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Abstract1

Vaccination is expected to reduce disease prevalence and to halt the spread of epidemics. But2

pathogen adaptation may erode the efficacy of vaccination and challenge our ability to con-3

trol disease spread. Here we examine the influence of the speed of vaccination rollout on the4

overall risk of pathogen adaptation to vaccination. We extend the framework of evolutionary5

epidemiology theory to account for the different steps leading to adaptation to vaccines: (1)6

introduction of a vaccine-escape variant by mutation from an endemic wild-type pathogen, (2)7

invasion of this vaccine-escape variant in spite of the risk of early extinction, (3) spread and,8

eventually, fixation of the vaccine-escape variant in the pathogen population. We show that the9

risk of pathogen adaptation is maximal for intermediate speed of vaccination rollout. On the one10

hand, slower rollout decreases pathogen adaptation because selection is too weak to avoid early11

extinction of the new variant. On the other hand, faster rollout decreases pathogen adaptation12

because it reduces the influx of adaptive mutations. Hence, vaccinating faster is recommended13

to decrease both the number of cases and the likelihood of pathogen adaptation. We also show14

that pathogen adaptation is driven by its basic reproduction ratio, the efficacy of the vaccine15

and the effects of the vaccine-escape mutations on pathogen life-history traits. Accounting for16

the interplay between epidemiology, selection and genetic drift, our work clarifies the influence17

of vaccination policies on different steps of pathogen adaptation and allows us to anticipate the18

effects of public-health interventions on pathogen evolution.19

Significance statement: Pathogen adaptation to host immunity challenges the efficacy of

vaccination against infectious diseases. Are there vaccination strategies that limit the emer-

gence and the spread of vaccine-escape variants? Our theoretical model clarifies the interplay

between the timing of vaccine escape mutation events and the transient epidemiological dy-

namics following the start of a vaccination campaign on pathogen adaptation. We show that

the risk of adaptation is maximized for intermediate vaccination coverage but can be reduced

by a combination of non pharmaceutical interventions and faster vaccination rollout.
20
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1 Introduction21

Vaccination offers unique opportunities to protect a large fraction of the host population and22

thus to control spreading epidemics. In principle, large vaccination coverage can lead to pathogen23

eradication. In practice, however, the coverage required for eradication is often impossible to24

reach with imperfect vaccines [16, 34]. Moreover, pathogen adaptation may erode the efficacy of25

vaccination. Even if adaptation to vaccines is less common than adaptation to drugs [14, 26, 27]26

the spread of vaccine-escape mutations may challenge our ability to halt the spread of epidemics.27

Understanding the dynamics of pathogen adaptation to vaccines is particularly relevant in the28

control of the ongoing SARS-CoV-2 pandemic. Yet, most theoretical studies that explore the29

evolution of pathogens after vaccination are based on the analysis of deterministic models and30

ignore the potential effects induced by the stochasticity of epidemiological dynamics. Demographic31

stochasticity, however, drives the intensity of genetic drift and can affect the establishment of new32

mutations and the long-term evolution of pathogens [42, 44, 41]. Several studies showed how the33

demographic stochasticity induced by finite host and pathogen population sizes alters selection on34

the life-history traits of pathogens [29, 22, 36]. These analytical predictions rely on the assumption35

that mutation rate is low, which allows us to decouple epidemiological and evolutionary time36

scales. Indeed, when the influx of new mutations is low, the new strain is always introduced after37

the resident pathogen population has reached its endemic equilibrium. Many pathogens, however,38

have relatively large mutation rates [43] and the fate of a pathogen mutant introduced away from39

the endemic equilibrium is likely to be affected by the dynamics of the pathogen populations.40

Besides, the start of a vaccination campaign is expected to yield massive perturbations of the41

epidemiological dynamics and new mutations are likely to appear when the pathogen population42

is far from its endemic equilibrium.43

The aim of the present study is to develop a versatile theoretical framework to evaluate the44

consequences of vaccination on the risk of pathogen adaptation to vaccination. There are six45

main evolutionary epidemiology outcomes after the start of vaccination which are summarized in46

Figure 1. Some of these outcomes are more favorable than others because they do not lead to47

the invasion of a new variant (Figure 1a-c). In contrast, vaccination may lead to the invasion of48
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vaccine-escape variants (Figure 1e-f). In the following we use a combination of deterministic and49

branching process approximations to study the joint epidemiological and evolutionary dynamics50

of the pathogen population. This analysis reveals the importance of the speed of the vaccination51

rollout as well as of the life-history characteristics of the vaccine-escape variants on the probability52

of pathogen adaptation.53

2 Model54

We use a classical SIR epidemiological model with demography, where hosts can either be suscepti-55

ble, infected or recovered [3]. The discrete number of each of these types of hosts is denoted by Sn,56

In and Rn, respectively. Because we are interested in the effect of demographic stochasticity the57

model is derived from a microscopic description of all the events that may occur in a finite—but not58

fixed—host population of (varying) total size Nn = Sn + In +Rn. We consider a continuous-time59

Markov process tracking the number of individuals of each type of host (see SI Section 1 for a60

detailed description). The susceptible hosts immigrate at rate λn, where n is a “system size”, or61

scaling parameter, that indicates the order of magnitude of the arena in which the epidemic occurs.62

Hence the total host population varies stochastically in time, but remains of the order of n.63

Vaccination may either take place with probability p when a new susceptible host enters the64

population (e.g., early childhood vaccination ) or at a constant rate ν for all other susceptible65

hosts (e.g., vaccination of adults). The immunity triggered by vaccination is assumed to wane at66

rate ωV , and natural immunity is assumed to wane at rate ωR. A host may be unvaccinated, U ,67

or vaccinated, V , and may either be uninfected or infected with the wild type, w, or a mutant68

strain, m (we assume coinfections are not possible). We thus have to track the numbers of two69

classes of susceptible hosts (SnU , S
n
V , where Sn = SnU + SnV ) and four classes of infected individuals70

(InUw, I
n
Um, I

n
V w, I

n
V m, where In =

∑
i I
n
Ui + InV i). Recovered individuals are assumed to be fully71

protected (no reinfections) because natural immunity is expected to be more effective than immunity72

triggered by vaccination (we relax this assumption at the end of the paper). We further assume that73

the virulence αi (the mortality rate induced by the infection), the transmission βi (the production74

rate of new infections), and the recovery γi (the rate at which the host clears the infection) are fully75
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governed by the pathogen genotype (i = w or m). A fourth trait εi ∈ [0, 1] governs the infectivity of76

pathogen genotype i on vaccinated hosts (infectivity of all genotypes is assumed to be equal to 1 on77

unvaccinated hosts). In other words, this final trait measures the ability of the pathogen to escape78

the immunity triggered by the vaccine. Note that these assumptions allow us to aggregate infected79

hosts irrespective of their vaccination status which simplifies the analysis below. For simplicity80

we assume frequency-dependent transmission where the number of contacts a host may have in81

the population is constant, but a proportion of those contacts may be infectious. Note, however,82

that other forms of transmission (e.g. density-dependent transmission [33]) are expected to yield83

qualitatively similar results. We summarize the states of the process and the jump rates at which84

individuals transition between states in Table S1 and in Figure 2.85

We use this model to examine the epidemiological and evolutionary dynamics following the86

start of a vaccination campaign. For the sake of simplicity, we focus our analysis on scenarios87

where the pathogen population has reached an endemic equilibrium before the start of vaccination.88

This is a strong assumption but our aim in this study is to focus on a simple scenario to understand89

the interplay between epidemiology and the stochastic fate of vaccine escape mutations. This is90

a necessary first step before studying more complex scenarios where vaccination starts before the91

epidemic has reached an endemic equilibrium. Note that we explore the robustness of our results92

at the end of the paper after relaxing some of our simplifying assumptions (see section 5.6).93

Before going further in the analysis of the model we detail the default parameter values used to94

explore numerically the dynamics of viral adaptation in the figures presented in the following section95

(Table 1). We chose parameter values consistent with an acute viral infections of humans (e.g.96

