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Abstract

A compartment model for an in-host liquid nanoparticle delivered mRNA
vaccine is presented. Through non-dimensionalisation, five timescales
are identified that dictate the lifetime of the vaccine in-host: decay of
interferon gamma, antibody priming, autocatalytic growth, antibody
peak and decay, and interleukin cessation. Through asymptotic analy-
sis we are able to obtain semi-analytical solutions in each of the time
regimes which allows us to predict maximal concentrations and bet-
ter understand parameter dependence in the model. We compare our
model to 22 data sets for the BNT162b2 and mRNA-1273 mRNA
vaccines demonstrating good agreement. Using our analysis, we esti-
mate the values for each of the five timescales in each data set and
predict maximal concentrations of plasma B-cells, antibody, and inter-
leukin. Through our comparison, we do not observe any discernible
differences between vaccine candidates and sex. However, we do iden-
tify an age dependence, specifically that vaccine activation takes longer
and that peak antibody occurs sooner in patients aged 55 and greater.

Keywords: in-host modelling, vaccines, model reduction, waning immunity,
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1 Introduction

Vaccines are one of the greatest advents of modern society, significantly
reducing mortality (cf. Rodrigues and Plotkin (2020)) with Ehreth (2003)
estimating a prevention of 6 million deaths of vaccine-preventable diseases
each year. Vaccines are derived from many precursors including from inac-
tivated virus, viral protein subunits, recombinant human adenovirus, and
messenger RNA (mRNA) with the latter being of increasing interest due to
their high potency, low manufacturing costs, and the ability to be developed
quickly as outlined by Pardi et al (2018b). mRNA vaccines gained prominence
during the COVID-19 pandemic with the development and deployment of
BNT162b2 (produced by Pfizer-BioNTech) and mRNA-1273 (produced by
Moderna) both of which are injected via liquid nanoparticles (LNP). This
mechanism was chosen to aid in cell delivery and protect the mRNA from
degradation (cf. Ndeupen et al (2021)).

mRNA vaccines have been in development for many years. A review of their
usage in infectious diseases has been conducted by Zhang et al (2019). Prior to
COVID-19 it was recognized that mRNA vaccines were outperforming other
technologies such as inactivated virus and protein adjuvanted vaccines (cf.
Pardi et al (2018a)). mRNA vaccines have also demonstrated robust immune
responses to other diseases. A study by Bahl et al (2017) showed vaccines to
be effective against severe disease of H7TN9 and H10NS8 influenza viruses in
mice, non-human primates, and ferrets.

mRNA vaccines, as with other vaccine types, demonstrate waning effective-
ness. A study by Menni et al (2022) concluded that antibody protection from
COVID-19 mRNA vaccines showed significant waning beginning 5 months
after the standard two dose regiment, acknowledging that overall vaccine
effectiveness was dependent on age and comorbidity. However, they also saw
continued protection from severe disease beyond 6 months. Clinical studies
such as these demonstrate the importance of measuring immunity response,
development, and decay in mRNA vaccines for COVID-19. However, these
trials can be very costly and, without a clear understanding of the immune
response, the data collection requirements can be uncertain. Mathematical
modelling and analysis provides a cost-effective tool for understanding and
predicting the immunity response to vaccines.

Most mathematical modelling of infectious disease occurs at the population
scale and throughout the COVID-19 pandemic there have been many such
studies (cf. Tang et al (2020); Moyles et al (2021); Yuan et al (2022a); Fair
et al (2022); Childs et al (2022); Vignals et al (2021); Betti et al (2021); Dick
et al (2021); Moore et al (2021); Moss et al (2020); Smirnova et al (2021);
Wells et al (2021); Li et al (2020); Yuan et al (2022b); Hogan et al (2021)).
While the impacts of vaccine efficacy and waning are important at these
scales, the actual process of immune development occurs within-host. In-host
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mathematical modelling considers pathogen reproduction and cellular infec-
tion within a single individual and has been effectively employed in various
diseases. For example, Heffernan and Keeling (2009) modelled vaccination
and waning with measles, Herz et al (1996) modelled the intracellular viral
life cycle phase of HIV and hepatitis B, and Perelson (2002) reviewed immune
system dynamic modelling for HIV, hepatitis C, and cytomegalovirus (CMV).
In-host modelling has been extended to COVID-19 with studies looking at
infection (cf. Hernandez-Vargas and Velasco-Hernandez (2020); Perelson and
Ke (2021); Kim et al (2021); Néant et al (2021); Sadria and Layton (2021);
Lin et al (2022); Ke et al (2022); Korosec et al (2023) ) and vaccination (cf.
Farhang-Sardroodi et al (2021); Korosec et al (2022); Gholami et al (2023)).

