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Abstract

Cognitive deficits are prevalent in individuals with psychosis and are associated with

neurobiological changes, potentially serving as an endophenotype for psychosis. Using

the HCP Early Psychosis dataset (n=226), we aimed to replicate cognitive subtypes

(deficit, intermediate, spared) through data-driven clustering on a↵ective and non-

a↵ective psychosis patients and controls. We explored di↵erences between the clusters

in symptom manifestation, cognition, medication, and grey matter volume, comparing

patients to controls. Fuzzy K-Means clustering on PCA-selected features revealed three

cognitive subgroups significantly varying in clinical symptoms and cognitive impair-

ment, and importantly also in medication and grey matter volume in fronto-parietal and

subcortical networks. The spared cluster (86% controls, 37% a↵ective psychosis, 17%

non-a↵ective psychosis) exhibited unimpaired cognition, lowest symptoms/medication,

and grey matter comparable to controls. The deficit cluster (4% controls, 10% a↵ec-

tive psychosis, 47% non-a↵ective psychosis) had impairments across domains, highest

symptoms/medication, and pronounced grey matter alterations. The intermediate clus-

ter (11% controls, 54% a↵ective psychosis, 36% non-a↵ective psychosis) showed fewer

deficits than the second cluster, but similar symptoms/medication/grey matter to the

first. Controlling for medication, cognitive scores correlated with grey matter changes

and negative symptoms across all patients. Our findings generally emphasize the inter-

play between cognition, brain structure, symptoms, and medication, and specifically

suggest a possible mediating role of cognition linking alterations in brain structure

and symptoms, which highlights the potential of screening cognitive changes to aid in

tailoring treatments and interventions.
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1 Introduction

Cognitive alterations are core symptoms of psychosis [1–4], which have been described

in areas of working memory [5, 6], attention [7, 8], reasoning [9, 10], decision making [11–

13], salience processing [14, 15], learning (e.g., lower learning rate or increased forgetting,

[16–18]) and problem solving [19, 20] and across all stages of the disease [21–25]. Cognitive

deficits furthermore precede the clinical onset of psychosis [26], and predict functional out-

come in later stages of the disease [27, 28], impacting employment status, independent living

and social functioning [28, 29]. Although cognitive impairments are present in about 80%

of patients su↵ering from psychotic disorders [30–32], therapeutic interventions are limited.

A meta-analysis including 93 studies using di↵erent agents targeting mainly glutamatergic

and cholinergic neurotransmitter systems, but also serotonin, dopamine, GABA and nora-

drenaline agents [33] reported a significant, although very small (g=0.10) improvement of

cognition in general. However, this meta-analysis failed to find significant improvement for

cognitive subdomains [33]. Cognitive training, also called cognitive remediation therapy, has

produced more promising e↵ects [34, 35]. A recent meta-analysis found that cognitive reme-

diation showed significant small-to-moderate cognitive improvements in all domains studied

(g=.19–.33) and a small improvement in function (g=.21). Furthermore, research has shown

that fewer cognitive deficits and higher cognitive reserve during prodromal and first episode

psychosis are generally, diagnosis-independently, associated with better functioning and re-

covery [36, 37]. Indicating that maintaining and improving cognitive functioning is crucial

in the interventional and therapeutic processes.

Cognitive deficits in psychosis in general have been linked to alterations in the cortico-

cerebellar-thalamic-cortical circuits [38]. Here, dysfunctional GABA (gamma-amino-butyric

acid) inter-neurons, the main inhibitory neurons of the central nervous system, may disrupt

the balance between excitatory and inhibitory processes in the cortex [39]. A recent review

[25] summarizes the association between functional brain alterations and cognitive deficits

in individuals at-risk for psychosis, early onset psychosis, and chronic schizophrenia. They

report a clear association between altered cortical (e.g., prefrontal cortex, anterior cingulate

cortex, insula) and subcortical (e.g., thalamus, striatum, hippocampus, cerebellum) brain

signalling and aberrant cognition across the di↵erent stages. Further support is provided

by imaging studies showing reduced gray matter volume and altered network organization

which correlates with cognitive deficits, at illness onset [40, 41], early psychosis [42] and

chronic schizophrenia [43].

Interestingly, psychosis patients with di↵erent diagnoses, e.g., a↵ective vs non-a↵ective

psychosis, show varying cognitive deficits [44–46]. In a review, Barch and She�eld [46]

summarized that while the severity of cognitive impairment is stronger in non-a↵ective com-

pared to a↵ective psychosis, the relative impairments across di↵erent cognitive domains are

very similar. Other studies however do not di↵erentiate between a↵ective vs non-a↵ective
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psychosis when investigating cognitive deficits [47]. Despite these di↵erences in cognitive

alterations with regard to specific diagnoses, cognitive deficits in psychosis have been de-

scribed and investigated as intermediate phenotypes [48]. In a recent study, Shafee et al.[49]

pointed out that cognitive phenotypes may vary grossly depending on specific types of psy-

chosis (e.g. a↵ective vs non-a↵ective), suggesting that certain domains of cognition (e.g.,

working memory vs face processing) may be more etiologically linked to psychosis than oth-

ers. Using a K-means clustering approach in a cross-diagnostic sample, Lewandowski et al.