SARS-CoV, Influenza...). The average lifespan of infected hosts is 64 years (λ = δ = 3 10−4 week−1)97

and the average duration of infection is 3.5 days (γw = 2 week−1). The case mortality of the wild98

type virus is assumed to be ≈ 1% (i.e. αw/(αw + γw) and has a basic reproduction ratio of99

Rw = βw/(δ + αw + γ) ≈ 5. The immunity triggered by the infection or by the vaccination is100

around 4.5 months (ωR = ωV = 0.05 week−1) . The wild type virus is assumed to have a low101

probability to infect vaccinated hosts (εw = 0.05). As explained in the following section, we varied102

the phenotypic properties of the mutant virus but, crucially, we focused on mutants with the ability103
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to escape the immunity triggered by vaccination (εm = 1) and a lower basic reproduction ratio than104

the wild type in a fully susceptible population (i.e. adaption to vaccination is assumed to cary some105

fitness cost).106

3 Results107

3.1 Deterministic Approximation108

As a first step in our analysis, we use a deterministic approximation for large values of n [30] and109

we work with host densities defined as Si = Sni /n, Iij = Inij/n, N = Nn/n. This corresponds110

to replacing discrete individuals by densities and interpreting the rates in Figure 2 as describing111

continuous flows rather than jumps. This yields a system of ordinary differential equations:112

ṠU = λ(1− p) + ωV SV + ωRR−
(
βw
IUw + IV w

N
+ βm

IUm + IV m
N

+ δ + ν

)
SU

ṠV = λp+ νSU −
(
εwβw

IUw + IV w
N

+ εmβm
IUm + IV m

N
+ δ + ωV

)
SV

İUw = βw(IUw + IV w)
SU
N
− (δ + αw + γw)IUw

İUm = βm(IUm + IV m)
SU
N
− (δ + αm + γm)IUm

İV w = εwβw(IUw + IV w)
SV
N
− (δ + αw + γw)IV w

İV m = εmβm(IUm + IV m)
SV
N
− (δ + αm + γm)IV m

Ṙ = (γwIUw + γwIV w + γmIUm + γmIV m)− (δ + ωR)R,

(1)

113

It is also convenient to track the dynamics of the total density of hosts infected with the same114

strain i, Ii := IUi + IV i, which yields:115

İi =

((
βi
SU
N

+ εiβi
SV
N

)
− (δ + αi + γi)

)
︸ ︷︷ ︸

ri = growth rate of strain i

Ii (2)

The ability of the strain i to grow is given by the sign of the growth rate ri. Note that this growth116

rate depends on the four different traits of the pathogen: αi, βi, γi, εi. But this growth rate depends117

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2024. ; https://doi.org/10.1101/2022.08.01.22278283doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


also on the densities SU and SV , which vary with t, the time since the start of vaccination (i.e.,118

vaccination starts at t = 0). The coefficient of selection sm on the mutant strain relative to the119

wild type is:120

sm = rm − rw = (βm − βw)
SU
N

+ (εmβm − εwβw)
SV
N
− (αm − αw + γm − γw) (3)

In other words, both the genetics (the phenotypic traits of strain i) and the environment (the121

epidemiological state of the host population) govern selection and strain dynamics.122

3.2 Pathogen eradication and vaccination threshold123

The ability of the strain i to grow can be measured by its effective per-generation reproduction124

ratio which is given by:125

Rei = Ri

(
SU
N

+ εi
SV
N

)
(4)

where Ri = βi
δ+αi+γi

. Hence, a reduction of the availability of susceptible hosts with vaccination126

may drive down the density of the wild-type pathogen when the production of new infected hosts127

(infection “birth”) does not compensate for the recovery and death of infected hosts (infection128

“death”), that is when Rew < 1. Ultimately, vaccination can even lead to the eradication of the129

wild-type pathogen (Figure 1a) either when the vaccine is sufficiently efficient (εwRw > 1) or when130

the vaccination coverage is sufficiently high [34, 16]. The deterministic model (1) can be used to131

identify the threshold νc of the speed of vaccination rollout above which the wild-type pathogen132

can be driven to extinction (see Methods and SI Section 1):133

νc =
Rw(δ(1− (1− εw)p) + ωV )− (δ + ωV )

1−Rwεw
(5)

As expected, better vaccines (i.e., lower values of εw and ωV ) yield lower threshold values for134

the speed of vaccination. Imperfect vaccines (i.e., higher values of εw and ωV ), in contrast, are135

unlikely to allow eradication. Note that, if we wait sufficiently long, the population of the wild-136
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type pathogen will be driven to extinction in a stochastic way even when ν < νc. Indeed, in a137

finite host population, sooner or later, the pathogen population is doomed to go extinct because of138

demographic stochasticity, but the extinction time when ν < νc will usually be very long, increasing139

exponentially with the system size n. From now on, we are going to neglect the possibility of140

extinction of the wild type due to vaccination when ν < νc (which is a good approximation when141

n is large).142

The spread of a new pathogen variant may erode the efficacy of vaccination and, consequently,143

could affect the ability to control and, ultimately, to eradicate the pathogen. But before the144

replacement of the wild type by a vaccine-escape variant the pathogen population may go through145

three steps that may ultimately result (or not) in pathogen adaptation: (1) introduction of the146

vaccine-escape variant by mutation, (2) extinction (Figure 1c) or invasion (Figure 1d-f) of the147

vaccine-escape variant introduced by mutation, (3) fixation (Figure 1f) or not (Figure 1d-e) of148

the invading vaccine-escape variant. Each of these steps is very sensitive to stochasticity because149

the number of vaccine-escape variants is very small in the early phase of its emergence.150

3.3 Step 1: Introduction of the variant by mutation151

The first step of adaptation is driven by the production of new variants by the wild-type pathogen152

through mutation. The level of adaptation to unvaccinated and vaccinated hosts may vary among153

those variants [10]. Vaccine-escape mutations that do not carry any fitness costs (or may even154

be adaptive) in unvaccinated hosts are expected to invade and fix relatively easily irrespective of155

the vaccination strategy. We thus focus on variants that carry fitness costs in immunologically156

näıve hosts (i.e., variants specialized on vaccinated hosts [10]). In principle, the introduction of157

the vaccine-escape mutation may occur before the rollout of vaccination. The distribution of these158

mutations is expected to follow a stationary distribution resulting from the action of recurrent159

mutations and negative selection (see Methods). If these fitness costs are high and/or if the mutation160

rate is low these pre-existing mutants are expected to be rare. In the following, we neglect the161

presence of pre-existing mutants and we focus on a scenario where the first vaccine-escape mutant162

appears after the start of vaccination (but see Methods, section 5.5 where we discuss the effect of163
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standing genetic variation).164

At the onset of the vaccination campaign (i.e., t = 0) we assume that the system is at the165

endemic equilibrium (i.e., the equilibrium densities S0
U , I0Uw and I0V w are given in (13) in the166

Methods). We assume that an individual host infected with the wild type produces vaccine-escape167

mutants at a small, constant rate θU/n if unvaccinated and θV /n if vaccinated. We assume that θU168

and θV are small enough that within-host clonal interference among vaccinated-adapted variants is169

negligible. The relative rates of mutation in the two types of hosts is unknown but the within-host170

selection may favor mutants in vaccinated hosts which may yield θV ≥ θU . However, the lower viral171

load in vaccinated host may counteract this effect and may yield θU ≥ θV . The total production172

of mutants is thus equal to θU
n I

n
Uw(t) + θV

n I
n
V w(t) ≈ θUIUw(t) + θV IV w(t), so that the probability173

density fm(t) of the arrival time t = tm of the first vaccine-escape mutant is approximated by:174

fm(t) = (θUIUw(t) + θV IV w(t)) e−
∫ t
0 (θU IUw(s)+θV IV w(s)) ds. (6)

