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1 Abstract

2 An underestimation of pertussis burden has impeded understanding of transmission and disallows 

3 effective policy and prevention to be prioritized and enacted. Capture-recapture analyses can improve burden 

4 estimates; however, uncertainty remains around incorporating health administrative data due to accuracy 

5 limitations. The aim of this study is to explore the impact of pertussis case definitions and data accuracy on 

6 capture-recapture estimates. We used a dataset from March 7, 2010 to December 31, 2017 comprised of 

7 pertussis case report, laboratory, and health administrative data. We compared Chao capture-recapture 

8 abundance estimates using prevalence, incidence, and adjusted false positive case definitions. The latter was 

9 developed by removing the proportion of false positive physician billing code-only case episodes after 

10 validation. We calculated sensitivity by dividing the number of observed cases by abundance. Abundance 

11 estimates demonstrated that a high proportion of cases were missed by all sources. Under the primary analysis, 

12 the highest sensitivity of 78.5% (95% CI 76.2-80.9%) for those less than one year of age was obtained using all 

13 sources after adjusting for false positives, which dropped to 43.1% (95% CI 42.4-43.8%) for those one year of 

14 age or older. Most code-only episodes were false positives (91.0%), leading to considerably lower abundance 

15 estimates and improvements in laboratory testing and case report sensitivity using this definition. Accuracy 

16 limitations can be accounted for in capture-recapture analyses using different case definitions and adjustment. 

17 The latter enhanced the validity of estimates, furthering the utility of capture-recapture methods to 

18 epidemiological research. Findings demonstrated that all sources consistently fail to detect pertussis cases. 

19 This is differential by age, suggesting ascertainment and testing bias. Results demonstrate the value of 

20 incorporating real time health administrative data into public health surveillance if accuracy limitations can be 

21 addressed.

22 Introduction

23 Pertussis remains one of the most common vaccine-preventable diseases in Canada [1]. Despite 

24 being a reportable disease, an underestimation of cases and deaths has impeded understanding of 
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25 transmission. Ascertainment bias is a key concern, which occurs when atypical cases are underdiagnosed 

26 including older individuals experiencing mild disease [2, 3]. This issue is worsened by testing bias, with 

27 younger, severe cases more likely to be tested, have a positive result, and be reported [4, 5]. Burden 

28 estimates vary regionally based on interactions between case definitions, the type of surveillance and data 

29 available, practitioner knowledge, immunization programs, and the extent of local transmission [4, 6]. 

30 Underestimation may be attributed to failing to consider pertussis diagnostically, atypical presentations, 

31 infrequent diagnostic testing, suboptimal test accuracy, lack of uniformity in case definitions, and reporting 

32 issues [2, 5]. In combination with complicated epidemiological characteristics, pertussis surveillance is 

33 consequently challenging [4, 7]. However, monitoring burden is essential for informing and assessing the 

34 impact of immunization programs and policy [4, 6-9].

35 To improve pertussis burden estimates, one strategy is to supplement surveillance data with health 

36 administrative data [10]. When several sources are available, capture-recapture analyses can be used to 

37 better estimate burden [11]. This analytic approach has been recently used to assess completeness of 

38 contact-tracing for Ebola and detection of Covid-19 infections [12, 13]. For pertussis, capture-recapture has 

39 been used to estimate the number of deaths in England and the number of cases in Ontario [10, 14]. The 

40 latter estimated that 21-73% of cases have been missed using combined surveillance, laboratory, and health 

41 administrative data [10]. However, considerable uncertainty in estimation remained around the validity of 

42 using the latter, and particularly Ontario Health Insurance Plan (OHIP) physician billing diagnostic codes. The 

43 aim of this study is to explore the impact of using different pertussis case definitions and adjusting for data 

44 accuracy on capture-recapture results, with the goal of enhancing the utility of this method for improving 

45 burden estimates to inform public health surveillance, prevention, and policy.
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46 Methods

47 The University of Toronto’s Health Sciences Research Ethics Board (37885) and the Public Health 

48 Ontario (PHO) Ethics Review Board (2019-006.02) approved this study. Data were linked and analyzed at ICES 

49 (formerly the Institute of Clinical Evaluative Sciences) using unique encoded identifiers.