[50] identified four cognitive subgroups combining di↵erent psychosis groups. Importantly,

they identified one cognitively intact cluster including healthy controls and patients with

di↵erent diagnoses, while the other three clusters were dominated by di↵erent cognitive im-

pairment profiles [50]. A recent systematic review of data-driven identification of cognitive

subtypes [51] highlighted that despite the heterogeneity of clustering methods used and cog-

nitive domains studied, there is some commonality in the identification of a severe cognitive

deficit phenotype showing deficits across multiple domains and a spared cognitive deficit

phenotype with similar performances to controls. It is, however, unclear how these cogni-

tive subtypes vary or are linked to di↵erences in symptom expression, medication status

and brain structure (i.e., grey matter volume). These open questions are however crucial in

order to understand whether cognitive subtypes are clinically relevant, and could increase

our mechanistic understanding of the disorder.

In the current study, we, therefore, aimed at exploring these important open ques-

tions. First, we wished to replicate three cognitive subtypes using the HCP Early Psy-

chosis dataset (https://www.humanconnectome.org/study/human-connectome-project-for-

early-psychosis, [52]) using data-driven clustering on standardized cognitive, perceptual and

emotional task and score data, but no clinical data. Second, we explored whether the pa-

tients in the three clusters di↵ered in symptom expression, cognition, medication and grey

matter volume. And, third, depending on results for the first two questions, we wished to

understand if symptoms, alterations in cognition and brain morphometry were associated

when controlling for medication within and across the clusters.

2 Methods

2.1 Participants

We analyzed data collected by the “Human Connectome Project for Early Psychosis”

(HCP-EP, [53], [54]). The HCP-EP 1.1 release (August 2021 HCP-EP Release 1.1 on NDA)

contains 251 subjects consisting of 68 healthy control individuals, 57 patients with a↵ective

and 126 patients with non-a↵ective psychosis, both patient groups were within the first three

years of the onset of psychotic symptoms. The Structured Clinical Interview for DSM-5:

Research Version (SCID-5-RV) ([55]) was used to confirm diagnoses of non-a↵ective (i.e.,
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schizophrenia, schizophreniform, schizoa↵ective, psychosis not otherwise specified, delu-

sional disorder, brief psychotic disorder) or a↵ective psychosis (i.e., major depression with

psychosis or bipolar disorder with psychosis). Clinical symptoms were assessed using the

Positive and Negative Syndrome Scale (PANSS, [56]). Disease onset for all patients was

within the last five years prior to study enrollment. For a comprehensive cognitive, percep-

tual and emotional assessment, the NIH toolbox ([57], [58]; i.e., cognition (Picture Sequence

test, Dimensional Change test, Flanker test, Picture Vocabulary test, Pattern Completion

test, List Scoring test, and Oral Reading test), emotion (Self-report emotion), perception

(Words in Noise, Odor Identification, and Dynamic Visual Acuity), sensory-motor functions

(9-Hole Pegboard, and Grip Strength), the HCP Lifespan Measures ([59]; i.e., Delay Dis-

counting and Penn Emotion Recognition), the WASI-II ([60]) and the Seidman Auditory

Continuous Performance Test ([61]) was used. Structural brain imaging data was available

for 183 of the 251 subjects. After ensuring that there were su�cient data for both, features

and subjects (see description of analysis below), the analysis was performed on 226 subjects

(i.e., 56 healthy controls, 52 a↵ective psychosis group, 118 non-a↵ective psychosis group).

Demographics and clinical scores for the three groups are presented in Tab. 1. Detailed

analysis of PANSS items are presented in Suppl. Fig. 1.

Table 1: Group demographics and clinical scores of final sample (N=226).

Group Comparison
Control A↵ective Non-A↵ective KW-chi2/P-ch2,

chi2(df), p-value

N 56 52 118

Age - mean (std) 24.55 (4.42) 23.63 (3.85) 22.73 (3.38) 7.25 (2), <0.05
Gender - female % 33.9 57.7 30.51 11.78 (2), <0.01

PANSS total na 44.4 (12.87) 50.21 (14.54) 12.41 (1), <0.001
PANSS positiv na 10.04 (3.89) 12.26 (4.59) 10.99 (1), <0.001
PANSS negative na 11.62 (4.66) 14.01 (5.59) 9.05 (1), <0.01

General psycho- na 23.40 (6.22) 25.48 (5.69) 7.12 (1), <0.01
pathology

2.2 Variable Selection and Preprocessing

Initially, all cognitive, perceptual and social/emotional functioning scores available in

the HCP-EP data-set were selected, resulting in 70 variables as potentially relevant to our

analysis (Suppl. Tab. 1). As covariates, we chose age, gender, socio-economic status

and mother’s level of education. Variables containing information of primary diagnosis for

a↵ective and non-a↵ective psychosis, such as the Positive and Negative Symptom Score or

the Clinical Assessment Interview for Negative Symptoms, as well as variables describing
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medication dosage, usage or equivalent doses, were not included in the clustering analysis,

but only used for subsequent analyses.

Many of the selected variables contained missing data. We therefore excluded variables

when more than 10% of the entries were missing, and we excluded subjects with more than

20% missing variables (Suppl. Tab. 1). As a result, 33 of initially 70 variables remained

in the data set and 226 subjects. The distribution of the remaining subjects reflected the

distribution of the original data with regard to diagnosis type. For an overview of the

selected variables, and group comparison, see Suppl. Tab. 2. In the final dataset used for

analysis, subjects were missing a maximum of seven variables (Suppl. Tab. 4). Missing

data were imputed using the mean for continuous and mode for categorical variables (e.g.

demographic control variables). Since the ratio of patients and controls was not balanced,

mean or mode for data imputation were calculated separately for patients and controls. Both

patient groups were combined in order to minimize the bias of classical group membership

(Suppl. Tab. 3).