In other words, the time tm at which the vaccine-escape variant is first introduced by mutation175

depends on the dynamics of the incidence of the infections by the wild type. Plots of fm for different176

values of rollout speed ν in Figure 3 show that a faster rollout of vaccination delays the introduction177

of the vaccine-escape mutant. This effect is particularly marked when ωR = 0 because life-long178

immunity is known to result in a massive transient drop of the incidence (the honey-moon period)179

[34, 13] which is expected to decrease the influx of new variants during this period (Figure S1).180

Figure 3 also shows how higher values of θV can increase the influx of vaccine-escape variants. As181

discussed in the following section, the subsequent fate of vaccine-escape mutants depends strongly182

on the timing of their arrival.183

3.4 Step 2: Variant invasion184

Immediately after its introduction, the dynamics of the vaccine-escape mutant may be approximated185

by a time-inhomogeneous birth-death process where the rate of birth (i.e., rate of new infections186

by the mutant) varies with the availability of susceptible hosts (see Methods, section 5.3). The187

probability that a single mutant with time-varying birth rate bm(t) = βm

(
SU (t)
N(t) + εmSV (t)

N(t)

)
and188
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constant death rate dm = δ + αm + γm, introduced at time tm, successfully invades (see [25] and189

SI, Section 2) is:190

P tmm =
1

1 +
∫∞
tm
dme

−
∫ t
tm

bm(s)−dm ds dt
(7)

Plotting the probability of invasion against tm in Figure 4 shows that the time at which the191

vaccine-escape mutant is introduced has a dramatic impact on the probability of escaping early192

extinction. If the mutant is introduced early, the density SV (t) of susceptible vaccinated hosts193

remains very low and the selection for the vaccine-escape mutant is too small to prevent stochastic194

extinctions. The probability of invasion increases with selection, and thus with the density of195

vaccinated hosts, which tends to increase with time (see equation (3)).196

Taking tm → ∞ allows us to tackle the situation when the vaccine-escape mutant appears at197

the endemic equilibrium, i.e., when the densities of unvaccinated and vaccinated susceptible hosts198

are S?U and S?V , respectively. At that point in time the effective per-generation reproduction ratio199

of genotype i (i.e. the expected number of secondary infections produced by pathogen genotype i)200

is:201

R?i = Ri

(
S?U
N?

+ εi
S?V
N?

)
(8)

By definition, at the endemic equilibrium set by the wild-type pathogen we have R?w = Rew = 1.202

Hence, a necessary condition for the mutant to invade this equilibrium is R?m > 1, i.e., the effective203

reproduction number of the mutant has to be higher than that of the wild type (see SI, Section 1).204

However, this is not a sufficient condition: many mutants that satisfy this condition will rapidly205

go extinct due to demographic stochasticity. But in contrast to an early introduction of the mu-206

tant discussed above, the stochastic dynamics of the mutant is approximately a time-homogeneous207

branching process because the birth rate of the mutant approaches b?m = βi

(
S?
U
N? + εi

S?
V
N?

)
. This208

birth rate is constant because the density of susceptible hosts remains constant at the endemic209

equilibrium. The probability of mutant invasion after introducing a single host infected by the210

mutant is thus (see SI Section 1; Figure 4):211

P ?m = lim
tm→∞

P tmm = 1− R?w
R?m

= 1− 1

R?m
(9)

10
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Note that we recover the strong-selection result of [36]. This expression shows that at this endemic212

equilibrium the fate of the mutant is fully governed by the per-generation reproduction ratio of213

the two strains, but does not depend on the specific values of the life-history traits of the mutant214

(provided the different vaccine-escape variants have the same value of R?m).215

Interestingly, unlike P ?m, the probability P tmm of mutant invasion at time tm given in (7) is not216

governed solely by Ri, but rather depends on the life-history traits of the mutants. For instance,217

assume that two vaccine-escape mutants have the same values of Rm and εm but they have very218

different life-history strategies. The “slow” strain has low rates of transmission and virulence (in219

green in Figure 4) while the “fast” strain has high rates of transmission and virulence (in red220

in Figure 4). Figure 4 shows that the high mortality rate of hosts infected by the fast strain221

increases the risk of early extinction and lowers the probability of invasion relative to the slow222

strain. Hence, in the early stage of adaptation, pathogen life-history matters and favours slow223

strains with lower rates of transmission and virulence.224

3.5 Step 3: After variant invasion225

Successful invasion of the vaccine-escape mutant means that it escaped the “danger zone” when its226

density is so low that it is very likely to go extinct (Figure 1d-f). After this invasion we can describe227

the dynamics of the polymorphic pathogen population using the deterministic approximation (1).228

Because the invasion of the mutant at the endemic equilibrium set by the wild type requires229

that R?m > R?w, we may expect from the analysis of the deterministic model that the mutant would230

always replace the wild-type pathogen. That is, the wild-type pathogen would go extinct before231

the mutant (Figure 1f). This is indeed the case when the phenotypes of the mutant and the wild232

type are not very different because of the “invasion implies fixation” principle [17, 5, 38]. Yet, this233

principle may be violated if the phenotype of the vaccine-escape mutant is very different than the234

phenotype of the wild type.235

First, the long-term coexistence of the two genotypes is possible (Figure 1e).The coexistence236

requires that each genotype is specialized on distinct types of host. The wild-type is specialised237

on unvaccinated hosts (i.e. Rw > Rm) and the mutant is specialised on the vaccinated hosts (i.e.238
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εm > εw). Intermediate rates of vaccination maintain a mix of vaccinated and unvaccinated host239

wich promotes coexistence between the two genotypes (Figure S2). Second, the vaccine-escape240

mutant may be driven to extinction before the wild type if its life-history traits induce massive241

epidemiological perturbations after its successful invasion (Figure 1d). As pointed out by previous242

studies, more transmissible and aggressive pathogen strategies may yield larger epidemics because243

the speed of the epidemic is governed by the per-capita growth rate ri, not by the per-generation244

reproduction ratio Ri [13]. This explosive dynamics is driven by an over-exploitation of the host245

population and is immediately followed by a massive decline in the incidence of the vaccine-escape246

mutant. In a finite host population, this may result in the extinction of the vaccine-escape mutant247

before the wild type [42]. We capture this outcome with a hybrid analytical-numerical approach that248

computes the probability P tmfix that the wild type will go extinct before the mutant (see Methods,249

section 5.4). Figure 5 shows that two vaccine-escape mutants may have very different probabilities250

of fixation, even if they have the same per-generation reproduction ratio. The numerical compu-251

tation of the probability of fixation agrees very well with individual-based stochastic simulations.252

The faster strain is unlikely to go to fixation because invasion is followed by a period where the253

birth rate drops to very low levels (far below the mortality rates, Figure S3). In other words, a254

more aggressive strategy will more rapidly degrade its environment, by depleting susceptible hosts,255

which is known to increase the probability of extinction [6]. Interestingly, this effect is only appar-256

ent when the time of introduction tm is large. Indeed, when the mutant is introduced soon after257

the start of vaccination, its probability of invasion is already very low because its initial growth258

rate is negative (Figure S3a, b, c). When the mutant is introduced at intermediate times, the259

initial growth rate of the mutant is positive because some hosts are vaccinated (Figure S3d, e,260

f). If the vaccine-escape mutant is introduced later, the growth rate of the mutant is initially very261

high as many hosts are vaccinated (and thus susceptible to the vaccine-escape mutant) but this262

is rapidly followed by a drop in host density (especially pronounced with the faster strain) which263

prevents the long-term establishment of the faster strain (see Figure S3g, h, i).264
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3.6 The overall risk of pathogen adaptation265

The overall probability that the pathogen will adapt to vaccination (i.e. that a vaccine-escape266

variant invades and eventually replace or coexist with the wild-type) depends upon the probability267

that the mutation will arise (step 1) and the probability that this mutation will escape early268

extinction (step 2) and eventually go to fixation (step 3). It is particularly relevant to explore the269

effect of the speed of vaccination rollout on the overall probability that some vaccine-escape variant270

invades before a time t after the start of the vaccination campaign (steps 1 and 2, Figure 6):271

Atm = 1− e−
∫ t
0 (θU IUw(s)+θV IV w(s))P s

m ds. (10)

