the WHO date. In order to not lose the countries with arrivals before the
outbreak date, we recompute the arrivals by the first count after the estimated outbreak date. One can argue that Delta
did locally spread much stronger in South Africa (ZA, the top ranked country), and therefore is ZA for the worldwide
distribution of larger importance than India. An alternative explanation is that the passenger flow in the WAN was too
low and when it increased, ZA had a more active Delta epidemic.
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Figure S9: Arrival prediction (r-value) for the 10 best outbreak candidate. The r-value between the import risk
distance d∞(m|n0) = − log(p∞(m|n0)) and the arrival time for the 10 best ranked outbreak countries (n0). The
2 Letters in the circles are the countries ISO alpha-2 codes. The red circle marks the country estimated as outbreak
country based on GISAID arrival times. In contrast to Fig. S6: the arrival times and outbreak dates are estimated via
GISAID data (arrival by first count, outbreak date by reaching the first time 2.5% of worldwide peak of the respective
variant).
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Figure S10: Arrival prediction performance (r-value) for the outbreak country candidates. The frequency of
the r-value between the import risk distance DIR(m|n0) = − log(p∞(m|n0)) and the arrival time for all possible
outbreak countries. The red vertical line marks the r-value using the country estimated as outbreak country based on
GISAID arrival times. In contrast to Fig. S7: the arrival times and outbreak dates are estimated via GISAID data
(arrival by first count, outbreak date by reaching the first time 2.5% of worldwide peak of the respective variant).
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III Epidemic Scenarios

We consider two distinct models to project the number of daily new infected people, namely, a renewal equation based
model and a multi-strain SIR-like model. The first one is actually part of the pipeline, while the second one is used as
validation.

III.1 Renewal equation

The renewal equation approach is a well-known technique, widely used in epidemiology [15, 16, 17]. The reason why
renewal equations are such strong candidates for early projection of new cases, is the fact that informing them requires
only the reproduction number of the new variant of concern, its generation interval distribution, and the number of
people infected by the new variant who travel into the target country from the source country. This allows easily to
explore scenarios with different values of epidemiological quantities of interest, such as the effective reproduction
number of a new variant as it spreads from the source country to others through travelers.

For now, we assume that the susceptible population is much larger than the number of active cases, and that the mixing
between the infected and the susceptible is homogeneous. This allows to exclude feedback loops in the dynamics,
e.g. the fact that immunity to the new variant builds up through infection, which would modify the dynamics itself.
Such strong assumptions are acceptable as long as we restrict our projections to the very first few weeks from the
introduction of the new variant in the target country.

The model assumes that the number of newly infected people at day t, I(t), is given by two distinct processes: a) the
arrival of infected individuals from the source country (Iout(t)) and b) the daily new infections (Iin(t)) happening in
the target country due to the endogenous spreading. The former is estimated from section II, while the latter can be
estimated through the renewal equation

Iin(t) =

t∑
s=t0

ΓsRsI(s), (S23)

where t0 is the day the first infected cases arrived in the target country, Rs is the daily reproductive number on day s,
and Γs is the generation time distribution, i.e. the fraction of transmissions that would occur on day s after infection.
Finally I(t) = Iout(t) + Iin(t). This is the simplest renewal process, which does not include the fact that the target
population might have an inhomogeneous immunological landscape, due to previous infections or vaccination. To
model this phenomenon, we reinterpret the term on the right side of equation (S23) as the number of inoculations
spreading from currently infecting people, which will turn into infections depending on the susceptibility of the re-
cipients. If we assume that previous infections (with other variants) protect against reinfection with an efficacy of ne,
and, analogously, vaccination has an effectiveness of νe, then we can explicitly account for removals by modifying
equation (S23) into

Iin(t) =
t∑

s=t0

ΓsRsI(s)

(
1− ne

R(old)(t)

N

)(
1− νe

V (t)

N

)
, (S24)

where Rold(t) is the number of recovered people from previous variants that still have some protection against infec-
tions, and V (t) is the total number of vaccinated people. This assumes that the number of recovered or vaccinated
people is uniformly distributed across the population, and that the events ’being vaccinated’ and ’having been infected’
are independent. This also assumes no gradual waning of protection against infection. However, we can consider as
recovered or vaccinated only people who were infected or vaccinated recently, rather than from the beginning of the
pandemic. For instance, considering only people who got either infected or their second dose up to six months prior
to t is equivalent to assuming that there is an abrupt waning of efficacy against protection six months after getting
infected or vaccinated.