50 Data sources

51 We obtained Public Health Information System (iPHIS) and PHO Laboratory Information System 

52 (Labware) data from a PHO linked dataset previously used to improve estimates of pertussis burden in 

53 Ontario [10]. iPHIS data contained confirmed, probable, and “does not meet” (DNM) pertussis case reports. 

54 We considered reports greater than 365 days apart a new case, with data available from April 1, 2006 to 

55 March 31, 2015. When duplicates occurred in the same year, we gave priority to the highest level of 

56 confirmation. Labware data included positive, indeterminate, and negative pertussis laboratory tests, with 

57 cases defined as at least one positive result by PCR or culture. We counted positive results more than 90 days 

58 apart as a new case, and data were available from December 7, 2009 to March 31, 2015. 

59 We updated the PHO dataset until March 31, 2018 and combined it with health administrative data from 

60 December 1, 2009 from three databases held at ICES: the Canadian Institute for Health Information (CIHI) 

61 Discharge Abstract Database (DAD); the CIHI National Ambulatory Care Reporting System (NACRS); and the 

62 Ontario Health Insurance Plan (OHIP) Claims Database (Fig 1). Collected data included ICD-10 codes A37.0 

63 (whooping cough, Bordetella pertussis) and A37.9 (whooping cough, unspecified species) from 

64 hospitalizations and emergency room visits and OHIP diagnostic billing code 033 (whooping cough, Bordetella 

65 pertussis). We restricted OHIP claims to billings from homes, offices, and long-term care facilities. The 

66 Registered Persons Database (RPDB) was used to obtain data on patient sex, age, and date of death. We 

67 excluded health administrative data entries with same-day immunizations as they are unlikely to reflect a 

68 true pertussis case (Fig 1). We excluded all entries with no index date or a date of death prior to the index 

69 date, as well as participants with an invalid unique identifier or who were missing their sex or birth date (Fig 

70 1).
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71 Fig 1. Data flow chart. ϮOHIP = physician diagnostic billing codes, DAD = hospitalizations, NACRS = emergency 

72 room visits, iPHIS = reportable cases, Labware = laboratory tests, *using pertussis-containing immunization 

73 codes G840, G841, and G847 and general immunization codes G538 and G539.

74

75 Case definitions and sensitivity analyses

76 We developed three case definitions to separately input into capture-recapture models – period 

77 prevalence, incidence with exclusions, and false-positive adjusted (Fig 2). Period prevalence permitted an 

78 individual to have one entry per data source over the study period. We did not apply a time limit to recapture 

79 in other sources, leading to the best recapture scenario. For incidence with exclusions, we incorporated data 

80 entries into episodes using 90-day rules and ruled out administrative data-only episodes with a negative 

81 pertussis laboratory test within 28 days of the episode start (Fig 2 and S1 Fig). This structure required 

82 recapture in other sources to occur within the 90 days before or after the respective episode. Finally, for the 

83 last definition we eliminated the proportion of false positive OHIP code-only episodes from the incidence 

84 with exclusions case definition. To do so, we validated these episodes to obtain a positive predictive value 

85 (PPV) and took a random sample based on the estimated proportion of true positives. We conducted 

86 validation using a previously developed methodology and cohort from the Electronic Medical Record Primary 

87 Care (EMRPC) database (S1 Appendix) [15, 16]. The PPV was estimated as 8.99%, leading to the removal of 

88 41,062 OHIP-code only entries for the primary analysis (Fig 2). 

89

90 Fig 2. Flow diagram of case definitions. *Admin= OHIP physician diagnostic billing codes, DAD 

91 hospitalizations, NACRS emergency room visits, iPHIS = reportable cases, Labware = laboratory tests, 

92 Ϯstratified by age groups, < 1 year of age and 1+ years of age.

93

94 To ensure that failure to recapture was not due to data missingness, we applied a study window 

95 based on data availability. We removed cases with a first date before March 7, 2010 and last date after 
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96 December 31, 2017 to give a buffer of 90 days at each end to ensure an accurate episode start and end date, 

97 which we defined as the earliest and latest date for an episode in any data source. Finally, we applied three 

98 sensitivity analyses to the three data structures to explore further uncertainty in case definitions. This 

99 included incorporating iPHIS probable cases, iPHIS probable and DNM cases in addition to indeterminate 

100 laboratory tests, and excluding A37.9 codes with pertussis species unspecified. For the second sensitivity 

101 analysis, we ruled out episodes with a negative pertussis laboratory test within 28 days of the episode start if 

102 the episode only included administrative data or DNM entries.