When ν > νc, vaccination is expected to eradicate the disease rapidly. But an escape mutation272

may appear by mutation before eradication and rescue the pathogen population. This scenario273

fits squarely within the framework of classical “evolutionary rescue” modeling [32, 2, 4]. Yet,274

vaccination rollout is unlikely to be fast enough to eradicate the wild-type pathogen and, in this275

case, the probability of adaptation goes to 1 when t → ∞. Indeed, when ν < νc, a vaccine-276

escape variant will eventually appear by mutation and invade. But what is less clear is how fast277

this adaptation will take place. We can use equation (10) to explore the effect of the speed of278

adaptation on the probability of pathogen adaptation at time t after the start of vaccination (i.e.279

the speed of adaptation). Crucially, the speed of pathogen adaptation is maximized for intermediate280

values of the speed of vaccination rollout. This is due to the antagonistic consequences the speed281

of the rollout has upon these two steps of adaptation (compare Figures 3 and 4). Faster rollout282

reduces the influx of new mutations, but increases selection for vaccine-escape mutations.283

To illustrate this ambivalent effect we can first examine how the speed of vaccination rollout284

decreases the probability M t
m that at least one escape mutation is introduced before time t (blue285

curve in Figure 6):286

M t
m = 1− e−

∫ t
0 (θU IUw(s)+θV IV w(s)) ds. (11)

Second, we can examine how the speed of vaccination rollout increases the probability that a mutant287

invades which can be approximated by P ?m (see equation (9)) when t is sufficiently large (purple288
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curve in Figure 6). The overall probability of adaptation can be well approximated by:289

Atm ≈ 1− e−
∫ t
0 (θU IUw(s)+θV IV w(s)) dsP ?

m ≈M t
mP

?
m. (12)

This approximation captures how the speed of adaptation results from the balance between the290

influx of new mutations and the invasion success of these mutations. Interestingly, for low speed of291

vaccination rollout, the invasion of the escape mutant may not necessarily lead to the fixation of292

the new variant. Indeed, with low vaccination rollout yields a large fraction of the host population293

remains näıve and this heterogeneity can promote the coexistence between two specialist pathogens:294

the wild-type is specialised on naive hosts and the escape mutant is specialised on vaccinated hosts295

(Figure S2).296

4 Discussion297

Vaccination is a powerful tool to control the spread of infectious diseases, but some pathogens298

evolve to escape the immunity triggered by vaccines (e.g. flu, SARS-CoV-2). Will they continue299

to adapt to the different vaccines that are being used to halt their spread? Does the likelihood of300

this adaptation depend on the speed of the vaccination rollout? To answer these questions we must301

first understand the different steps that may eventually lead to adaptation to vaccination.302

Mutation is the fuel of evolution, and the first step of adaptation to vaccination is the mutational303

process that produces vaccine-escape variants. Even if initial estimates of SARS-CoV-2 mutation304

rates were reassuringly low [39], the virus has managed to evolve higher rates of transmission [9, 46]305

and these adaptations are challenging current control measures used to slow down the ongoing306

pandemic. The ability of the new variants of SARS-CoV-2 to escape immunity is also worrying307

and indicates that viral adaption can weaken vaccine efficacy [47, 37]. The rate at which these308

potential vaccine-escape mutations are introduced depends on the density of hosts infected by the309

wild-type virus. In this respect, a faster rollout of vaccination is expected to delay the arrival of310

these mutations (Figure 3).311

Some authors have argued that the emergence of vaccine-escape mutations may be more likely312
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in infected hosts which are partially immunized [12, 8, 10]. Our model can be used to explore the313

consequences of this within-host evolution in vaccinated hosts (e.g., taking θV > θU ). A larger314

value of θV increases the overall rate of mutation (Figure 3) but this effect is modulated by the315

fraction of the host population that is vaccinated. Consequently, when θV > θU , the speed of vac-316

cination rollout can have a non-monotonic effect on the probability that a vaccine-escape mutation317

is introduced (see Figure S4). Indeed, when the rate of vaccination remains low, the enhancing318

effect of vaccination on the rate of introduction of new mutations can counteract the delaying effect319

of faster vaccination rollout discussed above. But the probability that a vaccine-escape mutation320

is introduced drops to very low levels when the rate of vaccination becomes overwhelmingly high.321

The second step of adaptation starts as soon as the vaccine-escape mutant has been introduced322

in the pathogen population. Will this new variant go extinct rapidly or will it start to invade? The323

answer to this question depends on the time at which the mutant is introduced. If the mutant is324

introduced when the population is not at an endemic equilibrium, the fate of the mutant depends325

on a time-varying birth rate which is driven by the fluctuations of the density of susceptible hosts.326

In our model early introductions are likely to result in rapid extinction because there are simply327

not enough vaccinated hosts to favour the mutant over the wild type. Moreover, we found that328

earlier introductions are likely to favour slower life-history strategies which are less prone to early329

extinction. If the introduction takes place later, when the system has reached a new endemic330

equilibrium, the fate of the mutant is solely governed by the effective per-generation ratio R?m331

and does not depend on the life-history traits of the mutant. Slow and fast variants have equal332

probability to invade if they have the same R?m. Altogether, our results suggest that earlier arrival333

may not always facilitate invasion since the probability of invasion is limited by the time-varying334

epidemiological state of the host population.335

The third step of adaptation starts as soon as the hosts infected by the vaccine-escape mutant336

are abundant and the effect of demographic stochasticity on the dynamics of this mutation becomes337

negligible. Our analysis attempts to better characterize the dynamics of the mutant after invasion338

using a combination of deterministic and analytical approximations. In principle, conditional on339

invasion, we can use the deterministic model (1) to describe the joint dynamics of the mutant and340
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the wild type. In particular, the speed at which the vaccine-escape mutant spreads in the pathogen341

population can be well approximated by the deterministic model. This may be particularly useful to342

address the impact of various vaccination strategies on the speed of the spread of a vaccine-escape343

variant [15]. In the present work we show that life-history traits of the vaccine-escape mutant344

drive the speed of its spread. Indeed, as pointed out before, the deterministic transient dynamics345

depends on the per-capita growth rate of the mutant rm, not its per-generation reproduction ratio346

Rm [13]. Transient dynamics may favour a fast and aggressive variant because this life-history347

strategy may be more competitive away from the endemic equilibrium. Yet, this explosive strategy348

may be risky for the pathogen if it leads to epidemiological fluctuations that result in a massive349

drop in the number of infections. The consequences of such fluctuations on the extinction risk of350

the variant can be accounted for by a generalized birth-death process where the per-capita growth351

rate of the mutant varies with time. Epidemiological fluctuations lead to a degradation of the352

future environment (i.e., depletion of the density of susceptible hosts) which results in an increased353

risk of extinction [25, 6].354

A comprehensive understanding of pathogen dynamics after vaccination relies on the use of355

a combination of theoretical tools to capture the interplay between stochastic and deterministic356

forces. Here, we use a hybrid numerical-analytical approach to account for the three successive steps357

that may eventually lead to the fixation of a vaccine-escape mutant. This theoretical framework358

is particularly suitable to explore the influence of different vaccination strategies on the risk of359

pathogen adaptation. In particular, we show that this risk drops to very low levels even when the360

speed of vaccination rollout is below the threshold value that may eventually lead to eradication361

(i.e., ν < νc ). In other words, faster vaccination rollout makes sense even when eradication is362

infeasible, because faster rollout decreases both the number of cases and the likelihood of pathogen363

evolution. This conclusion is akin to the general prediction that the rate of pathogen adaptation364

should be maximized for intermediate immune pressure or for medium doses of chemotherapy at the365

within-host level [20, 40, 19, 1, 21, 11, 2]. Most of these earlier studies focused on evolutionary rescue366

scenarios where the wild type is expected to be rapidly driven to extinction by human intervention.367

Our versatile theoretical framework, however, allows us to deal with a broader range of situations368
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where the intervention is not expected to eradicate the wild type pathogen. Accounting for the369

dynamics of the wild type affects both the flux of mutation and the fate of these mutations.370