In this paper we explore an in-host mathematical model for an LNP vaccine
first considered by Korosec et al (2022) where computational mixed-effects
modelling was used to identify model parameters from a variety of data sets.
Their results demonstrated a diverse variability in the parameter estimates
and consequently the model comparisons. Furthermore, the nature of the
clinical trial data analyzed meant that the time series had coarse resolution
spread over a long duration. In this paper, we identify the dominant terms of
the model and the timescales over which they are relevant with the goal of
elucidating the antibody process and providing direction for improved data
resolution. However, we also provide mechanistic insight into the immune
response which is important because the precise timescales of activating the
immune response in humans is relatively unknown. Luceripherase mouse
studies have been conducted, for example, by Pardi et al (2015) and Lutz
et al (2017) showing that the injection site remains active for approximately
7-10 days and that luceriphase was also present in the draining lymph nodes
nearest the injection site a few days after injection. Similar luceriphase studies
cannot be done on humans and instead highly resolved blood draws are needed
to monitor the adaptive and innate immune response. Our timescale analysis
provides a framework to understand these physiological processes sequentially.

Understanding a sequential ordering of processes that drive vaccine dynam-
ics is very beneficial. It helps understand and separate the innate immune
responses from the adaptive ones generated by the vaccine. Separating these
timescales helps identify balance between the immune responses which is
important for limiting the body’s ability to attack vaccine species at dosage.
A thorough model analysis also improves mechanistic understanding. Even
though mRNA vaccines have demonstrated strong immune responses, the
immunological activity leading to these responses is less clear (cf. Lindgren
et al (2017)). Our analysis generalizes beyond mRNA vaccines as well. The
model we present is itself adapted from an adenovirus-based vaccine. There-
fore, our work can be used to broadly decompose vaccine-mediated immunity
for a variety of candidates and diseases.
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A common approach in immunological modelling studies is to focus solely
on simulations. Our approach exploits asymptotic methods to isolate model
structure and function as it evolves with time identifying important parameter
relationships. While this methodology is mathematically richer than solely a
simulation based study, it can also provide practical and biological insight. For
example, parameter identifiability is an important consideration in modelling
studies. Analytic expressions determine explicit relationships with parameters
which can elucidate both model identifiability, i.e., which parameters form
scaling groups, as well as practical identifiability, i.e., what time points are
needed in data collection to identify certain parameters. Formal asymptotic
methods can justify the inclusions or removal of certain terms in a model
adding rigor and confidence to biological intuition. Analytic methods can
enrich biological understanding of a problem by linking processes with explicit
parameter relationships. For example, understanding a peak immunological
response explicitly in terms of model parameters can provide insight into the
processes that drive this response while also allowing researchers to exploit
new vaccines and therapies to improve the response.

The paper is organized as follows. We introduce and summarize the model of
Korosec et al (2022) in Section 2. We nondimensionalize the model in Section
2.1 where, through some assumption of scales, we are able to reduce the model
to a simpler form. We identify a series of timescales in Section 3 that account
for antibody development, growth, maximum, and ultimately decay. In each
timescale regime we are able to determine asymptotic analytic solutions that
explain the immunity response. We compare these analytic results to a full
numerical simulation of the model in Section 4 where maxima of key immu-
nity factors are approximated and we compare the model to data sets from a
series of clinical trials. We discuss results and conclude the paper in Section 5.

2 Model Summary and Reduction

We consider a compartmental ordinary differential equation model first pub-
lished by Farhang-Sardroodi et al (2021) for adenovirus-based vaccines and
later adapted by Korosec et al (2022) for LNP mRNA vaccines. The process
being modelled begins with the injection of a concentration of LNP (L) that
diffuses through inactive target cells of which we assume there is an infinite
reservoir. Details of these target cells are unclear. When injected intramuscu-
larly, such as with humans, Lutz et al (2017) found in a study of mice that
mRNA vaccines activated the innate immune system near the site of injection
as well as in draining lymph nodes. These target cells activate to become vacci-
nated cells (V') that promote the production of CD4* (T) and cytotoxic CD8"
(C) T-cells. These CD4" T-cells further promote the production of plasma
B-cells (B), interferon-y (IFN-v, F'), and interleukin (I). Finally, the plasma
B-cells stimulate production of immunoglobulin G (IgG) antibody (A). The



Springer Nature 2021 BTEX template

mRNA wvaccine timescales 5

equations of the model studied by Korosec et al (2022) are given by

% =— pwvLl — L, (1a)
% =pv L — WV, (1b)
% =pvrV — 1T, (1c)
(ile =prsT + BBI (I—isI) B -8B, (1d)
% =pBAB — a4, (le)
% =uvcV + Ber (F > SF) C —cC, (1f)
O —reT — BroCF — e, (1g)
% =priT — Pl B —nl. (1h)

The parameters f;; are priming rates (d~!) that activate component j from
component i. (3;; are immune response autocatalytic rates (d~!) arising from
non-linear activation and inhibition of species j on species ¢, and ~; are the
natural decay rates (d=!). The parameters s; and sp are concentrations of
interleukin and IFN-v, respectively, that produce half-maximal autocatalytic
rates, 3;;. Time, ¢, is measured in days and concentrations of each component
are in arbitrary volumetric units. We note that equations (1d) and (1f) con-
tain saturation dynamics through the terms sp and s;. We include these to
be consistent with the full model of Korosec et al (2022), but biologically it
will be important to limit activating kinetics in a general model of vaccination
which could include multiple doses.