103 Capture-recapture analyses

104 Capture-recapture estimates abundance using the cases identified in each source and their overlap 

105 to calculate the number missed by all [17]. We assumed the population was closed and that temporality was 

106 present [10, 18]. We combined all administrative data into a single source at the outset, assuming and 

107 thereby accounting for dependency [11]. We assessed other dependencies by calculating the probability of 

108 being captured in one source given being in another [10]. Additionally, we evaluated random detection using 

109 Pearson’s chi-squared tests of the observed versus expected number of cases in a pair of sources [10]. Both 

110 were assessed under the prevalence structure to ensure the assumption of independence for these tests was 

111 not violated. We used these results to select a dependency structure in combination with theoretical 

112 considerations [19]. We evaluated heterogeneity by assessing the linearity of heterogeneity graphs [18]. 

113 We used models that accounted for a closed population, temporality, and heterogeneity if determined to be 

114 present. The latter was expected as milder, older cases of pertussis are less likely to be tested, have a positive 

115 result, and be reported to surveillance [4, 5]. We explicitly built the selected dependency structure into 

116 models by including two-way interaction coefficients for sources hypothesized to be dependent [11]. We 

117 chose Chao’s lower bound estimator for total sample size for the capture-recapture models, which 

118 additionally accounts for dependency [11]. We compared model estimates to those from Darroch models, 

119 which further correct for heterogeneity [20]. We rounded estimates of abundance to the nearest whole 
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120 number. We considered results statistically significant at alpha ≤ 0.05 and we used the Rcapture package in R 

121 [18, 21].

122 Estimated sensitivity

123 We calculated sensitivity by dividing the number of cases identified by each data source by the 

124 estimated abundance [10]. For the incidence and adjusted false positive case definitions, there was concern 

125 that correlation (clustering) would arise from having multiple cases for some individuals, impacting the 

126 sensitivity point estimate and variance [22, 23]. To address this, sensitivity was additionally calculated under 

127 both definitions by selecting a random episode per person to remove the effect of clustering. We then 

128 compared these results to those including multiple episodes, with little difference used as evidence that 

129 estimates were robust.

130 Results

131 Capture-recapture results

132 Under the prevalence case definition, all sources were dependent based on pair-wise probabilities 

133 and Pearson’s chi-squared test was highly significant (p < 0.00001), suggesting non-random detection. This 

134 provided support for the theorized dependency structure, and we used all two-way interaction terms to 

135 account for dependency between each source pair. To ensure comparability between case definitions, we 

136 used this structure for all capture-recapture models. A visual depiction of dependency is presented in Fig 3 

137 using the degree of overlap between data sources under prevalence. Heterogeneity graphs lacked linearity, 

138 indicating heterogeneity was present and had to be accounted for in modelling (S2 Fig).

139

140 Fig 3. Example of overlap between data sourcesϮ, all age groups combined under the period prevalence 

141 primary analysis. ϮAdministrative data = OHIP physician diagnostic billing codes, DAD hospitalizations, NACRS 

142 emergency room visits, iPHIS = reportable cases, Labware = laboratory tests.
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143 Estimated abundance was similar for those less than one year of age under the definitions for period 

144 prevalence and incidence with exclusions, at 3810 (95% CI 2932-5707) and 3078 (95% CI 2362-4609) 

145 respectively (Table 1). Abundance was considerably lower with less variability, as measured by the width of 

146 the 95% CIs, for the adjusted false positive definition at 1151 (95% CI 964-1538). Overall, the one year or 

147 older age group had more variable estimates. Abundance for this age group was again similar under 

148 prevalence and incidence, at 114,135 (95% CI 87,228-155,391) and 132,528 (95% CI 100,384-181,775). The 

149 false positive definition had substantially lower estimates and variability at 20,490 (95% CI 15,998-27,319). 