The framework we have developed can be readily extended to explore may other situations.371

For instance, our model can be modified to explore the influence of temporal variations in the372

environment that could be driven by seasonality or by non-pharmaceutical interventions (NPIs).373

We explored a situation where the transmission rate of all variants is periodically reduced by a374

quantity 1−c(t), where c(t) is a measure of the intensity of NPIs. These periodic interventions affect375

both the flux of mutations and the probability that these mutations invade. In particular, NPIs376

lower the probability of mutant introduction through the reduction in the density of hosts infected377

by the wild type (Figure S4). As a consequence, the probability of adaptation is reduced when378

vaccination is combined with periodic control measures. Hence, our approach helps to understand379

the interaction between vaccination and NPI discussed in earlier studies [41, 31].380

We have made several simplifying assumptions that need to be relaxed to confidently apply our381

findings to a broader range of pathogens such as the current SARS-CoV-2 pandemic (see section382

5.6 in the Methods). First, one should study situations where the pathogen population has not383

reached an endemic equilibrium when vaccination starts to be applied. We carried out additional384

simulations showing that starting the vaccination rollout sooner (i.e. just after the start of the385

epidemic) tends to promote the probability of invasion of the escape mutant (Figure S5). Indeed,386

at the onset of the epidemic the density of susceptible hosts is higher (i.e. the birth rate of the387

infection is high relative to the endemic equilibrium) and the risk of early extinction of the mutant388

is reduced. Second, it is important to relax the assumption that natural immunity is perfect.389

We carried out additional simulations showing that when naturally immune hosts, like vaccinated390

hosts, can be reinfected the probability of invasion of the escape mutant increases (Figure S6).391

This effect is particularly strong just after the start of vaccination. Indeed, if naturally immune392

hosts are equivalent to vaccinated hosts, selection to escape immunity is present even before the393

start of vaccination and one may thus expect the speed of adaptation to be much faster and to be394

relatively independent of the vaccination strategy. Another important extension of our model would395

be to study the effect of a diversity of vaccines in the host population. We did not explore this396
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effect in the present study but this diversity of immune profiles among vaccinated hosts could slow397

down pathogen adaptation if the escape of different vaccines requires distinct mutations [45, 7, 35].398

Finally, it is important to recall that we focus here on a simplified scenario where we analyse the399

evolutionary epidemiology of an isolated population. In real-life situations the arrival time may400

depend more on the immigration of new variants from abroad than on local vaccination policies. The401

influence of migration remains to be investigated in spatially structured models where vaccination402

may vary among populations [18].403

5 Methods404

In this section, we present how extinction, invasion and fixation probabilities may be obtained405

under strong-selection assumptions when a mutant strain appears in a host-pathogen system that406

is away from its endemic equilibrium. Our essential tools are the deterministic ordinary differential407

equations (1) and birth-and-death approximations, which we discuss below. The former allows us to408

consider the situation when all strains are abundant, the latter when at least one strain is rare. We409

will limit ourselves to an informal treatment, presenting heuristic arguments and deferring rigorous410

proofs and sharp error bounds to a future treatment. In the following we present a simple, yet411

versatile, hybrid (i.e., semi-deterministic) framework which allows us to approximate the probabili-412

ties associated with different steps of adaptation (mutation, invasion, fixation) via adding auxiliary413

equations describing stochastic phenomena, to the deterministic ordinary differential equations414

describing the global population dynamics.415

5.1 Before the introduction of a variant416

We assume that vaccination starts after the monomorphic population of the wild-type pathogen417

has reached its endemic equilibrium,418
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S0
U =

λ(δ + γw + ωR)

δ(βw − αw) + ωR(Rw(αw + δ)− αw)

S0
V = 0

I0Uw =
λ(Rw − 1)(δ + ωR)

δ(βw − αw) + ωR(Rw(αw + δ)− αw)

I0V w = 0

R0 =
λ(Rw − 1)γw

δ(βw − αw) + ωR(Rw(αw + δ)− αw)

(13)

We then use the following ordinary differential equations to track the deterministic dynamics419

of the wild-type pathogen using the endemic equilibrium before vaccination (13) as the initial420

condition:421

ṠU = λ(1− p) + ωV SV + ωRR−
(
βw
IUw + IV w

N
+ δ + ν

)
SU

ṠV = λp+ νSU −
(
εwβw

IUw + IV w
N

+ δ + ωV

)
SV

İUw = βw(IUw + IV w)
SU
N
− (δ + αw + γw)IUw

İV w = εwβw(IUw + IV w)
SV
N
− (δ + αw + γw)IV w

Ṙ = (γwIUw + γwIV w)− (δ + ωR)R

Ṅ = λ− δN − αw(IUw + IV w).

(14)

Letting Iw = IUw + IV w, we get from (14):

İw = βw(SU + εwSV )
Iw
N
− (δ + αw + γw)Iw.

A new endemic equilibrium will thus be approached after vaccination if and only if the growth rate

rw = βw(SU + εwSV )/N − (δ + αw + γw) is positive, or equivalently if the effective per-generation

reproduction ratio

Rew = Rw

(
SU
N

+ εw
SV
N

)
is larger than 1, when SU and SV are taking their stationary values S̃U and S̃V in the absence of422

infection. Computing these values (see SI, Section 1) shows that Rew > 1 if and only if ewRw > 1423
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or ν > νc, where424

νc =
Rw(δ(1− (1− εw)p) + ωV )− (δ + ωV )

1−Rwεw
(15)

Thus we see that if εwRw < 1 and the speed of the vaccination rollout is higher than the critical425

value νc the wild type will be driven to extinction.426

For values of the vaccination rollout ν smaller than this threshold νc, or when ewRw > 1, the427

wild-type may also go extinct due to demographic stochasticity. We can neglect this possibility428

because the timescale of stochastic extinction from abundances of the order of n is much larger429

than those of the processes under consideration.430

5.2 Introduction of the variant by mutation (step 1)431

As indicated above, we use a time-inhomogeneous Poisson point process to model the influx of432

new mutations. The per capita rate of mutation is assumed to be constant through time but433

whether or not a mutant will escape extinction within a host may depend on the type of host.434

Indeed, a vaccine-escape mutation may have a higher probability to escape within-host extinction in435

vaccinated hosts. We account for this effect by making a distinction between θU and θV . If vaccine-436

escape mutations are more likely to escape extinction in vaccinated hosts we expect θV > θU . In437

other words, θV /θU − 1 is a measure of the within-host fitness advantage of the vaccine-escape438

mutant in vaccinated hosts (they are assumed to have the same within-host fitness in näıve hosts).439

We can compute the probability that some of the vaccine-escape mutations are present as440

standing variation before the start of vaccination. When the resident population has reached its441

endemic equilibrium (S0
U , 0, I

0
Uw, 0, N

0), the number of mutants is approximated by a birth-and-442

death process with immigration, with birth rate b0m = βm
S0
U
N0 and death rate dm = δ + αm + γm,443

and the “immigration” is actually mutations arising in the resident population, which occur at rate444

µm = θUI
0
Uw. Because we assume that in a fully näıve host population vaccine-escape mutations445

carry a fitness cost relative to the resident strain, we have b0m < dm. The number of mutants446

thus approximately follows a subcritical birth-and-death process with immigration, which is known447

to converge in distribution as t → ∞ to a negative binomial stationary distribution [24]. The448
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probability that there are k infected individuals hosting the mutant pathogen at time t = 0 is thus:449

pk =

(
k + r − 1

k

)
(1−R0

m)r(R0
m)k (16)

where r = µm/b
0
m and R0

m = b0m/dm. Hence the the expected number of vaccine-escape mutants450

already present at the start of vaccination is451

µm
dm − bm

. (17)

This result is analogous to the classical result that the expected frequency of deleterious mutations452

is of the form µ/s where µ is the rate of mutation towards deleterious mutants and s is the fitness453

cost of those deleterious mutants.454

We can also compute the probability that no mutant is present at the start of vaccination:455

p0 = (1−R0
m)r (18)

