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Abstract

Background: This study identified a clinically significant subset of glioma patients with
tumor outside of contrast-enhancement present at autopsy, and subsequently developed a
method for detecting non-enhancing tumor using radio-pathomic mapping. We tested the
hypothesis that autopsy-based radio-pathomic tumor probability maps would be able to
non-invasively identify areas of infiltrative tumor beyond traditional imaging signatures.
Methods: A total of 159 tissue samples from 65 subjects were aligned to MRI acquired
nearest to death for this study. Demographic and survival characteristics for patients with
and without tumor beyond the contrast-enhancing margin were computed. An ensemble
algorithm was used to predict pixelwise tumor presence from pathological annotations using
segmented cellularity (Cell), extracellular fluid (ECF), and cytoplasm (Cyt) density as input
(6 train/3 test subjects). A second level of ensemble algorithms were used to predict voxel-
wise Cell, ECF, and Cyt on the full dataset (43 train/22 test subjects) using 5-by-5 voxel
tiles from T1, T1+C, FLAIR, and ADC as input. The models were then combined to
generate non-invasive whole brain maps of tumor probability. Results: Tumor outside of
contrast was identified in 41.5 percent of patients, who showed worse survival outcomes
(HR=3.90, p<0.001). Tumor probability maps reliably tracked non-enhancing tumor in the
test set, external data collected pre-surgery, and longitudinal data to identify treatment-
related changes and anticipate recurrence. Conclusions: This study developed a multi-
stage model for mapping gliomas using autopsy tissue samples as ground truth, which was
able to identify regions of tumor beyond traditional imaging signatures.
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1. Introduction

Glial brain tumors are the most common form of central nervous system originating tu-
mors, with a yearly incidence of around 6 per 100,000 persons1. High-grade gliomas such as
glioblastomas (GBMs) are often difficult to treat due to their aggressiveness and pathological
heterogeneity, contributing to one- and five-year survival rates of 41 percent and 5 percent,
respectively2,3. Current standard of care requires precise tumor localization to maximize
the efficacy of frontline treatments such as surgical resection and targeted radiation therapy.
Studies examining extent of resection in glioma patients have demonstrated maximizing tu-
mor removal improves patient survival outcomes, underscoring the importance of identifying
the full extent of gliomas4–7.

Magnetic resonance imaging (MRI) is currently the primary method for non-invasive dis-
ease monitoring of gliomas. Gadolinium contrast agents are used to highlight disruptions in
the blood brain barrier due to tumor angiogenesis, which results in an enhanced signal in
T1-weighted imaging that is used to define the primary tumor mass8–10. Hyperintensities on
T2-weighted fluid attenuated inversion recovery (FLAIR) images correspond to a mixture of
infiltrative tumor and edema, though differentiating between tumor and non-tumor remains
a source of uncertainty in imaging interpretation11–14. Apparent diffusion coefficient (ADC)
images derived from diffusion-weighted imaging have shown promise in highlighting areas of
diffusion restricting hypercellularity associated with tumor, though recent studies validat-
ing this signature beyond the contrast-enhancing margin have disputed the strength of this
relationship14–19. Machine learning approaches have also sought to maximize the amount
of clinically relevant information we can extract from these non-invasive images, employing
recent advances in computing to automatically segment the radiologist-defined margin, iden-
tify patient-level genetic signatures such as IDH1 mutation and MGMT methylation status,
and predict cellular-level information using biopsy samples as validation20–24.

Despite the promise of these recent techniques, identifying areas of tumor beyond the
contrast- and FLAIR-enhancing margins remain particularly difficult. Studies of autopsy
tissue samples aligned to MRI acquired near death have found areas of active tumor as
far as 10 cm beyond the treated margin, indicating the need for improvements in tumor
tracking17,25,26. However, identifying regions of tumor beyond current signatures requires
ground truth tissue samples from beyond the suspected tumor region, which is beyond the
capabilities of studies using biopsy tissue and radiologist annotations as the gold standard.
Therefore, studies with access to tissue beyond contrast enhancement are essential for iden-
tifying the true extent of tumor, particularly in the less-studied post-treatment state. This
study uses autopsy tissue samples, collected both within and beyond the traditional tumor
margin, to assess the prevalence of tumor outside the MRI-defined margin and develop a
multi-stage model for non-invasive tumor probability mapping. Specifically, we tested the
hypothesis that an MRI-based model for tumor probability trained on autopsy tissue samples
can track glioma invasion beyond the currently defined margin.