Prior to our analysis, all continuous features and covariates were normalized using z-score

normalization. Ordinal covariates such as socio-economic status and mother’s education

were scaled between 0 and 1, and treated gender binary.

The HCP-EP brain imaging data contain structural magnetic resonance imaging (MRI)

data. We used T1-weighted structural images recorded at a 3T SIEMENS MAGNETOM

Prisma scanner using a MPRAGE sequence (TR=2400ms, TE=2.22ms, FoV read=256mm,

FoV phase=93.8%, flip angle=8 deg, slices per slap=208, slice thickness=0.8mm). In order

to receive individual gray matter volume for structural covariance networks generated across

all subjects (Suppl. Tab. 2), the structural brain data was preprocessed as described

in the supplement section supplementary material 1.4 and elsewhere [62]. The structural

covariance networks were used for analyses following the clustering.

2.3 Correlation and Homogeneity

To investigate correlation between all features, we performed a Pearson’s correlation be-

tween all subjects’ non-standardized variables. Di↵erences between correlations between the

groups were evaluated with a T-test for means of two independent samples. We then tested

homogeneity between groups, using a Levene’s test for equal variances between groups.

Bonferroni corrections were applied.

2.4 Feature Selection

To reduce the dimensionality of our data set and at the same time keeping its maximal

variance, we used a principal component analysis (PCA), which is suitable for our data

type [63], and was applied to all variables and covariates. Significant principal components
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were identified using a permutation test (5000 random permutations of each feature across

subjects). Components which survived permutation testing were considered significant.

2.5 Fuzzy Clustering

Instead of a hard clustering approach that assumes well separated clusters and assigns

each data point to only one cluster (e.g. K-Means), we used a soft clustering approach.

This approach accounts for fuzzy boundaries between subgroups, and is thus better suited

for overlapping subgroups [64], as would be expected for clinical groups. We, therefore,

used Fuzzy K-Means clustering as described in [65]. As input to our clustering analysis, we

used the dimensionality-reduced data which included demographic control variables for all

three groups (i.e., controls, a↵ective and non-a↵ective patients). We specified the number

of clusters prior to our analysis. We used a priori knowledge about the number of cognitive

clusters (i.e., three di↵erent cognitive cluster were reported in the literature [51]). As a

control analysis, we also used three clusters on patient data only. This analysis was used to

determine influence of control subjects on the clustering, and is presented in the supplements.

Performance of the clustering analysis was determined by the ratio of the subjects of one

group (healthy controls, a↵ective psychosis group and non-a↵ective psychosis group) in each

cluster. The ratio of subjects in cluster j for group i in {controls, a↵ective and non-a↵ective}
is defined as:

ratioi,j =
number of subjects of group i in cluster j

total number of subjects of group i

2.6 Cluster exploration

After the identification of the three clusters, we explored di↵erences in the patients dis-

tributed over those three clusters and controls in cognitive scores, clinical scores, medication

and grey matter volume. We want to point out that the control subjects were removed from

each of the clusters and combined in one healthy group. Thus, a group comparison across

four groups was computed. For comparing groups, we used SciPy’s Kruskal-Wallis test with

Dunn’s test for post-hoc analyses, a Chi-square test of independence or ranked analysis of

variance with Bonferroni corrected post-hoc tests. As a control analysis, we performed par-

tial Pearson’s correlations between cognitive scores, clinical scores, and grey matter volume

controlled for medication across all patients, with multiple comparison corrections.

2.7 Statistical implementation

Preprocessing and data analysis was performed in Python 3.9.7. We used scikit-learn

1.0.2, SciPy 1.7.2 for all analyses and the fuzzy clustering implementation of [66]. Partial

correlations were performed using the ppcor 1.1 [67]. For clustering analyses, brain data
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was corrected for total intacranial volume (TIV), age and sex, using the R stats package,

version 4.0.5 R [68].

3 Results

3.1 Homogeneity of data across groups

Correlations of all cognitive, perceptual and emotional functioning data revealed, that

correlations were highest within controls compared to a↵ective (T-test: t5838=16.34, p<0.001)

and non-a↵ective (T-test: t17058=26.03, p<0.001) patients. For non-a↵ective patients, corre-

lations within subjects were lowest (non-a↵ective vs. a↵ective patients: T-test: t16626=8.47,

p<0.001), indicating greatest variability. Confirming these results, highest heterogeneity

was found in non-a↵ective patients compared to controls (Levene’s test for equal variance:

F1,174=187.3, p<0.001) and a↵ective (Levene’s: F1,168=70.39, p<0.001). Controls were the

most homogeneous (Levene’s: F1,106=22.34, p<0.001) (Fig. 1a).