When either R0
m or r is small, p0 ≈ 1, and we can neglect the presence of preexisting mutants.456

Otherwise, we need to account for the possibility that one or more mutants are present at time457

t = 0, which we discuss in Section 5.5 below.458

We now assume that there is no mutant present at the start of vaccination. We are interested459

in the law of the first time tm at which a mutant appears. Because θUIUw(t) + θV IV w(t) is the flux460

of vaccine-escape mutants from the wild-type population, by the exponential formula for Poisson461

point processes, we have [28]:462

P{tm > t} = e−
∫ t
0 (θU IUw(s)+θV IV w(s))ds. (19)

We can numerically compute the probability density function fm of the firstarrival time tm of a463

vaccine-escape mutant using464

fm(t) = Ḟm(t)e−Fm(t), (20)
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where Fm(t) is given by the auxiliary equation465

Ḟm = θUIUw(t) + θV IV w(t) (21)

with initial condition Fm(0) = 0, while we compute IUw(t) and IV w(t) using (14). The use of this466

auxiliary equation reduces computational effort by obtaining Fm(t) simultaneously with IUw(t) and467

IV w(t) (as opposed to computing the latter and then integrating).468

5.3 Invasion of the variant (step 2)469

Suppose that a mutant strain appears at time tm ≥ 0 in a single infected host, that is, with density470

Im(0) = 1
n , (which is effectively zero as n becomes large). Then, (2) yields Im(tm) ≡ 0 for all t,471

whereas the dynamics of the system follows (14). This differential equation approximation does472

not mean that the mutant is absent, but simply not in sufficient numbers to be visible at the coarse473

resolution and short time scale upon which (14) is applicable.474

Then we combine (14) with a birth-and-death process approximation, Ĩm(t), to the number475

of individuals infected with the mutant strain at time t after the mutant arrival time tm, Inm(t).476

We approximate the rate of new infections,
βm(Sn

U (t)+εmSn
V (t))

Nn(t) by replacing the stochastic quantities477

SnU (t), SnV (t) and Nn(t) by their deterministic approximations, giving the time-dependent birth478

rate479

bm(t) =
βm(SU (t) + εmSV (t))

N(t)

where SU (t), SV (t) and N(t) are determined via the deterministic system (14). Each death in the480

birth-and-death process corresponds to the removal of a susceptible, which occurs by host death or481

recovery at combined rate dm = δ + αm + γm. See §8.2 in the Supplementary Information of [36]482

for a rigorous justification.483

The so-called “merciless dichotomy” [23] tells us that the time-inhomogeneous birth-and-death484

process started with one individual at time tm either goes extinct, or grows without bound (i.e.485
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invades) with probability (see [25] and SI, Section 2)486

P tmm =
1

1 +
∫∞
tm
dme

−
∫ t
tm

bm(s)−dm ds dt

Thus, either the mutant strain vanishes, or the number infected with the mutant strain will even-487

tually be of the order of n individuals, after which we can use (1) to compute the densities of both488

wild-type and mutant strains.489

In practice, we can compute the probability of mutant invasion when the mutant is introduced

at time tm using P tmm = U tmm (∞) where U tmm (∞) is obtained via the pair of auxiliary functions U tmm

and V tm
m [25] defined as follows: U tmm (t) = P{Ĩm(t) 6= 0} and V tm

m (t) = P{Ĩm(t) = 1 | Ĩm(t) 6= 0},

We then have

U̇ tmm = −dmU tmm V tm
m (22)

V̇ tm
m = (dm − bm(t))V tm

m − dm(V tm
m )2, (23)

where U tmm (tm) = V tm
m (tm) = 1 and we compute bm(t), SU (t), SV (t) and N(t), via (14). In practice,490

we cannot compute U tmm (∞); to obtain an approximation we evaluate U tmm (t) for sufficiently large491

t that |U tmm (t+ ∆t)− U tmm (t)| is less than our desired threshold of error.492

Note that several variants can arise and fail to invade before finally a lucky variant manages to493

invade. We can use the probability of invasion P tm of a variant introduced at time t to characterize494

the distribution of the first time ti at which a mutant is introduced that successfully invades. By495

the thinning property of Poisson point processes, we have [28]:496

P{ti > t} = e−
∫ t
0 (θU IUw(s)+θV IV w(s))P s

mds (24)

where θUIUw(t) + θV IV w(t) is the flux of vaccine-escape mutants from the wild-type population.497

We compute numerically the probability density function gm of the first arrival time ti of a vaccine-498
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escape mutant that successfully invades using499

gm(t) = Ġm(t)e−Gm(t), (25)

where Gm(t) is given by the auxiliary equation500

Ġm(t) = (θUIUw(t) + θV IV w(t))P tm (26)

with initial condition Gm(0) = 0 and computing IUw(t) and IV w(t) using (14).501

Compare (24) with (19) and note that the probability that no vaccine-escape mutant will ever

arise is

P{tm =∞} = e−
∫∞
0 (θU IUw(t)+θV IV w(t))dt.

In contrast, the probability that no vaccine-escape mutant will ever invade is the larger probability

P{ti =∞} = e−
∫∞
0 (θU IUw(t)+θV IV w(t))P t

mdt.

Note that P tm converges as t→∞ to P ?m = 1− 1/R?m which is nonzero, so that

P{tm =∞} = 0⇔
∫ ∞
0

(θUIUw(t) + θV IV w(t))dt =∞⇔ P{ti =∞} = 0,

that is, the probability of adaptation is 1 if and only if t 7→ (θUIUw(t)+θV IV w(t)) is not integrable.502

In other words, the probability of adaptation is 1 in the limit t → ∞ when the wild type is not503

driven to extinction by vaccination (i.e. ν < νc) which implies that there is an uninterrupted flux of504

mutation producing vaccine-escape variants. One of these mutants will eventually escape extinction505

and invade. Yet, the time needed for a successful variant to appear may be very long and we focus506

in the main text on Atm the probability of adaptation before time t (equation (10) and Figure 6).507
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5.4 Fixation of the variant (step 3)508

Suppose now that the mutant strain successfully invades; we next consider the probability Pfix509

that the mutant will outcompete the wild type and go to fixation. Fixation of the mutant occurs if510

it is still present when the wild-type strain disappears. If we let Tm and Tw be the extinction times511

of mutant and wild-type strains, the probability of mutant fixation is thus P{Tw < Tm} which we512

may decompose as513

∫ ∞
tm

P{Tm > t}P{Tw ∈ dt} = −
∫ ∞
tm

P{Tm > t} d
dt
P{Tw > t} dt

= −
∫ ∞
tm

P{Inm(t) > 0} d
dt

(1− P{Inw(t) = 0}) dt

=

∫ ∞
tm

P{Inm(t) > 0} d
dt
P{Inw(t) = 0} dt.