Although these hypotheses might seem unrealistic, the lack of readily available data about waning and immunological
landscapes of various countries, and the fact that this should be used only for short-term scenario explorations, allow
us to avoid introducing further complexity into the model.

The cumulative number of cases and amount of fully vaccinated individuals at each day are the ones reported in the
public repository at 1. We select the values for vaccine efficacy and protection from previous infection from available
works. In particular we set the vaccine efficacy νe to 0 for Alpha, 0.5 for Delta, BA1 and BA2 and to 0.12 for BA.5

1https://ourworldindata.org/
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( [18, 19, 20, 21]). The selected protection against reinfection ne is 1 for Delta, 0.56 for BA.1 and BA.2 Omicron
lineages and 0.13 for BA.5 ( [22, 23, 21]).

The second model is a multi-strain SIR inspired by [24]. This is a two-strain model in which people who recover after
being infected with the former variant are not completely immune to infection from the latter variant. The equations
governing this system are 

dS
dt = −(λ0(t) + λ1(t))S(t)
dI(0)

dt = λ0S(t)− γI(0)(t)
dI(1)

dt = λ1S(t) + (1− neα)λ1R
(1)(t)− γI(1)(t)

dR(0)

dt = γI(0)(t)− (1− neα)λ1R
(0)(t)

dR(1)

dt = γI(1)(t)

(S25)

where λi(t) = βi
I(i)(t)

N , βi being the transmission rate of the variant i, and γ being the recovery rate. The initial condi-

tion S(t0), I0(t0), I1(t0), R0(t0), R1(t) =
{
S0, I

(0)
0 , Iout(t0) + I

(1)
0 , R

(0)
0 , R

(1)
0

}
. Note that, since Iout(t) represents

the arrivals from the source country at the beginning of each day, the system is not closed. This is not a problem
because we are considering countries, so Iout(t)

N ≪ 1. Since the dynamics does not include, per se, the fact that
the initial condition changes every day due to arrivals, we can solve this system on a daily basis, updating the initial
condition and restarting the system accordingly. The advantage of this system is that it includes feedback phenomena,
which is good when validating the model, as it may need to run for more than a few weeks. The drawbacks are that
informing the model requires good point estimates of the various compartments, and the interpretation of the trans-
missibility coefficient related to the measured Rt, which may not be straight-forward. For such reasons, this model is
used to validate the renewal equation approach, in particular for countries where no new cases were observed after a
few weeks from their emergence (not shown). Projections errors valuated with the SIR model relative to Alpha lineage
are shown in

III.2 A fully worked out example: the Alpha variant

We apply our pipeline to a real case, the Alpha variant of concern (VOC), that was identified in the UK on 20 September
2020 [8]. We assume that the UK is the source country and we demonstrate how the pipeline works. In the following,
we consider as the generation time interval distribution the one inferred from the literature [25].

Starting from the phylogenetic part of our pipeline, we take the time of emergence estimated when n = 20 sequences
were collected, to simulate a realistic scenario where only little information is available. This gives a central estimate
for the time of emergence of the Alpha variant around the 9th of November 2020. The daily growth rate estimated is
r = 0.097 (95% HPD: 0.008–0.202). To translate this into Rt in the source country, we assume that all the growth
rate advantage of Alpha relative to the previous circulating variants is given only by transmission advantage (limited
capacity of reinfections with Alpha). Further, typical generation time distributions are Gammas, as in [25]. This allows
us to estimate the Rt using formula 2.2 in [26]:

R =
(r + b)a

ba
, (S26)

where b and a are the shape and rate of the Gamma distribution generation time. In our case, a = 5.9, b = 1.13,
therefore Rt(α) = 1.62(1.04, 2.63).