P
ea
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on

's
 r

a b

c

Figure 1: Variable correlations and dimensionality reduction of cognitive data.
(a) All variables (i.e., cognitive, emotional, perceptual data) correlated across subjects using
Pearson correlation. Correlations within groups are displayed in squares on the diagonal,
and correlations between groups are displayed in o↵-diagonal squares. (b) Variance ex-
plained by each of the PCs in % of a PCA performed on all variables and covariates across
226 subjects. The first five PCs (blue) survived permutation testing (p<0.05, 5000 permu-
tations). Significant components captured 55.8 % of all variance. (c) Individual data points
represent relevant variables for each subject, displayed on the first two principal components
and colored according to subject group a�liation.
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3.2 Feature selection using principal component analysis

During the data dimensionality reduction, we identified five significant PCs, using all

data from all groups, that captured 55.8 % of total variance (Fig. 1b). Explained variance

of PCAs was consistent with other symptom-reduction studies [69]. Fig. 1c illustrates the

data reduction using the first two principal components. The two patient groups and the

control group are predominantly distributed across the dimension of P1. However, no clear

boundaries between groups could be detected. The features that explained most variance

were Fluid Intelligence and Crystallized Intelligence, Total IQ, the Picture Vocabulary Test

Picture vocabulary test, Oral reading recognition, Auditory attention, Working memory,

WASI - Verbal comprehension, WASI - Matrix reasoning as well as DCCS - Executive

functioning (Suppl. Fig. 3). To check the influence of combining patient and control data,

the same analysis was performed on patients only data, which also resulted in five significant

components that captured 53.7 % of all variance (p<0.05, 5000 permutations) (Suppl. Fig.

4a, b). The top ten features contributing to the explained variance were the same across both

analysis - with and without controls. Those feature were taken for subsequent statistical

analyses.

3.3 Group representation in the three clusters

We performed clustering on the selected features, including controls and both patient

groups, with three clusters. Fig. 2a and b present the results. One cluster (cluster 0)

contained 86% (48/56) of all controls and 37% (19/52) of all a↵ective subjects. Non-a↵ective

subjects were represented only in small proportion of 17% (20/118). A mixed, second cluster

(cluster 1) consisted of mostly patients, with the majority of a↵ective individuals: 54%

(28/52) of non-a↵ective and 36% (42/118) of a↵ective patients and only 11% (6/56) control.

Most non-a↵ective subjects were contained in the third cluster (cluster 2) with 47% (56/118)

of the non-a↵ective, and only 10% of a↵ective patients (5/52) and 4% (2/56) of controls.

(Fig. 2b).
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a b

Figure 2: Cluster analysis: group representations and cognitive di↵erences. (a)
Result of clustering. Cluster a�liation of each subject is displayed on the first two PCs.
Colors correspond to cluster 0, 1 or 2. (b) Percentage of subjects of each group in each
cluster. E.g. 47 % (56/118) of all non-a↵ective subjects are in cluster 2.

3.4 Exploring cognition, symptoms, medication and gray matter

volume in the clusters

To identify possible cognitive subgroups represented in the clusters, we explored cognitive

scores and symptom expression for patients assigned to the clusters (see comprehensive

display of statistical di↵erences between all clusters and cognitive items in Suppl. Tab.

5). We compared cognitive scores across patients in respective clusters. Scores of control

subjects were used for comparison. Patients in cluster 2 (mainly non-a↵ective patients)

showed a significant decrease in all cognitive features compared to patients assigned to

other clusters, as well as controls. Patients in cluster 1, which contains 28 a↵ective and 42

non-a↵ective patients, showed significant decrease of Fluid Cognition, Auditory attention

(%correct) and DCCS - Executive functioning compared to controls. Patients (19 a↵ective

and 20 non-a↵ective) in cluster 0 showed most similar scores compared to control subjects,

with Auditory attention (%correct) being the only score that is significantly lower compared

to controls (Fig. 3c) and group comparisons are presented in Tab. 5.

Patients in cluster 2, who showed the strongest cognitive deficits and who were mainly

diagnosed with non-a↵ective psychosis, were significantly increased in PANSS total com-

pared to patients in both, cluster 0 and 1. They were also significantly increased in PANSS

positive, PANSS negative and general psychopathology compared to patients in cluster 0.

Even tough patients in cluster 0 and cluster 1 did not show as a strong di↵erence in cognitive

scores, patients in cluster 1 were significantly increased in PANSS total, PANSS positive and

general psychopathology compared to patients in cluster 0 (Fig. 3a) and group comparisons

are presented in Tab. 5.

Further, we explored the medication status of patients within the clusters. We found

that patients assigned to cluster 2 had a significantly higher Chlorpromazine equivalence

dose in general and at the scanning date compared to patients in both cluster 0 and 1, and

a significant increase in lifetime antipsychotic drug exposure compared to patients in cluster

1 (Fig. 3b) and group comparisons are presented in Tab. 5.
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a

b

Cluster/ control

c

NW NW NW

d

Figure 3: Symptom expression and medication status. (a) Clinical scores of a↵ective
and non-a↵ective patient within each cluster are displayed in boxplots. Individual boxplots
show data minimum, first quartile, median, third quartile, and data maximum. Individual
subjects are overlaid as dots. Outliers are indicated outside the minimum or maximum.
(b) Medication dosage and status of a↵ective and non-a↵ective patients within each cluster.
(c) Cognitive score of a↵ective and non-a↵ective patient within each cluster are displayed
and compared to all control subjects (c, light blue). The plots display the ten features
contributing most to explained variance of the PCs. (d) Di↵erences in three grey matter
volume comparing a↵ective and non-a↵ective patient within each cluster are displayed and
compared to all control subjects (c, light blue). NW 18 comprises the putamen and the
amygdala; NW 29 comprises the paracingulate gyrus, the juxtapositional lobule, the supe-
rior parietal lobule, and the precentral gyrus; and the NW 30 comprises the superior fornatl
gyrus, the frontal pole, the putamen, the postcentral gyrus and the cerebellum crus. The
plots display the ten features contributing most to explained variance of the PCs. Signifi-
cance is indicated as p  0.05 (*), p  0.01 (**) and p  0.001 (***).
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Furthermore, we explored di↵erences in grey matter networks across the patients in the

clusters and the controls. The ranked analysis of variance revealed a highly significant inter-

action e↵ect (F(87)=2.564, p=1.79e-13) between the patients in the three clusters and the

controls (four groups) and the grey matter volume in each network (30 networks). Bonferroni

corrected post-hoc analyses revealed significant di↵erences in network 18 (F(3,48.64)=9.32,

p=0.00027), network 29 (F(3,45.13)=7.8, p=6e-05) and network 30 (F(3,45)=10.95, p=2e-