2. Methods

2.1. Patient Population

This study was approved by the Institutional Review Board of Medical College of Wis-
consin. Written, informed consent was obtained from 65 patients to participate in this study,
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Figure 1: Overview of data collection process. A) T1, T1+C, FLAIR, and ADC scans are collected from
each patient’s last imaging session prior to death. All scans are aligned to the FLAIR image and qualitative
scans are intensity normalized by the within-brain standard deviation. B) Brains are formalin-fixed in 3D
printed brain cages to prevent distortion, and patient specific slicing jigs are used to slice brains in alignment
with each patient’s MRI. Tissue is then digitized and segmented into different tissue features, and a subset of
patients is annotated for tumor presence. C) Tissue data is then warped to the MRI using manually defined
control points, and regions of interest are drawn to selectively include areas of high-quality tissue and MRI
data.

each diagnosed with a glioma in concordance with the 2021 WHO classification standards
for brain tumors. These participants were divided into a training dataset used for model
development and a test set used to test model generalizability. Clinical and demographic
characteristics of this sample, as well as for the subsamples relevant to this study, are pre-
sented in Supplemental Table 1. A schematic of the overall study outline and data
processing steps is presented in Figure 1.

2.2. MR Image Acquisition and Preprocessing

Clinical imaging from each patient’s last MRI session prior to death was collected for use
in this study. Due to the use of clinical imaging, acquisition parameters were not standardized
across patients. T1, T1+C, FLAIR, and ADC images were selected as the primary focus
for this study, as they provide a wide range of information regarding tissue characteristics
while remaining ubiquitous across clinical acquisitions. T1, T1+C, and ADC images were
each rigidly aligned to the FLAIR image using SPM12 (https://www.fil.ion.ucl.ac.uk/spm).
Qualitative images (T1, T1+C, and FLAIR) were then divided by the intensity standard
deviation within the brain to normalize values across patients8,14. For the test set, MRI
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sessions from the patient’s entire clinical history were collected, aligned to the FLAIR nearest
to death, and normalized to assess the ability of the model to track tumor growth patterns
over time.

2.3. Tissue Segmentation and Processing

A total of 159 tissue samples were collected from participants at autopsy using previously
described methods and placed in 66 mm by 49 mm large format cassettes14,17,26. Following
hematoxylin and eosin (HE) staining, digitization at 40X magnification, and downsizing by
a factor of 10, a color deconvolution algorithm was used to separate the images into color
channels that correspond to stain optical density (i.e., positive hematoxylin staining, positive
eosin staining, background)27. This image was then filtered and processed to extract nuclei,
cytoplasm (Cyt,), and extracellular fluid (ECF). Both segmentations were then upsampled to
approximate MRI resolution, using 50x50 superpixels to convert segmentation masks to cell
density (cells/mm2) and ECF/Cyt proportion (ranging from 0 to 1). Additionally, 33 tissue
samples from a subset of 9 participants were annotated for presence of infiltrative tumor
(IT), tumor with pseudopalisading necrosis (PN), non-tumor necrosis (NtN), and unlabeled
tissue (UL) by a pathologist-trained technician.

2.4. MRI-Histology Co-registration

Tissue samples were aligned to each participant’s FLAIR image using previously pub-
lished in-house software, written in Matlab14,17,26,28,29. Manually defined control points were
used to identify architectural landmarks on both the tissue data and the MRI using photos
from autopsy to guide accurate placement. These control points were then used to compute
a non-linear transform that warped tissue to the same space as the MRI, and regions of
interest were drawn to exclude areas of tissue distortion (i.e., rips, tears, folds) and MRI
artifacts. Following MRI-tissue co-registration, all MRI and tissue data was resampled to
0.4397 X 0.4397 mm per pixel resolution to harmonize all subjects to the most common
acquisition parameters.