150 Darroch models produced identical abundance estimates in scenarios with more than one two-way 

151 interaction term.
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152 Table 1. Capture-recapture model results with all two-way interactions between sources by analysis, age group, and case definition.
Chao model with all two-way interactions

Total observed pertussis cases
Estimated abundance 95% CI AIC, BIC*

PRIMARY ANALYSIS
< 1 year of age

Period prevalence 2636 3810 2932-5707 56.9, 98.1
Incidence with exclusions 2118 3078 2362-4609 56.8, 96.4
Adjusted false positives 904 1151 964-1538 55.4, 89.1

1+ years of age
Period prevalence 46,295 114,135 87,228-155,391 69.9, 131.1
Incidence with exclusions 48,676 132,528 100,384-181,775 70.1, 131.6
Adjusted false positives 8828 20,490 15,998-27,319 68.1, 117.7

SENSITIVITY ANALYSIS 1Ϯ

< 1 year of age
Period prevalence 2648 4030 3003-6240 57.3, 98.5
Incidence with exclusions 2133 3235 2418-4974 57.1, 96.8
Adjusted false positives 897 1163 963-1575 55.7, 89.3

1+ years of age
Period prevalence 46,581 102,954 80,534-136,981 70.8, 132.1
Incidence with exclusions 49,015 119,684 92,638-160,724 71.1, 132.7
Adjusted false positives 9295 19,120 15,339-24,804 69.1, 119.0

SENSITIVITY ANALYSIS 2Ϯ

< 1 year of age
Period prevalence 2729 9197 6180-14,619 60.7, 102.1
Incidence with exclusions 2206 7883 5205-12,740 60.1, 100.0
Adjusted false positives 1007 2454 1759-3691 58.8, 93.2

1+ years of age
Period prevalence 47,257 224,995 187,309-272,926 75.2, 136.5
Incidence with exclusions 49,551 252,872 209,058-308,891 74.9, 136.6
Adjusted false positives 9917 37,868 31,802-45,596 72.9, 123.3

SENSTIVITY ANALYSIS 3Ϯ

< 1 year of age
Period prevalence 2050 3615 2585-5857 57.4, 96.8
Incidence with exclusions 1863 3249 2341-5192 57.4, 96.1
Adjusted false positives 626 769 671-963 55.1, 86.2

1+ years of age
Period prevalence 42,446 171,908 119,993-257,414 69.2, 129.8
Incidence with exclusions 46,411 207,041 143,834-311,111 69.4, 130.6
Adjusted false positives 6541 21,678 15,685-31,450 67.0, 114.5

153 *AIC = Akaike information criterion and BIC = Bayesian information criterion, for both lower values indicate a comparably better model fit
154 ϮSensitivity analysis 1 = including probable iPHIS case reports, Sensitivity analysis 2 = including iPHIS probable and “does not meet” case reports and Labware indeterminate 
155 laboratory tests, Sensitivity analysis 3 = removing A37.9 codes with pertussis species unspecified
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156 Sensitivity analyses

157 After the addition of probable iPHIS cases, there was little change to estimated abundance (Table 

158 5.1). Including iPHIS probable and DNM cases and indeterminate laboratory tests produced the largest 

159 increase in abundance and introduced a considerable amount of variability. While this pattern occurred 

160 under all case definitions, the highest estimate of 252,872 (95% CI 209,058-308,891) was obtained under 

161 incidence for those one year of age or older. After removing A37.9 codes, abundance estimates increased 

162 and decreased without a reliable pattern.

163 Estimated sensitivity

164 Sensitivity estimates are available in Table 2. Results were comparable and generally within a few 

165 percentage points with and without multiple episodes per individual (S1 Table). As a result, clustering was 

166 determined to have a minimal effect and we reported sensitivity estimates that included multiple episodes 

167 per individual. Using all data sources consistently provided the highest sensitivity (Table 2). Labware had the 

168 lowest sensitivity while administrative data had the highest for a single source. Under the primary analysis 

169 and prevalence definition, the highest sensitivity for those less than one year of age was 69.2% (95% CI 67.7-

170 70.7%), which dropped to 40.6% (95% CI 40.3-40.8%) for the older age group. Incidence sensitivity estimates 

171 were similar but slightly lower in comparison, excepting marginally higher estimates for iPHIS and Labware 

172 for the younger age group. Overall, using the adjusted false positive definition increased sensitivity, with all 

173 sources under the primary analysis producing a sensitivity of 78.5% (95% CI 76.2-80.9%) and 43.1% (95% CI 

174 42.4-43.8%) for the younger and older age groups respectively. However, the largest increase to sensitivity 

175 occurred for iPHIS and Labware estimates, although sensitivity for these sources remained low for the older 

176 age group.
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177 Table 2. Estimated sensitivity by case definition, age group, analysis, and data source.
PERIOD PREVALENCE INCIDENCE WITH EXCLUSIONS ADJUSTED FALSE POSITIVES