For any target country, the projection of the number of cases infected with Alpha in the next weeks is performed in
two steps: first, we estimate the number of infected travelers (referred to as seeds) who arrive in the target country
from the source country, then we use the renewal equation (S24) on each possible scenario, to account for endogenous
transmission of the secondary cases in the target country. The first step consists in using the import risk estimates
described in section II to compute the number of daily travelers from source country to other target countries. We use
import risk probability from source to target times the average daily outflow of passengers from source country using
WAN data. We then determined the number of travelers infected with Alpha. This is done by considering the propor-
tion of sequenced cases that are Alpha times the 7 − day moving average of daily incidence of new cases, assuming
that sequences are taken randomly from the infected population. This estimate does not include undercounting in the
source country, which we can estimate as follows.

For a given country, we use the daily new estimated COVID-19 infections from the IHME model, which is a hybrid
with two main components: a statistical “death model” component produces death estimates that are used to fit an
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SEIR model component 2. For a complete overview of this model and a comparison with other estimates, we refer
to OWID3. The data we used for our estimation are publicly available4. In a given temporal window, we integrate
over time the confirmed number of cases (7d moving average) and the estimated true number of cases, as well as
the estimates for its lower and upper bounds defining the 95% uncertainty interval. The mean undercounting factor
is estimated by the ratio between the integrated estimate of the true cases and the confirmed ones in the temporal
window, and similarly we estimate the corresponding uncertainty interval. We show in Fig. SS11 the undercounting
factor obtained for all countries for which the data is available, whereas Fig. SS12 shows the evolution of this factor
along periods of 6 months for some representative countries.

Figure S11: Undercounting factors by WHO region and income group. Estimates of the factor accounting for
missing confirmed cases: values larger than 1 indicate that a country is counting and confirming less COVID-19 cases
than the real number. The reference period is the first semester of 2022. See the text for further details.

To allow for variability in undercounting, we consider two extreme scenarios: the best one, where undercounting is
assumed to be 2.27, and the worst one, where undercounting is assumed to be 2.97. The number of infected travelers
from the source country to the target country is then computed by multiplying the number of travelers into the target
country by the proportion of infected people in the source country. This is often not a natural number. This is not
a problem, as the renewal equation does not need to use integer number of infected people, and we interpret this as
the results of the various averaging performed through all the steps. The model produces the total number of infected
people in the target country given the seeds and the Rt by day of infection. To validate the model, we need to estimate
how many people infected with the VOC were present in the target country during the considered period. We do so
in the same way we estimate prevalence in the source country: by multiplying the proportion of sequenced cases that
turned out to be Alpha times the daily incidence in the target country, scaled by the estimated undercounting factor.

2https://covid19.healthdata.org/
3https://ourworldindata.org/covid-models.
4https://ourworldindata.org/grapher/daily-new-estimated-covid-19-infections-ihme-model.
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Figure S12: Undercounting factors over time. Estimates of the factor accounting for missing confirmed cases as in
Fig. S11, where each panel describes the evolution along periods of 6 months for some representative countries. The
dashed line indicates the value 4. See the text for further details.

The total number of different scenarios computed is, in this case 2 × 2 × 3: undercounting in both the source and
the target countries, and the different reproduction number of the VOC. Results are shown in Figure 3C and in Fig-
ure S13A.

III.3 Prediction error

For each lineage we evaluate different scenarios with a) low and high values of underreporting in both source and
target country b) three different basic reproduction numbers Rt that correspond to the range of growth rate values
estimated from the phylogenetic reconstruction.

We infer from data the number of infected individuals with the emerging lineage in the target country m and we
evaluate the prediction error as zero if this estimated number is included in the range identified by different epidemic
scenarios. If the number of infected people evaluated from data is out of the range spanned by the epidemic curves,
then the prediction error is evaluated as the root-mean-square error, normalized to the range of the data observed in
the target country m, between observed and the closest simulated epidemic curve:

nRMSE(m) =
1

maxt

(
I
(data)
m

)
−mint

(
I
(data)
m

)
√√√√ 1

nt

nt∑
t=1

[
I
(data)
m (t)− I

(model)
m (t)