05) (Fig. 3d) and group comparisons are presented in Tab. 5.

Finally, we investigated partial Pearson correlations between the ten cognitive features,

the three significant grey matter volume networks, and the clinical scores, controlling for

Chlorpromazine equivalent dose within each cluster and across all patients. Not with in the

clusters, but across all patients we found several significant, multiple-comparison-corrected

associations, see Fig. 4 and Suppl. Tab. 6.
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Figure 4: Partial correlations between brain, cognition and clinical scores.
Correcting for the equivalent dose of medication, we used Partial Pearson correlations to
investigate the interaction between cognitive scores (i.e., Fluid Intelligence and Crystallized
Intelligence, Total IQ, the Picture Vocabulary Test Picture vocabulary test, Oral reading
recognition, Auditory attention, Working memory, WASI - Verbal comprehension, WASI -
Matrix reasoning as well as DCCS - Executive functioning), brain networks (i.e., NW18,
NW29, NW30), and clinical scores (i.e., PANSS total, PANSS positive, PANSS negative,
General psychopathology score) across all patients independent of cluster.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2024. ; https://doi.org/10.1101/2022.08.03.22278370doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.03.22278370
http://creativecommons.org/licenses/by-nc-nd/4.0/


T
ab

le
2:

C
om

p
ar
is
on

b
et
w
ee
n
p
at
ie
nt
s
in

al
l
cl
u
st
er
s
an

d
co
nt
ro
l
su
b
je
ct
s
fo
r
co
gn

it
iv
e
fe
at
u
re
s
th
at

co
nt
ri
b
u
te
d
m
os
t
to

va
ri
an

ce
,

as
w
el
l
as

m
ed
ic
at
io
n
an

d
P
A
N
S
S
co
m
p
ar
is
on

b
et
w
ee
n
p
at
ie
nt
s
in

d
i↵
er
en
t
cl
u
st
er
s.

F
or

th
e
gr
ou

p
co
m
p
ar
is
on

,
a
K
ru
sk
al
-W

al
li
s
w
as

u
se
d
w
it
h
a
D
u
n
n
’s

te
st

fo
r
p
ai
rw

is
e
co
m
p
ar
is
on

s
(s
ta
ti
st
ic
s
an

d
p
-v
al
u
e
d
is
p
la
ye
d
or

n
s
-
n
on

si
gn

ifi
ca
nt
).