Analysis Data source Sensitivity (%) (n/N)§ 95% CI (%) Sensitivity (%) (n/N)§ 95% CI (%) Sensitivity (%) (n/N)§ 95% CI (%)
< 1 YEAR OF AGE

All data sources 69.2 (2636/3810) 67.7-70.7 68.8 (2118/3078) 67.2-70.4 78.5 (904/1151) 76.2-80.9
Admin data 66.0 (2516/3810) 64.5-67.5 64.8 (1994/3078) 63.1-66.5 67.8 (780/1151) 65.1-70.5
Labware 9.69 (369/3810) 8.75-10.6 12.0-12.1 (368-372/3078)* 10.8-13.2 32.0-32.3 (368-372/1151)* 29.3-35.0

Primary 
analysis

iPHIS 12.1 (461/3810) 11.1-13.1 14.8-14.9 (456-460/3078)* 13.7-16.2 39.6-40.0 (456-460/1151)* 36.8-42.8
All data sources 65.7 (2648/4030) 64.2-67.2 65.9 (2133/3235) 64.3-67.6 77.1 (897/1163) 74.7-79.5
Admin data 62.4 (2516/4030) 60.9-63.9 61.6-61.7 (1993-1997/3235) 60.1-63.4 65.4 (761/1163) 63.8-67.0
Labware 9.16 (369/4030) 8.27-10.0 11.4-11.5 (368-372/3235)* 10.3-12.6 31.6-32.0 (368-372/1163)* 30.1-33.2

Sensitivity 
analysis 1Ϯ

iPHIS 11.9 (481/4030) 10.9-12.9 14.7-14.8 (476-480/3235)* 13.5-16.1 40.9-41.3 (476-480/1163)* 39.6-42.9
All data sources 29.7 (2729/9197) 28.7-30.6 28.0 (2206/7883) 27.0-29.0 41.0 (1007/2454) 39.1-43.0
Admin data 27.3-27.4 (2515-2519/9197)* 26.4-28.3 25.3-25.4 (1995-1999/7883)* 24.3-26.3 32.6 (800/2454) 30.7-34.5
Labware 5.09 (468/9197) 4.64-5.54 5.95-6.00 (469-473/7883)* 5.43-6.52 19.1 (469/2454) 17.6-20.7

Sensitivity 
analysis 2Ϯ

iPHIS 5.96 (548/9197) 5.47-6.44 6.56 (517/7883) 6.01-7.10 21.1 (517/2454) 19.5-22.7
All data sources 56.7 (2050/3615) 55.1-58.3 57.3 (1863/3249) 55.6-59.0 81.4 (626/769) 78.7-84.2
Admin data 50.7 (1832/3615) 49.0-52.3 50.5 (1642/3249) 48.8-52.3 52.7 (405/769) 49.1-56.2
Labware 10.2-10.3 (368-372/3615)* 9.19-11.3 11.3-11.4 (368-372/3249)* 10.2-12.5 47.9-48.4 (368-372/769)* 44.3-51.9

Sensitivity 
analysis 3Ϯ

iPHIS 12.8 (461/3615) 11.7-13.8 14.2 (461/3249) 13.0-15.4 59.9 (461/769) 56.5-63.4
1 + YEARS OF AGE

All data sources 40.6 (46,295/114,135) 40.3-40.8 36.7 (48,676/132,528) 36.5-37.0 43.1 (8823/20,490) 42.4-43.8
Admin data 39.4 (44,933/114,135) 39.1-39.7 35.7 (47,292/132,528) 35.4-35.9 36.3 (7444/20,490) 35.7-37.0
Labware 1.43 (1636/114,135) 1.36-1.50 1.24 (1637-1641/132,528)* 1.18-1.30 7.99-8.01 (1637-1641/20,490)* 7.62-8.38

Primary 
analysis

iPHIS 2.02 (2307/114,135) 1.94-2.10 1.74 (2305-2309/132,528)* 1.67-1.81 11.2-11.3 (2305-2309/20,490)* 10.8-11.7
All data sources 45.2 (46,581/102,954) 44.9-45.5 41.0 (49,015/119,684) 40.7-41.2 48.6 (9295/19,120) 47.9-49.3
Admin data 43.6 (44,931-44,935/102,954)* 43.3-43.9 39.6 (47,339/119,684) 37.9-41.2 39.8 (7619/19,120) 38.2-41.5
Labware 1.59 (1636/102,954) 1.51-1.67 1.37 (1637-1641/119,684)* 0.98-1.76 8.56-8.58 (1637-1641/19,120)* 7.62-9.53