]2
(S27)

where nt is the number of weeks with number of sequences greater than zero for the selected lineage in the considered
country m, that is nt is the number of available data points with not null infected people. Since the scenario simulations
stop at the 3 week after sequencing was reported in country m, nt is always nt = 2. The idea behind the normalization
by the data range is that it reflects the noise of reported sequences, i.e. if the sequencing rate is low, we expect a large
variation and the sequencing data is less reliable. Prediction errors evaluated for all the considered lineages are shown
in Figure 3 of the main document. All the panels report the nRMSE in each country as a function of both the number
of daily passengers normalized to the total country population (x-axis, values for 100000 individuals) and the number
of total collected daily sequences normalized to the total number of confirmed cases (y-axis, values for 100000 cases).
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A B C

D E

Figure S13: Epidemic prediction errors. Estimated errors between the number of individuals infected with an
emerging lineage and the epidemic curves simulated in the considered scenarios. X-axis show the number of daily
passengers normalized to the population in each country (for 100, 000 individuals), y-axis report the number of col-
lected daily sequences, without any classification per lineage, normalized to the total number of confirmed cases (for
100, 000 cases). Inset panels show the map of prediction errors in each country. Panels A-E refer to, respectively,
Alpha, Delta, BA.1, BA.2 and BA.5 lineages.

Insets show the evaluated error in each country. Results assess that, in most of the country, the simulated scenarios
encompass the data and the prediction error is evaluated as zero. Moreover, error values greater than zero can be found
for countries with higher passenger flows.
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Figure S14: Epidemic prediction errors with SIR model, Alpha lineage. Estimated errors between the number of
individuals infected with an emerging lineage and the epidemic curves simulated in the considered scenarios. X-axis
show the number of daily passengers normalized to the population in each country (for 100, 000 individuals), y-axis
report the number of collected daily sequences, without any classification per lineage, normalized to the total number
of confirmed cases (for 100, 000 cases). Inset panels show the map of prediction errors in each country.
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IV Pandemic delay

The pandemic delay estimates the time needed since tMRCA for a specific variant to reach a certain percentage y
in a target country. It depends in general on a large variety of factors as the reproduction number, the fraction of
vaccinated, the variant’s immune escape, season, weather conditions, the number, duration and strength of active
non-pharmaceutical interventions (NPI), the national and international mobility and the epidemic situation. In the
following estimation of the pandemic delay, we assume that the main driver/predictors for the pandemic risk are the
international mobility, the effective reproduction number and the country specific epidemic situation.

We will use a simple framework to combine the measures that is based on the replicator equation [27], stating that
the fraction of a new variant can be described by a simple logistic growth equation (illustrated for Delta lineage in
Figure S15). It assumes that there are 2 competing populations, the mixed population of all preexisting variants of
size Npre and the population of the emergent variant Nx. According to the replicator equation, the evolution of the
fraction x of the new variant in the whole population corresponds to

dx

dt
= x(f − f̃) (S28)

with f as the fitness of the new variant x and f̃ as the mean fitness, i.e.
f̃ = xf + (1− x)fv
= x(f − fv) + fv . (S29)

We can therefore rewrite the time-evolution to
dx

dt
= x(f − f̃)

= x(f − [x(f − fv) + fv])

= x([f − fv]− x[f − fv])

= ∆f(x− x2) (S30)
that has the logistic function as general solution

x(t) =
1

1 + e−∆ftc
=

1

1 + [1/x0 − 1] e−∆ft
, (S31)

with x0 as initial condition being the imported infected cases from the country of origin n0 to the target country m

x(t0,m|n0) = x0 =
Ur(t0, n0)Ix(t0, n0)

Ur(t0,m)Iv(t0,m)
· Fn0

Nn0

· p∞(m|n0) , (S32)

with t0 = tMRCA, Ur(t0,m) as the underreporting factor of cases in country m (introduced in Sec. III.2), Fn0

Nn0
as

the probability of leaving the country via the WAN and p∞(m|n0) as the import risk (see Sec. II). Note that with
Eqs. S31, S32 we assume that the initial import x0 dominates, i.e. imports at later times can be neglected (otherwise a
constant flux needs to be implemented). The fitness difference between the new variant vs. the already existing variant
mix is approximated by

∆f = lnR− ln (Rpre = 1) = lnR (S33)
i.e. we assume that the reproduction number of the preexisting variant mix is one, motivated by the observed fluctua-
tions around Rpre = 1 due to the behavioral and/or medical adaptation to the local epidemic situation.