2.5. Assessing prevalence of tumor beyond MRI-defined margin

Aligned autopsy tissue was then compared to the T1+C MRI to estimate the prevalence
of tumor outside of contrast enhancement (TOC). Tissue samples were visually inspected for
tumor presence using histological characteristics (i.e. hypercellularity, mitotic events, pseu-
dopalisading necrosis), as well as any annotations or immunohistochemical staining available
(i.e., Ki-67, CD31). Patients were then coded for presence of TOC by comparing manually
segmented maps of contrast to the aligned tissue samples (see Supplemental Figure 1
for examples). Chi-squared tests were also used to determine differences in TOC frequency
amongst patients who did and did not receive radiation with temozolomide (Rad+TMZ),
Bevacizumab (Bev), and tumor treating fields (TTFields), as well as amongst diagnostic
grade groups. A Cox proportional hazards regression was then fit to compare survival du-
rations between patients with and without TOC, including time between MRI and death as
a covariate. Survival curves were limited to patients who had received standard treatment
(Rad+TMZ) to exclude a small number of untreated patients who tended to survive shorter
than similar patients who had received treatment. Analysis was performed for the full data
set (N=65), as well as on subjects with scans less than 90 days away from death (N=47) and
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patients with a primary GBM at first surgery (N=37) to compare results across potential
confounds.

2.6. Predicting tumor presence from pathological segmentations

A chart indicating the flow of patients across the multiple model training stages is pre-
sented in Supplemental Figure 2. The first component of the multi-stage tumor prediction
model involved predicting tumor annotations from the segmented pathology data. Several
different candidate models were assessed, including k-nearest neighbors, näıve bayes, decision
trees, and random-under-sampling-boosted random forest (RUS Tree) models. Each model
was trained using pixelwise cell, Cyt, and ECF density as input to predict tumor annotation
(IT and PN) versus non-tumor (NtN and UL). Models were trained on slides from 6 subjects
and validated on the 3 remaining subjects to assess generalizability. Model performance
was evaluated using receiver operator characteristic (ROC) plots and area under the curve
(AUC) metrics. The model with the highest AUC was then incorporated into the multi-stage
model.

2.7. Predicting pathological segmentations from MRI data

The second stage of the multi-stage model focused on training separate models to pre-
dict cell, Cyt, and ECF density using MRI data. Bootstrap aggregating (bagging) random
forest models were trained to predict voxel-wise densities using 5 by 5 voxel tiles from the
T1, T1+C, FLAIR and ADC as input. This model framework was selected based on our
previous publication, which developed a proof-of-concept model for predicting cellularity us-
ing MRI data in a smaller sample of patients25. These models were developed on 2/3rds of
the full dataset (N=43) and tested on the held-out test set (n=22) to assess generalizabil-
ity. None of the patients in the pathological tumor prediction test set overlapped with the
training set for these radio-pathomic models, ensuring that the test set contained only data
unseen in training for every component model. Quantitative performance was evaluated
using root-mean-squared error (RMSE) estimates within each test set subject, and example
segmentations were plotted and compared to ground truth segmentations to ensure accurate
spatial localization of cell, ECF, and Cyt trends. Predicted maps for cellularity were set to
range from 0 to 6000+ cells/mm2, which offered good contrast between hypercellular tumor
and normal tissue when examining tissue samples, and ECF/Cyt density maps were set to
range from 0 to 1, reflecting the minimum and maximum possible values of the measurement.

2.8. Predicting tumor presence from MRI data

Following model training, the best performing pathological tumor prediction model was
used to convert whole brain cell, ECF, and Cyt density maps to tumor probability maps
(TPMs). These maps were then plotted against predicted segmentations to assess patterns
in what the model classifies as tumor, as well as against ground truth tissue segmentations
and annotations to assess accuracy at identifying novel tumor beyond traditional signatures.
TPMs were then applied to longitudinal images from all applicable timepoints across each
test set patient’s clinical history to assess the ability for our tumor prediction model to
identify areas of pre-angiogenic recurrent tumor prior to contrast enhancement. Additionally,
whole brain TPMs were applied to two external data sets to assess the quality of the maps
(i.e., free from artifacts, noise) and ability to identify non-enhancing tumor on MRI data
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Figure 2: Prevalence and survival analyses for patients with tumor outside contrast enhancement. Analyses
were performed separately for the full dataset, patients with MRI less than 90 days prior to death, and
patients with a primary GBM. Survival analyses were conducted using Cox proportional hazards regression
and only include patients who have received Rad+TMZ treatment. Results indicate increased TOC frequency
amongst GBMs and patients who have received Rad+TMZ or Bev treatment. Patients with TOC also show
reduced survival compared to patients without TOC. *p<0.05, **p<0.01

acquired entirely independently of this study. The first external subject was a 61 year old
male diagnosed with a recurrent GBM, whose scan was collected by our external collaborators
at the University of California – Los Angeles. The second external case was a pre-treatment
acquisition from a 50 year old male diagnosed with GBM, taken from the publicly available
TCGA-GBM dataset (https://cancergenome.nih.gov/)30,31.