Sensitivity 
analysis 1Ϯ

iPHIS 2.72 (2800/102,954) 2.62-2.82 2.34 (2798-2802/119,684)* 1.83-2.85 14.6-14.7 (2798-2802/19,120)* 13.5-15.8
All data sources 21.0 (47,257/224,995) 20.8-21.2 19.6 (49,551/252,872) 19.4-19.8 26.2 (9917/37,868) 25.7-26.6
Admin data 20.0 (44,926/224,995) 19.8-20.1 18.7 (47,346/252,872) 18.6-18.9 20.4 (7712/37,868) 20.0-20.8
Labware 1.03 (2318/224,995) 0.99-1.07 0.92 (2318-2322/252,872)* 0.88-0.96 6.12-6.13 (2318-2322/37,868)* 5.88-6.37

Sensitivity 
analysis 2Ϯ

iPHIS 1.48 (3332/224,995) 1.43-1.53 1.22 (3079/252,872) 1.17-1.26 8.13 (3079/37,868) 7.86-8.41
All data sources 24.7 (42,446/171,908) 24.5-24.9 22.4 (46,411/207,041) 22.2-22.6 30.2 (6541/21,678) 29.6-30.8
Admin data 23.7 (40,710/171,908) 23.5-23.9 21.6 (44,657/207,041) 21.4-21.7 22.1 (4787/21,678) 20.7-23.5
Labware 0.95 (1633-1637/171,908)* 0.90-1.00 0.79 (1633-1637/207,041)* 0.75-0.83 7.53-7.55 (1633-1637/21,678)* 6.64-8.44

Sensitivity 
analysis 3Ϯ

iPHIS 1.34-1.35 (2310-2314/171,908)* 1.29-1.40 1.12 (2311-2315/207,041)* 1.07-1.16 10.7 (2311-2315/21,678)* 9.62-11.7
178 *suppressed for reporting due to low cell size (direct or by inference)
179 §the observed in individual data sources will not sum to the observed in all data sources due to overlap between sources
180 ϮSensitivity analysis 1 = including probable iPHIS case reports, Sensitivity analysis 2 = including iPHIS probable and “does not meet” case reports and Labware indeterminate laboratory tests, 
181 Sensitivity analysis 3 = removing A37.9 codes with pertussis species unspecified
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182 Any change to sensitivity estimates after the addition of probable iPHIS cases was small, within 5%. 

183 After including iPHIS probable and DNM cases and indeterminate laboratory tests, the sensitivity estimates 

184 for all sources combined were more similar between age groups. Under prevalence, sensitivity was 29.7% 

185 (95% CI 28.7-30.6%) and 21.0% (95% CI 20.8-21.2%) for the younger and older groups respectively. Excluding 

186 A37.9 codes under the adjusted false positive definition led to the highest Labware and iPHIS sensitivity 

187 estimates for the younger age group, at close to 50% and 60%.

188 Discussion

189 Abundance estimates demonstrated that a high proportion of pertussis cases were missed by all 

190 sources. Results were similar when using prevalence and incidence, but after adjusting for physician billing 

191 code-only false positives abundance dropped considerably. While this occurred for both age groups, the 

192 effect was greater among those one year of age or older. The low estimated PPV of physician billing code-

193 only episodes provides evidence that false positives have been inflating observed counts and abundance 

194 estimates, which decreased sensitivity for laboratory and case report data. As a result, the adjusted case 

195 definition is the most valid out of those tested, with the described approach useful for improving the utility of 

196 capture-recapture methods to epidemiological surveillance. Regardless of the case definition, health 

197 administrative data had the highest sensitivity for a single source, with all sources combined producing the 

198 best sensitivity. This establishes the value of incorporating health administrative data into pertussis 

199 surveillance if accuracy and timeliness limitations are addressed. Laboratory tests had the lowest sensitivity 

200 and particularly for the older age group, indicating testing bias is present. Public health case reports had 

201 slightly higher sensitivity but displayed a similar pattern. While sensitivity estimates improved for both after 

202 adjusting for false positives, this was primarily in the younger age group. Overall, sensitivity was substantially 

203 lower for the older group, suggesting ascertainment bias is present. 