F
ea

tu
re

g
ro
u
p
co

m
p
a
ri
so
n

cl
u
st
er

0
-
1

cl
u
st
er

0
-
2

cl
u
st
er

0
-
co

n
tr
o
ls

cl
u
st
er

1
-
2

cl
u
st
er

1
-
co

n
tr
o
ls

cl
u
st
er

2
-
co

n
tr
o
ls

C
o
g
n
it
iv
e
sc

o
re

s
F
lu
id

co
g
n
it
io
n

87
.6
4
9
,
<
0
.0
0
1

n
s

4
4
.3
6
1
1
,
<
0
.0
0
1

n
s

4
0
.0
8
5
1,

<
0
.0
0
1

1
5
.5
6
5
1
,
<
0
.0
0
1

6
4
.5
59

7
,
<
0
.0
0
1

C
ry
st
a
ll
iz
ed

co
g
n
it
io
n

11
2
.1
1
3
6
,
<
0
.0
0
1

n
s

6
3
.2
7
4
6
,
<
0
.0
0
1

n
s

8
4
.5
3
9
5,

n
s

n
s

6
6
.9
2
2
7,

<
0
.0
0
1

T
o
ta
l
IQ

1
0
8
.7
6
9
8
,
<
0
.0
0
1

n
s

5
7
.5
1
0
6
,
<
0
.0
0
1

n
s

7
4
.8
4
1
6,

<
0
.0
0
1

n
s

7
3
.4
8
7
8
,
<
0
.0
0
1

P
ic
tu

re
v
o
ca

b
u
la
ry

te
st

1
0
1
.0
79

,
<
0
.0
0
1

n
s

5
7
.5
4
7
2
,
<
0
.0
0
1

n
s

7
7
.0
4
7
5,

<
0
.0
0
1

n
s

5
9
.3
3
6
5
,
<
0
.0
0
1

O
ra
l
re
a
d
in
g
re
co

g
n
it
io
n

9
2
.0
6
41

,
<
0
.0
0
1

n
s

4
7
.5
7
1
2
,
<
0
.0
0
1

n
s

6
8
.1
2
5
,
<
0
.0
0
1

n
s

5
9
.9
6
8
8
,
<
0
.0
0
1

A
u
d
it
or
y
at
te
n
ti
on

%
co

rr
ec
t

74
.1
83

8,
<
0
.0
0
1

n
s

3
1
.6
1
2
6
,
<
0
.0
0
1

1
1
.0
3
8
1
,
<
0
.0
1

3
3
.1
9
2
3
,
<
0
.0
0
1

1
2
.2
9
3
6
,
<
0
.0
1

5
7
.8
2
2
4
,
<
0
.0
0
1

W
o
rk
in
g
m
em

or
y

71
.9
62

6
,
<
0
.0
0
1

n
s

3
2
.4
2
6
1
,
<
0
.0
0
1

n
s

5
1
.8
4
1
5,

<
0
.0
0
1

n
s

5
0
.0
0
4
2
,
<
0
.0
0
1

W
A
S
I
-
V
er
b
al

co
m
p
re
h
en

si
o
n

9
4.
1
75

3,
<
0
.0
0
1

n
s

5
1
.1
3
6
2
,
<
0
.0
0
1

n
s

6
8
.2
1
1
5,

<
0
.0
0
1

n
s

6
0
.9
5
0
8
,
<
0
.0
0
1

W
A
S
I
-
M
at
ri
x
re
as
on

in
g

69
.0
91

9,
<
0
.0
0
1

n
s

3
2
.4
2
7
4
,
<
0
.0
0
1

n
s

3
8
.7
8
4
9,

<
0
.0
0
1

6
.9
5
1
8
,
<
0
.0
5

5
1
.9
1
1
1
,
<
0
.0
0
1

D
C
C
S
-
E
x
ec
u
ti
v
e
fu
n
ct
io
n
in
g

5
4
.7
0
55

,
<
0
.0
0
1

n
s

2
7
.6
0
0
9
,
<
0
.0
0
1

n
s

2
7
.3
8
0
6,

<
0
.0
0
1

5
.8
3
8
3
,
<
0
.0
5

4
2
.6
1
5
2
,
<
0
.0
0
1

M
e
d
ic
a
ti
o
n

st
a
tu

s
L
if
et
im

e
A
n
ti
p
sy
ch

o
ti
c
D
ru

g
E
x
p
o
su

re
(m

o
n
th

s)
7
.2
7
49

,
<
0
.0
5

n
s

n
s

7
.2
4
8
4
,
<
0
.0
1

C
h
lo
rp

ro
m
a
zi
n
e
E
q
u
iv
a
le
n
ce

(m
g
/
d
)

29
.1
3
2
,
<
0
.0
0
1

n
s

1
2
.5
9
2
6
,
<
0
.0
0
1

2
5
.8
1
6
4
,
<
0
.0
0
1

S
ca

n
D
a
te

C
h
lo
rp

ro
m
a
zi
n
e
E
q
u
iv
a
le
n
ce

(m
g
)

2
5
.9
3
9
5
,<

0
.0
0
1

n
s

1
2
.1
3
3
4
,
<
0
.0
0
1

2
2
.0
7
6
4
,
<
0
.0
0
1

P
o
si
ti
v

n
e
g
a
ti
v
e
sy

m
p
to

m
sc

o
re

P
A
N
S
S
to
ta
l

3
6
.2
7
77

,
<
0
.0
0
1

1
0
.9
8
5
9
,
<
0
.0
1

3
4
.3
3
8
5
,
<
0
.0
0
1

1
1
.6
1
1
6
,
<
0
.0
0
1

P
A
N
S
S
p
o
si
ti
v

8
.9
9
9
5
,
<
0
.0
5

4.
57

9
1
,
<
0
.0
5

9
.1
6
0
6
,
<
0
.0
1

n
s

P
A
N
S
S
n
eg

a
ti
v

38
.0
5
5
3
,
<
0
.0
0
1

n
s

2
9
.9
3
1
5
,
<
0
.0
0
1

2
4
.8
5
4
2
,
<
0
.0
0
1

g
en

er
a
l
p
sy
ch

o
p
a
th

ol
og

y
2
9
.5
8
7
7
,
<
0
.0
0
1

1
9
.0
3
0
9
,
<
0
.0
0
1

2
8
.4
9
3
,
<
0
.0
0
1

n
s

B
ra

in
c
lu

st
e
rs

N
W

18
23

.0
27

8,
<
0
.0
0
1

n
s

7
.1
7
2
8
,
<
0
.0
5

n
s

1
5
.5
0
6
8
,
<
0
.0
0
1

n
s

1
7
.3
9
2
1
,
<
0
.0
0
1

N
W

29
24

.3
05

,
<
0
.0
0
1

n
s

1
1
.0
3
5
8
,
<
0
.0
1

n
s

1
5
.5
0
6
8
,
<
0
.0
0
1

n
s

1
7
.9
0
0
4
,
<
0
.0
0
1

N
W

30
30

.4
23

6,
<
0
.0
0
1

n
s

1
5
.1
2
0
9
,
<
0
.0
0
1

n
s

1
7
.7
4
5
3,

<
0
.0
0
1

n
s

2
2
.9
4
8
5
,
<
0
.0
0
1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2024. ; https://doi.org/10.1101/2022.08.03.22278370doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.03.22278370
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Discussion

The aim of this study was (1) to investigate cognitive subtypes using the HCP Early

Psychosis dataset and data-driven clustering on standardized cognitive, perceptual and emo-

tional task and score data, but no clinical data; to explore (2) di↵erences in and (3) associ-

ations between cognition, symptom expression, medication and grey matter volume. Using

a data driven parameter selection and clustering approach, we were able to identify three

clusters that significantly di↵ered in across cognitive deficits forming a cognitively intact

cluster, an intermediately a↵ected cluster and an cognitively a↵ected cluster, and poten-

tially characterise subgroups previously described in the literature [36, 50, 70–75]. Impor-

tantly, our results extend those findings, showing that patients within those clusters also

di↵er in medication dosage, in specific grey matter brain networks and in clinical symptoms.