3. Results

3.1. Prevalence of non enhancing tumor

Figure 2 shows the prevalence estimates for TOC presence, as well as corresponding
Kaplan-Meier plots for survival analyses. TOC was observed in 41.5 percent of patients, with
increased presence amongst GBM (GIV) patients (χ2=10.73, p=0.005), patients who have
been treated with Rad+TMZ (χ2=3.99, p=0.046), and patients treated with bevacizumab
(Bev) (χ2=5.41, p=0.020). Treated patients with TOC showed decreased survival rates
compared to patients without TOC (HR=3.90, 95 percent CI = 2.50-5.30, p<0.001). Patients
with MRI data from within 90 days of death also showed increased TOC presence amongst
Rad-TMZ and bevacizumab-treated (χ2=4.50, p=0.033 and χ2=4.50, p=0.033, respectively)
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Figure 3: Pathological tumor prediction. A) The pathological tumor prediction model uses cell density,
ECF, and Cyt segmentations to distinguish tumor vs. non-tumor using the pathological annotations as
ground truth. B) The RUS Tree algorithm was the highest performing tumor prediction model (AUC=0.857)
and was used in the final multi-stage TPM model. C) Example tumor probability maps from the RUS Tree
model show accurate tumor prediction in both IT and PN areas, while avoiding both normal tissue and areas
of necrosis.

patients, and reduced survival associated with TOC (HR = 3.85, 95 percent CI = 2.33-5.37,
p = 0.001). Primary GBM patients did not show significant differences in TOC presence
with respect to treatment but did show reduced survival within patients with TOC (HR =
2.95, 95 percent CI = 1.32-4.57, p = 0.025).

3.2. Predicting tumor presence from pathological segmentations

Figure 3 shows the performance results for the pathological tumor prediction model,
along with example tumor probability maps and corresponding ground truth annotations.
The RUS Tree model gave the best ROC AUC of 0.857 and was therefore selected as the
model used to convert MRI-based pathological segmentations into tumor probability maps.
Example predictions show good concordance between areas of high tumor probability and
actual tumor presence within both IT and PN tumor types, while correctly avoiding edema
and other non-tumor areas.

3.3. Predicting pathological segmentations from MRI data

Segmentation prediction results are shown in Figure 4, along with example whole brain
predictions on test set subjects. Each radio-pathomic model had a mean subject-level RMSE
value within a standard deviation of the ground truth (cell density Std. RMSE = 0.756, Cyt
Std. RMSE = 0.917, ECF Std. RMSE = 0.941), indicating satisfactory model performance
for each tissue type. Example predictions indicate regions where these maps improve patho-
logical interpretations of the MRI data, such as discrimination between areas of edema and
hypercellularity within the FLAIR hyperintense region and areas of hypercellularity beyond
contrast enhancement.
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Figure 4: Radio-pathomic maps of tissue segmentations. A) 5 by 5 voxel tiles from T1, T1+C, FLAIR,
and ADC were used to predict voxelwise cell density, ECF, and Cyt using bagging random forests. B)
Test set performance indicates an average subject-level RMSE within a standard deviation of the tissue
ground truth for each tissue class, indicating satisfactory model performance for most subjects. C) Example
tissue predictions show areas of accurately predicted cellularity beyond contrast enhancement, as well as
distinguishing between vasogenic edema and hypercellular areas within the FLAIR hyperintense region. The
subject on the left shows a portion of hypercellularity extending posterior to the contrast-enhancing margin,
while highlighting a reduction in cell density within the FLAIR hyperintensity anterior to the contrast-
enhancement. The subject on the right shows an area of increased cellularity in the absence of contrast
enhancement and diffusion restriction.

3.4. Predicting tumor presence from MRI data

An example TPM generated from the full multi-stage model are presented in Figure 5.
Test set TPM with pathological annotations available showed good correspondence between
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Figure 5: Example TPM for a test set subject (GBM, Female, 80yo) , along with corresponding MRI and
segmentation predictions. The TPM for this patient accurately highlights an area of tumor outside contrast
enhancement and in the absence of diffusion restriction. In addition, the cell density map highlights that the
entire tumor area is hypercellular, while the ECF map highlights a high-ECF core to the hypercellular area,
which correctly suggests an area of pseudopalisading necrosis (high cellularity, high ECF). This demonstrates
the ability for TPMs to distinguish between pathologically distinct regions of tumor.