204 A 2018 Ontario capture-recapture study used the same data sources but over fewer years. As a 

205 result, abundance is not directly comparable as the higher estimates from this study are expected due to the 
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206 extra years of data. However, sensitivity for all sources with probable case reports included was estimated at 

207 54% and 39% for the younger and older age groups respectively. This is comparable to sensitivity estimates 

208 for the older age group in this study after including iPHIS probable cases, but sensitivity was higher for the 

209 younger group (~66%). This could be due to improved recapture in this subgroup using the case definitions or 

210 differences in how the 2018 study modelled dependencies [10]. The 2018 study reported considerable 

211 uncertainty persisting around physician billing code accuracy and investigated by using different proportions 

212 of true positives for all health administrative data, with the lowest at 25%. This dropped abundance 

213 estimates by 66% and 73% for the younger and older age groups [10]. We were able to address remaining 

214 uncertainty through validation of physician billing code-only episodes. Interestingly, applying the estimated 

215 PPV of 8.99% to these episodes reduced abundance estimates similarly to assuming a PPV of 25% for all 

216 health administrative data in the 2018 study, by 64% and 84%. The higher latter value indicates a greater 

217 proportion of code only-episodes in the older age group, leading to enhanced improvement in recapture 

218 once removed. Laboratory test and case report sensitivity considerably improved using this case definition.

219 A modelling study based on pertussis incidence in southern Ontario from 1993-2004 estimated that five to 

220 33,032 cases remain undetected per reported case depending on age [3]. It has been stated elsewhere that 

221 the true number of pertussis cases is at least three times higher than what is reported [2]. To compare, 

222 estimates from this study should be calculated using the false positive case definition to avoid inflating 

223 underdetection. For case report data, these values are 2.5 and 8.9 for the younger and older age groups 

224 under the primary analysis and 4.7 and 12 after including probable and DNM case reports and indeterminate 

225 laboratory tests. Using all data sources, 1.3 and 2.3 cases were missed per observed case for the younger and 

226 older age groups, which increased to 2.4 and 3.8 with the additional case reports and laboratory tests. The 

227 substantially lower upper limit compared to the modelling study is likely due to differences in age groups, 

228 pertussis incidence during the respective time periods, and diagnostic testing accuracy, with PCR introduced 

229 after 2004. In addition, the estimation approaches differ, with the modelling study using methods with 

230 considerable uncertainty as reflected by the wide range of values. While this study used the more 
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231 conservative Chao’s lower bound estimator, similar results were obtained from Darroch models. 

232 Furthermore, a simulation study found that Chao’s methods estimated abundance within 75-82% of the total 

233 population size in most complicated scenarios [11]. Regardless, this study’s findings are in line with past 

234 estimates of underdetection, with reasonable explanations for remaining differences.

235 The estimated PPV for physician billing code-only episodes of 8.99% (95% CI 1.59-16.39%) is 

236 comparable to the PPV of 13.6% (95% CI 9.28-17.9%) obtained for an OHIP physician billing code algorithm 

237 within the EMRPC using the same cohort [16]. The slightly higher PPV in the EMRPC can be explained by using 

238 prevalent cases, increasing the likelihood of concordance between codes and cases. Additionally, EMRPC 

239 billing codes were only collected from physician offices, potentially decreasing the number of false positives. 

240 OHIP pertussis cases billed at homes or long-term care facilities are unlikely to be documented in EMRPC’s 

241 primary care patient records. Further contributing to this issue is that visits outside office settings such as 

242 walk-in or specialist visits fail to be captured in the EMRPC, leading to about 15% of interactions being missed 

243 [24]. In addition, only two thirds of the laboratory tests in OHIP are documented in the EMRPC [24]. Missing 

244 any of these data in the EMRPC could artificially decrease the PPV of OHIP billing code-only episodes by 

245 increasing the number of false positives, although billings from outside office settings were uncommon in the 

246 OHIP database and unlikely to greatly affect validation. The EMRPC study only tested the accuracy of data 

247 available in the EMRPC, meaning sensitivity estimates for emergency room visits, hospitalizations, and case 

248 report data are not available. However, pertussis laboratory test sensitivity using prevalent cases was 

249 reported as 0.64% (95% CI 0.37-1.09%) across all ages [16]. After adjusting for false positives, 8.0% sensitivity 

250 (95% CI 7.62-8.38%) was obtained for the older age group (which only excludes infants) using prevalence. 