Interestingly, across all patients but not within clusters we found that decreased grey mat-

ter volume in frontal, parietal and subcortical regions was linked to higher cognitive scores

including crystallized cognition, verbal comprehension or matrix reasoning, when control-

ling for medication, and that decreased cognitive scores were linked to increased negative

symptoms, when controlling for medication.

Using a three cluster solution on all participants (i.e., controls, a↵ective and non-a↵ective

psychosis), allowed the identification of cognitive subtypes, which significantly varied in

clinical and cognitive impairment. Patients of cluster 2, consisting of nearly 50% of the

non-a↵ective psychosis individuals, expressed the highest symptom scores across PANSS

total, PANSS negative and positive and general psychopathology and impaired cognition

in all domains compared to cluster 0 containing 17% of the non-a↵ective and 37% of the

a↵ective individuals, and partially also compared to cluster 1 which consists of the majority

of a↵ective individuals and 36% of non-a↵ective individuals. Patients in cluster 0 had the

lowest symptom scores and globally spared cognitive abilities, which were similar to those

of controls. Cluster 1 was intermediate, with cognitive impairments in several but not all

domains and slightly increased symptoms compared to the cognitively spared cluster. This

finding confirms results from Lewandowski and colleagues [50] who found a four-cluster solu-

tion to provide the best fit to their data containing three diagnostic patient groups, with one

globally impaired cluster, for which cognitive deficits were associated with symptom severity

and poorer functioning, one cognitively spared cluster and two intermediate clusters [50].

The overall structure of cognitive clusters identified in the present study supports findings

discussed in a recent meta-analysis of data-driven identification of cognitive phenotypes in

schizophrenia [51]. Green and colleagues [51] describe that what is characteristic to all

cluster solutions is the presence of a cognitively spared, one or multiple intermediate and a

deficit subgroup [51]. Importantly, the current study replicates three cognitive clusters us-

ing standard cognitive, perceptual and emotional assessments, selected for general cognitive

screening purposes but not necessarily to detected the largest or most consistent cognitive
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deficits in early stages of psychosis, suggesting generalisability among these clusters.

In addition to the di↵erences across many cognitive domains between the patients of

the clusters, we also found di↵erences with regard to amount of medication using Chlorpro-

mazin equivalent doses and grey matter volume in frontal, parietal and subcortical brain

areas. This emphasizes the complexity of the inter-relationships of cognitive deficits, brain

alteration, medication usage and symptom expression, especially when considering that the

clustering is based on task and questionnaire data only, and still, di↵erences across all do-

mains - cognition, brain scores, medication and symptoms - have been identified. Several

studies indicate an association between higher doses of medication and stronger cognitive

deficits [76–78]. In a birth cohort study, for example, Husa and colleagues [76] showed that

a higher lifetime dose of anti-psychotics was associated with lower cognitive performance in

schizophrenia patients at the age of 43. Interestingly, a longitudinal study [77] investigating

the e↵ect of anti-psychotic treatment discontinuation showed that those individuals who did

not remain on their medication after a 3.5 year follow up had improved significantly more

than those who stayed on their medication even when controlling for symptom severity and

cognitive scores at baseline. General non-adherence of medication use, however, does not

have the same positive e↵ect on cognition [79]. Especially, anticholinergic medication has

been associated with a high cognitive burden [78], which is being supported by our results.

Changes in gray matter volume have been associated with an increased risk for psychosis

and disease development [80–82], and provided the basis for good classification in a recent

multicohort-study [83], as well as in earlier studies [84, 85], although classification results

are inconsistent [86]. Our results show that the cluster with the strongest cognitive deficits

has increased grey matter volume in three brain networks spanning fronto-parietal and sub-

cortical areas. Across all participants and when correcting for medication we also found

a negative correlation between grey matter volume and cognitive performance in several

cognitive tests, including general cognition, verbal cognition and reasoning. Interestingly,

grey matter volume alterations, especially reductions have been reported in association with

schizophrenia [41, 87–89]. Results however depend on the specific region [90], illness stage

and medication [91, 92]. Interactions between grey matter alterations and various cognitive

scores have not been studied extensively. Most studies investigated cognitive alterations in

specific domains (e.g., working memory) and often reported positive correlations [93–95].

Very few studies report negative correlations - increased grey matter volume being linked to

reduced cognitive scores. Zhang and colleagues [96] for example showed, comparable with

our results, that the performance in the Stroop Color-Word Test’s Card C was negatively

correlated with grey matter volumes of frontal and middle frontal brain areas. In a cohort of

at-risk mental state for psychosis individuals, Koutsouleris and colleagues [97] found positive

and negative correlations between grey matter volume and performance in the trail-making

test, with negative correlation reported for cerebellar regions, which is comparable to what
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we report in the current study. We suspect that the structural covariance networks anal-

ysis, which specifically aims at finding similarity networks between participants, and then

analyses grey matter volume di↵erences within these similar networks might contribute to

the di↵erence in directionality of the correlations. Our results however clearly demonstrate

di↵erences in the cluster containing the most strongly a↵ected patients - clinically and cog-

nitively. These di↵erences reported in the literature may suggest that grey matter changes

are not generally linked to cognitive changes, but rather play a mediating role. This argu-

ment would be in the same line of thought as put forward by Palaniyappan [98], stating

that grey matter changes in multimodal brain regions which have a supervisory function on

sensory, emotional and language processing, may link to symptom expression when occur-

ring with functional impairments. Future studies should therefore aim at the combination of

additional structural imaging data, such as structural or white matter connectivity, to com-

plement their analysis and potentially identify underlying neuropathological mechanisms.