(27)

We again obtain estimates of P{Inw(t) > 0} and P{Inm(t) > 0} using the fact that conditional514

on SU (t), SV (t) and N(t), (Ĩw(t), Ĩm(t)) follows a time-inhomogeneous, two-type birth-and-death515

process, where the birth rates for the two types, i = w,m, are given by516

bi(t) =
βi(SU (t) + εiSV (t))

N(t)

and the death rates are di = δ+αi + γi. The birth rates vary with time due to the epidemiological517

perturbations following the start of vaccination and in particular, to the feedback of mutant invasion518

on SV and SU . To quantify these epidemiological perturbations, we now approximate the density519

of susceptibles and total host density by the values of SU (t), SV (t) and N(t) obtained from the full520

deterministic system (1), which accounts for the presence of the mutant by replacing Im with its521

expected value.522

We need to take care in choosing the initial conditions of (1) to account for the fact that we523

consider the time of appearance of the first mutant that successfully invades and so are conditioning524

on the non-extinction of the mutant strain, and for the inherent variability in the time required to525

invade; this results in a random initial condition for the deterministic dynamics (see Supplementary526

Information §4 for details). In practice, we find that the randomness has negligible effect, but527
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we must still take the conditioning into account. To do so, we first use (14) to compute the528

epidemiological dynamics of the wild type before the introduction of the mutant at time tm. Then,529

at time tm, we use (1) where SU (tm), SV (tm), N(tm) and Iw(tm) are obtained from (14) and take530

Im(tm) = 1
(1−P tm

m )n
(see Supplementary Information §4). Crucially, the initial density of the mutant531

depends on the probability of successful invasion of the mutant P tmm obtained above.532

Provided we use (1) with the appropriate initial conditions as previously, the birth rates of both533

the wild-type and mutant strains are approximately deterministic, and from [25], we have:534

P{Ini (t) > 0} ≈ P{Ĩi(t) > 0} = 1− (1− U tmi (t))I
n
i (tm), (28)

where535

U tmi (t) =
1

1 +
∫ t
tm
die
−

∫ u
tm

bi(s)−di ds du
(29)

is the probability that an individual infected with strain i (i = m,w) present at tm has descendants536

alive at time t. Under the branching assumption, the lines of descent of distinct infected individuals537

are independent, hence the probability that strain i vanishes by time t is the product of the538

probabilities that each line of descent vanishes, (1− U tmi (t))I
n
i (tm).539

In practice, we need two pairs of auxiliary equations to track the probability of extinction of

both the wild type and the mutant

U̇ tmw = −dwU tmw V tm
w (30)

V̇ tm
w = (dw − bw(t))V tm

w − dw(V tm
w )2 (31)

U̇ tmm = −dmU tmm V tm
m (32)

V̇ tm
m = (dm − bm(t))V tm

m − dm(V tm
m )2, (33)

with U tmw (tm) = V tm
w (tm) = U tmm (tm) = V tm

m (tm) = 1. To compute the probability of fixation, we540

first consider the probability of fixation prior to time t, which is derived in exactly the same manner541

as (27).542

U tm(t) =

∫ t

tm

P{Inm(s) > 0} d
dt
P{Inw(s) = 0} ds,

26
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Using (28) to approximate the probabilities P{Inm(s) > 0} and P{Inw(s) = 0}, we get543

U tm(t) =

∫ t

tm

[1− (1− U tmm (s))I
n
m(tm)][Inw(tm)(−U̇ tmw )(1− U tmw (s))I

n
w(tm)−1]ds.

Differentiating this and taking Inw(tm) = nIw(tm) and Inm(tm) = 1 yields the following auxiliary544

equation for U tm(t):545

U̇ tm = nIw(tm)(δ + αw + γw)U tmw V tm
w

(
1− U tmw

)nIw(tm)−1
U tmm , (34)

with initial condition U tm(tm) = 0. We estimate the fixation probability as P tmfix = U tm(∞) as546

above.547

5.5 Invasion and Fixation with Standing Variation548

We now come back to the probability of adaptation from standing variation at time t = 0, using the549

probability pk that there are k mutants present at time t = 0 and the estimates for the probabilities550

of invasion and fixation P tmm and P tmfix, of a single mutant arriving at time tm, taking tm = 0. Recall551

that pk is negative binomial with success probability R0
m = b0m/dm and r = µm/b

0
m failures. Under552

the branching process approximation, the chain of infections started by each mutation will go553

extinct independently with probability 1− P 0
m. The probability of invasion is then the probability554

that at least one line survives, 1 − (1 − P 0
m)k. Summing this over all possible values of k gives us555

the invasion probability from standing variation,556

∞∑
k=1

pk

(
1− (1− P 0

m)k
)

= 1− p0 −
∞∑
k=1

pk(1− P 0
m)k = 1−

∞∑
k=0

pk(1− P 0
m)k.

Recalling that the probability generating function for the number of mutants at time t = 0 is557

∞∑
k=0

pkz
k =

(
1−R0

m

1−R0
mz

)r
,

which converges provided |z| < 1
R0

m
, we see that the probability of invasion from standing variation558

is 1−
(

1−R0
m

1−R0
m(1−P 0

m)

)r
.559
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Similarly, if there are k mutations at time t = 0, (28) gives us that P{Inm(t) > 0|Im(0) = k} ≈

1 − (1 − U0
m(t))k, so proceeding as above, we find that the probability that the mutant is still

present at time t, assuming that at least one individual was present at time t = 0 is approximately

1−
(

1−R0
m

1−R0
m(1−U0

m(t))

)r
. Substituting this for P{Inm(t) > 0} in (27) and differentiating as above gives

us an auxiliary equation analogous to (34) for U0(t), the probability that the mutant fixes starting

from standing variation:

U̇0 = P{Inm(s) > 0} d
dt
P{Inw(s) = 0}

= nIw(0)(δ + αw + γw)U0
wV

0
w

(
1− U0

w

)nIw(0)−1
(

1−
(

1−R0
m

1−R0
m(1− U0

m)

)r)
.

As previously, we obtain P 0
fix = U̇0(∞) by choosing t sufficiently large that U̇0(t) equilibrates.560

5.6 Stochastic simulations561

We carried out stochastic simulations to check the validity of our results. We developed an562

individual-based simulation program for the Markov process described in Table S1. In order563

to match the assumption used in our analysis we start the simulation when the system is at its564

endemic equilibrium before vaccination given by equation (11) in section 5.1. Then we introduce565

a single host infected with the mutant pathogen at a time tm after the start of vaccination and566

we let the simulation run until one of the pathogen variants (the wild-type or the mutant) goes567

extinct. If the wild-type goes extinct first we record this run as a “mutant fixation event”. We ran568

1000 replicates for each set of parameters and we plot the proportion of runs that led to mutant569

fixation in Figure 5. We also used our simulations to confirm our prediction on the speed of viral570

adaptation (Figure 6). In this scenario we allowed the vaccine-escape variant to be introduced by571

mutation from the wild-type genotype as detailed in section 5.1. We carried out 1000 simulations572

and monitored (i) the frequency of the escape mutant at different points in time after the start of573

vaccination (Figure 6A) (ii) the number of introduction events by mutation and (Figure 6B).574

575

We also used this simulation approach to go beyond the scenarios used in our analysis to check576
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the robustness of some of our results. We developed a modified version of our simulation approach577

to relax two simplifying assumptions used throughout our analysis: (i) vaccination starts when the578

epidemiology has reached an endemic equilibrium, (ii) naturally immune host are fully protected579

against reinfection.580

• The timing of the start of vaccination: We used a modified version of our simulation code581

to explore the robustness of our results when vaccination starts sooner and the wild-type pathogen582

has not reached its endemic equilibrium. In practice, we start the simulation with n hosts where a583

fraction f = 0.1%, 1% or 10% is infected by the wild-type (i.e. Inw(0) = fn and Sn(0) = (1− f)n).584

Vaccination rollout is assumed to start at time t = 0. We introduce an infected host with a585

mutant pathogen at time tm and we monitor its dynamics to obtain the probability of invasion586

from 1000 independent replicates. Starting vaccination when the incidence is low tends to increase587

the probability of invasion of the escape mutant because it is less likely to go extinct when the588

density of susceptible hosts is more abundant (Figure S5). Note, however, that this effect is589

maximised when the mutant is introduced soon after the start of vaccination (i.e. low values of590

tm). Indeed, for the parameter values we used, the endemic equilibrium is reached very fast and591

the predictions of the probability of invasion computed when vaccination starts at the endemic592

equilibrium remain relatively good.593

• Efficacy of natural immunity against reinfections: We used a modifier version of our594

simulation code to explore the robustness of our results when naturally immune hosts are not595

perfectly protected. In this scenario we assume that recovered hosts can be reinfected by strain596

i at a rate ρεi
Ii
N . In this scenario, it is still possible to aggregate the density of different types of597

hosts infected by the same strain i, Ii := IUi+IUi+IRi, which modifies the effective per-generation598

reproduction ratio:599

Rei = Ri

(
SU
N

+ εi
SV
N

+ ρεi
R

N

)
Hence, higher values of ρ give an extra advantage to the escape mutant because it increases the600

fraction of imperfectly immune hosts. This new expression of the effective per-generation reproduc-601

tion ratio can be used to derive a good approximation of the probability of mutant invasion using602