251 This difference can be explained by variation in ages, pertussis classification, and validation methods. 

252 Additionally, Labware has more comprehensive coverage, with the EMRPC noted to have decreased 

253 laboratory test sensitivity through incomplete documentation [16].

254 One limitation of this study is that we did not validate physician billing code-only episodes separately 

255 for the younger and older age groups. This was to preserve an adequate sample size, with the assumption 
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256 that the PPV averages out across age groups and this is an appropriate strategy for taking a random sample 

257 based on a proportion. In addition, while demonstrating that sensitivity estimates differ by age group, it is 

258 unlikely that PPV would vary to the same extent. PPV evaluates the proportion of true positives out of test 

259 positives and is primarily affected by prevalence, not testing bias [25]. Although it may appear that younger 

260 individuals have a higher risk of pertussis infection, due to testing and ascertainment bias this may not 

261 actually be the case [4]. Older cases are hypothesized to be an important source of pertussis, which is evident 

262 through older relatives being key sources of transmission to infants [4, 26]. Additionally, in 2019, 62% of 

263 reported cases in Ontario occurred in those ten years of age or older [27]. However, it may be of interest to 

264 allow the PPV to vary separately by age group in future analyses. 

265 An additional limitation is that we had to remove EMRPC cases without dates during validation. We 

266 considered it preferable to avoid introducing misclassification rather than preserving the sample size, and 

267 there is no reason to suspect excluded cases are systematically different from the majority of those included. 

268 A further limitation of validation is that we were unable to adjust the PPV and sensitivity estimates for 

269 clustering under the incidence and false positive definitions due to the low sample size and study 

270 methodology respectively [22, 23]. To address this, we compared point estimates and variances to those 

271 using a single episode per individual to assess the effect of correlation, with little difference found between 

272 PPV estimates. While some sensitivity estimates were statistically significantly different, the absolute 

273 difference was small, and this was for the older age group where large sample sizes produced substantial 

274 precision. As a result, we concluded that these differences were unlikely to be clinically significant. While it is 

275 possible correlation still minorly affected the findings, it is a study strength to be able to report sensitivity 

276 estimates under different case definitions. Little validation research has incorporated repeated episodes, 

277 which is of interest for acute diseases.

278 Finally, missing data may impact abundance and sensitivity estimates, but this is an inherent 

279 limitation of using secondary data and beyond the scope of this study. This includes failing to collect data on 

280 certain cases, such as those that are milder in nature who do not seek health care or may be misdiagnosed. 
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281 While pertussis infectivity is related to severity, meaning that milder undetected cases are likely less 

282 infectious, it is possible that many are still important to transmission. While Labware data only covers 

283 pertussis laboratory testing for < 95% of Ontario, we assumed that the remaining tests would not 

284 considerably impact abundance estimates [10, 28]. To assess the effect of missing data, we conducted 

285 sensitivity analyses incorporating additional data to determine the robustness of capture-recapture 

286 abundance estimates. This produced little change to results, except when including probable and DNM cases 

287 in addition to indeterminate laboratory tests. Doing so decreased sensitivity and led to greater similarity in 

288 capture patterns between the younger and older age groups. This could suggest that older individuals are less 

289 likely to meet the confirmed case definition, or that milder infections are frequently missed in younger as 

290 well as older individuals. Alternatively, it could be due to increased uncertainty in abundance among both 

291 groups under this analysis, stemming from greater uncertainty in true pertussis status.

292 Conclusions

293 This study demonstrated how limited health data accuracy can be accounted for using capture-

294 recapture analyses that employ different pertussis case definitions. The false-positive adjusted case definition 

295 helped address past uncertainty in burden estimation and produced results which align with the degree of 

296 underdetection reported in the literature; improved capture-recapture estimates can better inform public 

297 health policy and prevention. Findings consistently demonstrated that data sources are failing to detect 

298 pertussis cases, and particularly laboratory and case report data. The best sensitivity was obtained by using 

299 all sources together, with health administrative data having the highest sensitivity for a single source. This 

300 indicates the benefit of incorporating real time health administrative data into surveillance if misclassification 

301 can be addressed. The results provide further support that pertussis detection differs by age, indicating that 

302 ascertainment and testing bias is present in data.
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