The pandemic delay ty is the time needed for the new variant to reach the fraction y of the infected population, where
ty(m) for a specific country m is (rearranging Eq. S31)

ty(m) = − 1

∆f
ln

(
1− y

[1/x0(m)− 1]y

)
. (S34)

We can further simplify the pandemic delay by assuming that the initial import is small

ty(m) =
1

∆f

(
ln

(
1− x0

x0

)
− ln

(
1− y

y

))
∝ 1

∆f

(
ln

(
1− x0

x0

))
∝ − lnx0

∆f
. (S35)

However, this simplification is merely meant as a help to ease understanding of the functional relations. In the
manuscript, we use explicitly Eq. S34.
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Figure S15: The fraction of seq. on GISAID attributed to the Delta variant for four example countries. As described
for the Alpha variant by Fort [27], the relative fraction of a new variant can be accurately described by a simple logistic
growth equation (Eq. S31).
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V Information Distance

We also devise an alternative definition of distance on top of a network which embeds information from multiple-
pathways diffusion as an additional comparison to the import risk measure. Distances based on the diffusive properties
of the system have been of interest in recent years [10, 13]. Another key example is the Diffusion Distance [12] which
estimates a metric distance between nodes based on how similarly the random walkers explore the network by using
those nodes as sources, under the assumption that a mesoscale structure is recovered during the time scales in which
the random walker explores its functional community.

Starting from Diffusion Distance definition, we propose an educated rewrite of the measure that fits the problem
under study to predict arrival times of a random walker on the network, such as an infectious traveler from a source
country. The probability p(t | i) of a walker to be in any point in the network at time t, starting from node i, embeds
information of multiple paths via successive applications of the Laplacian operator. We introduce a new measure that
merges this concept from Diffusion Distance and also embeds information from Effective Distance [10], namely, the
idea that low probabilities pk(t | i) are associated with large distances. This can be embedded by taking the negative
of the logarithm of the probability, in analogy with Shannon’s entropy. We now introduce this candidate measure for
diffusive dynamics which we define Information Distance:

DID
(s→k)(t) = − log10 pk (t | s) (S36)

in which pk (t | s) represents the k − th entry associated with node k of the probability state p(t | s) = vs · e−tLRW

.
Here vs is the initial condition probability for the walker starting from node s, the canonical vector with s-th com-
ponent equal to 1. The random walk normalized Laplacian (LRW ) [28] term encodes the probability to move from
node i to node j in its matrix elements. Its off-diagonal terms can be computed as the negative value of Pij , which is
directly estimated from the WAN weighted links as stated in subsection II.2. Given the multiple timescales involved
in this definition, we evaluate the metric at different scales t to find the timescale at which DID(t) performs better.

Lineage Source tMRCA t50S Underrep. Fact. Naive Seq. Rate [%] Seq. Rate [%]

Alpha GBR 13 Sep 2020 1 Nov 2020 2.6 0.19 0.075
Delta IND 30 Aug 2020 7 Feb 2021 28.9 2.49 0.086
BA.1 ZAF 31 Oct 2021 5 Dec 2021 19.7 51.8 2.623
BA.2 ZAF 24 Oct 2021 19 Dec 2021 19.7 1.1 0.056
BA.5 ZAF 16 Jan 2022 17 Apr 2022 31.6 2.94 0.093
BA.2.75 IND 10 Apr 2022 12 Jun 2022 76.4 0.41 0.005

Table S1: Sequencing rates in the outbreak countries (Source) of SARS-CoV-2 B.1.1.7 (Alpha), B.1.617.2 (Delta),
B.1.1.529 (BA.1), BA.2, BA.5 and BA.2.75 (Omicron) lineages. The outbreak countries (Source) are represented by
their ISO alpha-3 codes (GBR: Great Britain, IND: India, ZAF: South Africa). The naive sequencing rate (Naive Seq.
Rate) was computed by the ratio between new weekly cases (based on OWID-data [55]) and the weekly collected
sequenced samples (based on GISAID-data [32]). We compute the final sequencing rate (Seq. Rate) by dividing
through the underreporting factor (Underrep. Fact.) whose estimation is described in Sec. III.2. Both estimates
are averaged for the lineage respective time-period between the median time of the most recent common ancestor
(tMRCA) and the time when the first 50 samples got collected (t50S).
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