areas of predicted and actual tumor, with separation between areas of PN (high cellularity,
high ECF) and areas of non-PN tumor (high cellularity, normal ECF) seen on the correspond-
ing segmentation maps. Tumor was also accurately observed beyond the contrast enhancing
region. External data and longitudinal TPMs are presented in Figure 6. Predictions on ex-
ternal data sets demonstrated that TPMs generated from this framework provided low-noise,
interpretable maps on new data, as well as identified new areas of possible tumor infiltration
beyond contrast enhancement. Longitudinal predictions for the example subject showed
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Figure 6: External and longitudinal TPMs. A) Example TPMs applied to externally collected data show
similar quality TPMs to those included in our study and show areas of predicted tumor beyond contrast
enhancement. B) Longitudinal TPMs show early indications of tumor crossing over into the contralateral
hemisphere 374 days prior to death, with confirmed tumor in this region at autopsy. Additionally, the TPMs
show a decrease in tumor probability in response to Bev+TMZ treatment that returns to pre-treatment
levels after treatment cessation, suggesting TPMs may be able to visualize the effects of treatment on non-
enhancing portions of tumor.

the TPM in response to treatment, where areas of heightened tumor probability tended to
fade after administration of Bev+TMZ and returned following treatment cessation. These
maps also identified tumor crossing-over into the contralateral hemisphere as early as 374
days prior to death despite a lack of contralateral contrast enhancement across the patient’s
imaging. This area of crossing over was confirmed to be tumor at autopsy.

4. Discussion

This study developed a multi-stage tumor prediction model that accurately identifies
areas of infiltrative tumor beyond traditional imaging signatures. A pathological tumor
prediction model based on histology segmentations was combined with MRI-based maps of
tissue composition to bridge the gap between histopathological assessment and non-invasive
tracking of glioma. We validated this technique using autopsy tissue samples collected near
death as ground truth, and successfully applied our models to external data to demon-
strate generalizability. Furthermore, we showed that these models can detect areas of tumor
recurrence prior to contrast enhancement in retrospective longitudinal data from our test
set patients, indicating further clinical utility in disease tracking across patients’ clinical
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histories. This study is the first of its kind to provide tumor probability maps validated
using tissue well-beyond the current treatment margin, and is, to date, the largest study of
radio-pathomic signatures at autopsy in brain cancer.

This study demonstrates that around half of gliomas exist in part beyond the treated
margin, with higher rates observed in higher grade tumors such as glioblastomas. Since this
study only used select tissue samples from areas of suspected tumor that could be aligned
accurately to the MRI after tissue processing, this frequency is likely a lower bound, as it is
possible that areas of tumor are missed in the tissue sample selection process. However, this
prevalence estimate highlights that tumor outside of contrast enhancement is present in most
cases, and targeted future MRI-based research should focus on these regions specifically to
improve non-invasive tumor localization. In addition, future research at the molecular level
could identify pathologic or genetic signatures of enhancing versus non-enhancing tumors,
because a better understanding of how tumor evades current detection mechanisms could
drive future treatments directed at these non-angiogenic areas of tumor. This is particularly
crucial to understanding tumor in the treated state, as our preliminary assessment of treat-
ment effects on TOC/TOF highlight treatment’s impact on radio-pathomic relationships.
Bevacizumab in combination with Rad+TMZ treatment was associated with greater tumor
outside of contrast compared to bevacizumab-näıve patients, which is hypothesized to be
caused by the anti-angiogenic treatment disrupting the co-occurrence of tumor and contrast
enhancement. In the future, more targeted research should be conducted to elucidate the
mechanism of this relationship further, as well as to understand the influence of factors such
as treatment duration and timing on non-enhancing tumor invasion.

To detect regions of tumor beyond traditional imaging signatures, we developed a multi-
stage model to predict tumor using autopsy tissue samples as ground truth. Prior research
attempting similar tasks have used biopsy tissue samples, which, while useful, inherently fail
to capture areas of tumor beyond the treated margin19,32–34. Our prior studies of autopsy
tissue samples have highlighted how imaging signatures validated within contrast enhance-
ment, such as an inverse relationship between ADC and cellularity, tend to show much
weaker relationships when validated using tissue from beyond the enhancing region14,17. Our
prior paper also developed a proof-of-concept model for predicting cellularity using autopsy
tissue samples, which, while insightful, does not directly correlate with areas of tumor, as
not all tumor regions (i.e., areas of pseudopalisading necrosis) are strictly hypercellular and
not all areas of increased cellularity (i.e., areas of immune response) are tumor25. This study
sought to expand upon this method by incorporating multiple tissue segmentations to pre-
dict tumor presence itself. In addition to providing precise assessments of tumor presence to
distinguish between regions of tumor and non-tumor, the tissue segmentations for cellularity,
ECF, and cytoplasm aided in interpreting different features of tumor, such as distinguish-
ing between areas of PN and non-PN tumor, as well as differentiating between areas of
tumor and vasogenic edema within FLAIR hyperintensity. This highlights how providing a
rich pathological ground truth can vastly improve non-invasive tumor tracking, particularly
using machine learning techniques to map relationships invisible to the naked eye.