(9). This approximation fully captures how higher values of ρ increase the probability of invasion603
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of escape mutations (Figure S6). Interestingly, when ρ is large, the probability of invasion is less604

sensitive to the time at which the escape mutant is introduced because, whatever the time after605

the start of vaccination, the fraction of imperfectly immune host is large.606

607

The simulation code is available upon request and will be deposited on zenodo after acceptance of608

the manuscript.609
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Table 1: Parameters and dynamical variables of the model

Symbol Description Default value

Parameters
λ influx rate of susceptible hosts 3 10−4 week−1

δ natural death rate of hosts 3 10−4 week−1

ωR rate of waning immunity of naturally immune hosts 0.05 week−1

ωV rate of waning immunity of vaccinated hosts 0.05 week−1

p probability of vaccination of newborns 0
ν rate of vaccination rollout variable
θU rate of mutation (from w to m) in unvaccinated hosts variable
θV rate viral mutation (from w to m) in vaccinated hosts variable
n system size (scaling parameter allowing us to manipulate

the pathogen population size)
variable

αw virulence (increased mortality rate) by strain w 0.02 week−1

βw rate of transmission of viral strain w 10 week−1

γw recovery rate of the host infected by strain w 2 week−1

εw probability of infection of vaccinated hosts by strain w 0.05

αm virulence (increased mortality rate) by strain m variable
βm rate of transmission of viral strain w variable
γm recovery rate of the host infected by strain m 2 week−1

εm probability of infection of vaccinated hosts by strain m 1

Variables
SU density of unvaccinated susceptible hosts
SV density of vaccinated susceptible hosts
R density of naturally immune hosts
IUi density of unvaccinated hosts infected by strain i ∈ (w,m)
IV i density of vaccinated hosts infected by strain i ∈ (w,m)
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Figure 1: Graphical representation of the different evolutionary epidemiology out-
comes after vaccination. The density of the wild-type pathogen is indicated in light blue and
the dynamics of the mutant in orange. Each panel describes the temporal dynamics of the epi-
demics after the start of vaccination: (a) eradication of the wild-type pathogen, (b) new endemic
equilibrium of the wild-type population after damped oscillations (with no introduction of the
vaccine-escape mutant), (c) early extinction of the vaccine-escape mutant after its introduction by
mutation, (d) invasion of the vaccine-escape mutant followed by the its extinction, (e) invasion of
the vaccine-escape mutant and long-term coexistence with the wild type in a new endemic equilib-
rium after damped oscillations, (f) invasion and fixation of the vaccine-escape mutant (extinction
of the wild type). The vertical dashed line (black) indicates the start of vaccination. For sim-
plicity we consider that vaccination starts after the wild-type population has reached an endemic
equilibrium. The horizontal dashed line indicates the “stochastic threshold” above which one may
consider that the deterministic model provides a very good approximation of the dynamics and
we can neglect the effect of demographic stochasticity. Invasion occurs when the vaccine-escape
variant manages to go beyond the “stochastic threshold” (panels d, e and f). Adaptation occurs
when the vaccine-escape variant is maintained in the population (panels e and f). Fixation occurs
when the vaccine-escape variant manages to outcompete the wild type (panel f).
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Figure 2: A schematic representation of the model. Naive and uninfected hosts (SU hosts)
are introduced at a rate λ and are vaccinated with probability p at birth and at rate ν later on.
Immunization induced by the vaccine wanes at rate ωV . Uninfected hosts (SU and SV ) die at a rate
δ while infected hosts (IUi and IV i) die at a rate di = δ + αi, where i refers to the virus genotype:
the wild-type (i = w) or the vaccine-escape mutant (i = m). The rate of infection of naive hosts
by the genotype i is hi = βi(IUi + IV i)/N , where βi is the transmission rate of the genotype i.
Vaccination reduces the force of infection and εi refers to the ability of the genotype i to escape
the immunity triggered by vaccination (we assume εm > εw). A host infected by parasite genotype
i recovers from the infection at rate γi and yields naturally immune hosts (R hosts) that cannot be
reinfected by both the wild-type and the escape mutant. Natural immunity is assumed to wane at
rate ωR. The total host population density is N = SU + SV +

∑
i(IUi + IV i) +R.
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Figure 3: Faster vaccine rollout delays the arrival time of the first escape mutant.
We plot the probability density function fm(t) of the arrival time of the first escaoe mutant for
different speeds of vaccination rollout: ν = 0.05 (top), 0.15 (middle) and 0.24 (bottom). We
contrast a scenario where θV = θU (dashed line), and θV = 10 × θU (full line). Other parameter
values: θU = 1, λ = δ = 3 10−4, ωV = ωR = 0.05, p = 0, αw = 0.02, βw = 10, γw = 2, εw = 0.05,
Rw = 4.95. For these parameter values the critical rate of vaccination νc above which the wild-type
pathogen is driven to extinction is νc ≈ 0.264 (see equation (5)).
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Figure 4: Probability of invasion of the vaccine-escape mutant increases with tm. We
plot the probability invasion P tmm of a slow (green) and a fast (red) vaccine-escape mutant for
different speeds of vaccination rollout: ν = 0.05 (top), 0.15 (middle) and 0.24 (bottom). The slow
mutant: αm = 0.02, βm = 7, γm = 2, εm = 1, Rm = 3.46. The fast mutant: αm = 4.0606, βm =
21, γm = 2, εm = 1, Rm = 3.46. The probability of invasion P ?m in the limit tm →∞ (see equation
(9)) is indicated with the dashed black line. Other parameter values as in Figure 3: λ = δ = 3 10−4,
ωV = ωR = 0.05, p = 0, αw = 0.02, βw = 10, γw = 2, εw = 0.05, Rw = 4.95.
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Figure 5: Probability of fixation of the vaccine-escape mutant may be low when tm
is large. We plot the probability of fixation of (A) a slow (green) and (B) a fast (red) vaccine-
escape mutant for an intermediate speed of vaccination rollout: ν = 0.15. The slow mutant: αm =
0.02, βm = 7, γm = 2, εm = 1, Rm = 3.46. The fast mutant: αm = 4.0606, βm = 21, γm = 2, εm =
1, Rm = 3.46. The full colored lines give the probability of fixation P tmfix computed numerically (see
Methods section 5.4) and the dots give the results of individual-based simulations (see Methods
section 5.6) for different values of n which affect the pathogen population size and the intensity of
demographic stochasticity. We plot the probability of invasion P tmm (see Figure 4) with dashed
colored line and its asymptotic value P ?m with a dotted black line. Other parameter values as in
Figure 3: λ = δ = 3 10−4, ωV = ωR = 0.05, p = 0, αw = 0.02, βw = 10, γw = 2, εw = 0.05,
Rw = 4.95.
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Figure 6: The probability of adaptation is maximised for intermediate speed of vacci-
nation rollout. In (A) We plot the probability of adaptation Atm (black lines) against the speed of
vaccination rollout at different points in time. In (B) we plot the probability M t

m of the introduction
of at least one mutant before different points in time t (blue lines) and the probability P ?m (purple
line) which gives a good approximation of the probability of successful invasion of an escape-mutant.
The dashed purple line gives the probability of invasion of the escape-mutant in the absence of the
wild type. The dots give the results of individual-based simulations (see Methods section 5.6). The
vaccine-escape mutant is assumed to have the following phenotype (slow mutant in Figure 4 and
5): αm = 0.02, βm = 7, γm = 2, εm = 1, Rm = 3.46. Other parameter values: λ = δ = 3 10−4,
n = 106, ωV = ωR = 0.05, p = 0, αw = 0.02, βw = 10, γw = 2, εw = 0.05, Rw = 4.95. The
light gray area on the right-hand-side indicates the speed above which the wild-type pathogen is
expected to be driven to extinction (ν > νc ≈ 0.264, see equation (5)).
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