Our data furthermore reveals a strong link between negative symptoms and cognitive

impairments. Investigating PANSS total, we found a step-wise increase in symptom severity

from cluster 0 to cluster 2, with the cognitive deficit cluster 2 to show highest symptom

scores. We found, also, that cluster 0, the cognitively spared cluster, showed significantly

lower positive symptoms compared to cluster 1 and 2. Furthermore, the globally impaired

cluster (cluster 2) revealed increased negative symptoms compared to both other clusters,

and increased global psychopathology compared to the cognitively spared cluster (cluster 0),

indicating that the cognitive deficits occur in those subjects with strong negative symptoms

and a higher severity of general psychopathology [99]. This is in congruence with Oomen

and colleagues [100] who reported three clusters based on only cognitive data with one

severely cognitively impaired cluster, which showed general functioning being significantly

lower compared to the patients in the other clusters. Interestingly, patients of the severely

impaired cluster also showed lower general functioning scores at a trend at 6- and 12-month

follow-up. Similar results were reported by Haining and colleagues [74]. Tan and colleagues

[75] on the other hand did not find associations between the three cognitive clusters and

symptom expression, but found that the cognitively impaired subgroup already showed

worse academic performance at the level of childhood, early and late adolescence. These

findings confirm the critical relevance of cognitive deficits for early detection and functional

prediction [26–28, 74]. This often replicated distribution of a severely impaired cluster,

indicating that early interventions based on such cluster analysis would be suitable too.

Finally, as our results confirm that patients with non-a↵ective psychosis show stronger

cognitive deficits compared to patients with a↵ective psychosis, it is not surprising that non-

a↵ective patients are more likely to be in the intermediate and impaired subgroups. Still both

patient groups are present in all clusters, with the cognitively intact subgroup consisting

of 19/52 and 20/118 patients with a↵ective and non-a↵ective psychosis, respectively, the
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intermediate group with 28/52 a↵ective and 42/118 non-a↵ective psychosis patients, and the

cognitively impaired group with 5/52 a↵ective and 56/118 non-a↵ective psychosis patients.

Our results indicate that clustering extends classical patient classification and diagnosis

solely based on International Statistical Classification of Diseases (ICD)/Diagnostic and

Statistical Manual of Mental Disorders (DSM) [101, 102] and may provide an additional

characterisation of patients which may emphasise additional targets of interventions and

treatment, such as cognitive remediation, especially for those individuals in the intermediate

and in the deficit cluster.

This study has several limitations: Generally, K-Means [103] is a commonly used cluster-

ing algorithm that performed well on our behavioral, such as cognitive, data. Nevertheless,

there are some drawbacks of this method: First, the algorithm requires a predefined number

of clusters. Based on the diagnosis, data contained at least three groups. We used this prior

information as basis for the specification of the number of clusters in our analysis. Based

on the literature, where a spared, an impaired and an intermediate cluster are regularly de-

tected [51] we predefined three clusters for the identification of subgroups. Identification of

four or more clusters require large sample sizes in order to produce reliable and interpretable

results. Our sample size does not allow this, because of the restricted number of subjects.

Second, K-Means clustering does not work well with non-spherical cluster or clusters with

di↵erent sizes [104]. We, therefore, also performed fuzzy K-means clustering approach which

accounts for fuzzy boundaries between subgroups, and is suited for potentially overlapping

subgroups [64]. The age di↵erence between the groups might constitute another limitation

of the study. However, since age was added as a covariate to all analyses, we believe that

this aspect did not a↵ect the results to a significant degree. Third, the basis of our clus-

tering provided cognitive, perceptual and emotional test scores, which were taken from the

standardised NIH toolbox ([57], [58]). Further improvement of clustering and identification

of cognitive subgroups may be achieved through the selection of specific behavioral tasks

and cognitive domains. Moreover, advanced analysis strategies, e.g., computational mod-

elling may improve clustering [16, 17, 105], as it provides the opportunity to identify and

mathematically di↵erentiate behavioral parameters, which were found to be reliable and

unique across individuals [106].

In conclusion, our results provide evidence for the presence of three cognitive subgroups

- one cognitively intact, one intermediate and one deficit group - replicating previous find-

ings. This study however extends those results showing that patients within those three

clusters also di↵er with respect to current medication dosage and grey matter volume in

fronto-parietal and subcortical regions. Our results therefore emphasize the complex inter-

relations between cognition, symptoms, brain structure and medication, drawing attention

to the pivotal role alterations in cognition as a factor for the selection of treatments and

interventions.
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[94] M. Picó-Pérez, R. Vieira, M. Fernández-Rodrıguez, M. A. P. De Barros, J. Radua, and

P. Morgado. “Multimodal meta-analysis of structural gray matter, neurocognitive

and social cognitive fMRI findings in schizophrenia patients”. Psychological Medicine

52.4 (2022), pp. 614–624.
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