In addition to applying our model to a held-out test set to assess model performance near
death, we applied our model to longitudinal imaging throughout patients’ clinical history to
assess our model’s ability to predict recurrence prior to contrast enhancement. A subset of
cases showed areas of predicted tumor that became contrast-enhancing tumor months later,
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and some subjects even showed areas of infiltrative tumor beyond contrast enhancement
months prior to death that never became contrast-enhancing but did in fact contain tumor at
autopsy. Though future research using biopsy samples is required to confirm tumor presence
at timepoints prior to death, these results suggest that TPMs may identify tumor prior to
its visual appearance on traditional imaging. By applying this technique to retrospective
data and previously collected clinical trials, these maps may be able to reveal new signatures
of treatment response in terms of reduced hypercellular volume and low tumor probability,
which in turn could identify subsets of patients that selectively respond to treatment.

4.1. Limitations

Due to the use of autopsy tissue samples, the time between imaging and death is an
important limiting factor in this study. It is likely that tumor continues to grow near death,
and imaging acquired months before death may not reflect how the patient’s imaging would
look immediately prior to death. We have accounted for this in our study by restricting
our frequency assessment of tumor outside contrast enhancement to imaging within two
months of death and have matched our train and test data sets for time between MRI and
death. However, future studies using longitudinal imaging to model tumor growth rates
may control for this factor more precisely. Post-mortem MRI has also been considered as
an alternative, however the changes in tissue properties post-fixation and inability to collect
common brain cancer imaging acquisitions (i.e., T1+C) would hinder the ability for our
models to predict tumor on clinical data. It is also possible that tissue distortions that have
occurred during processing may result in imperfect alignment with MRI data; however, our
previously published tissue processing protocol controls for this factor at every step of the
tissue collection process, and regions of interest defined after non-linear warping are used to
exclude regions of suboptimal tissue quality. Additionally, while this is the largest study of its
kind using an unprecedented amount of autopsy tissue data aligned to MRI, the validation
set for this study was relatively small compared to other machine learning studies. Our
predictions on external data sets highlight the feasibility of applying this method to large
data sets for further validation, but precise validation using tissue samples remains an area
of future research beyond the scope of this study.

4.2. Conclusion

This study used autopsy tissue samples aligned to MRI to develop a multi-stage model for
tumor probability to predict areas of non-enhancing tumor that occur in most glioma patients
in our data set. This model accurately identified regions of tumor beyond traditional imaging
signatures, provided information for distinguishing between hypercellular and necrotic areas
of tumor, and identified distinct phenotypes based on the maps that differ in survival and
treatment efficacy. This technique has the potential to improve disease tracking in the
post-treated state and could expand the treated margin to encompass additional infiltrative
tumor missed by current tracking techniques. This improvement in disease tracking can thus
improve treatment efficacy and clinical outcomes.
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6. Data Availability

The MRI and histology data sets used in this study are not currently publicly available
due to data usage agreement restrictions. De-identified data is available upon reasonable
request.
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7. Supplemental Material

Table 1: Demographic and clinical summary for included subjects)

Train Test
Number of Subjects 43 22
Age (years) 58.4 (14.1) 60.9 (11.7)
Overall Survival (months) 48.8 (71.2) 34.8 (42.3)
GBM/Non-GBM 29 / 14 18 / 4
Radiation treatment (y/n) 39 / 4 21 / 1
Chemotherapy (y/n) 39 / 4 20 / 2
Bevacizumab (y/n) 34 / 9 15 / 7
Tumor Treating Fields (y/n) 17 / 26 6 / 16
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Supplemental Figure 1: Examples of patients with and without tumor outside of
contrast
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Supplemental Figure 2: Flowchart for the subjects included in each stage of the tumor
probability map (TPM) model development
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