The only feasible steady state to (1) is every concentration being zero and
thus, in the absence of some initial vaccine, it is reasonable within the context
of the model to measure no immune response. However, it is possible through
previous infection or other biological mechanisms not accounted for in the
model, that some basal concentrations may exist for quantities not primed
through vaccine. As such, we consider the generalized initial conditions to (1)
to be

where we have assumed that vaccine is injected at time ¢ = 0 with
concentration Lj.
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2.1 Non-dimensionalization and model reduction

To understand the effects of each term in the model we non-dimensionalize
(1). Firstly, the concentration of LNP will be determined by its initial value
as it only decays and thus we scale L ~ L;. Secondly, as the dynamics are
driven by vaccination, the natural time scale is the activation of vaccinated
cells by LNP and thus we scale ¢ ~ /J}:\}- We do not scale other variables by
their initial condition because we expect significant variability in these levels
between individuals. Furthermore, since the model is derived based on vaccine
response, we anticipate that it should be driven by the dynamics of vaccination
rather than any latent initial concentrations present. Instead, we look to (1)
and choose scales by balancing source and sink terms in the model. For example
in (1b), (1c), (1d), (1f), and (1h) vaccine priming drives production and so it
is sensible to choose scales for V., T, B, C, and I driven by the source terms.
For IgG in (le) it is sensible to balance the source of plasma cells with decay
of antibody, A. For F' in (1g), we scale the concentration of IFN-v assuming
its natural decay is the dominant sink term. This is consistent with fast decay
rates of IFN-v of between 3 and 40 minutes in mice and humans reported by
Foon et al (1985); Gonias et al (1988); Psimadas et al (2012). We note that this,
and all decay terms, strictly refers to the removal from the vaccine induced
antibody response being modelled here. It does not necessarily mean that the
components are degrading, but could instead by absorbed or consumed in other
biological functions not related to immune response of the vaccine. Overall, we
are led to the following scales for each of the concentrations

V ~ L, T ~ ,UVTLi7 B~ MTB/éVTLi7 A MTBM;/TMBALi
HLv Hiv HivA
pwrrpvTLi pveli pripvr L 3)
R R~ =y PV
YFHLV ULV 153
which leads to the non-dimensional model
L=—(1+ea)L, L(0) =1, (4a)
V =L — eavV, V(0) =0, (4b)
T =V — earT, T(0) =0, (4c)
B=T+e\g | ——— | B—eapB B(0) = 4d
+ oo () B caonB =0, ()
A=¢(B - A), A(0) = A, (4e)
. F
_ 2 _ = 4f
C =V +de A (HFF+1>C eacC, C(0) =0, (4f)
§F =T — 6e\pCF — F, F(0)=F, (4g)
I =T — eMIB — eaql, 1(0) =7, (4h)
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where dot indicates differentiation with respect to non-dimensional time. The
parameters in (4) are defined as follows:

_ A 0 = BerpripvrLi A = Puprepyvrli o pwy
pyv’ YA’ sipdyya pieya v’
_ BrcpvelLi _ BerprrpvrLi _ pripvrLi _ prrpvrLi
AF=——"—, A¢c=————5— KI=—>% — KF= —_———
HIVYA SFHIV YA My ST VYFHLVSF
Ao Hvadi o rpwE kil
prspvTisals’ prrpvrLi’ prrpvr L

(5)

Many of these parameters have natural interpretations. For example € is the
timescale ratio of vaccine absorption to decay of IgG, the terminal antibody;
the parameter «; is the timescale ratio of the natural decay of concentration
1 relative to the decay of IgG; and the parameter ¢ is the timescale ratio of
release of vaccine to decay of IFN-v. The parameters x; and s are effective
saturation constants which limit the production of plasma B cells and cyto-
toxic T-cells while the parameters \; are the strengths of the autocatalytic
production terms compared to the vaccine priming sources for the B, C,
F, and I compartments. Each of A, F, and Z are non-dimensional initial
concentrations of IgG, IFN-v, and interleukin respectively.

We anticipate that an effective immune response necessitates that the decay
of antibodies is much slower than the absorption of vaccine in the LNP and
thus that e < 1. This is supported experimentally where Lutz et al (2017),
for example, observed that mice began to produce antigen at the site of
injection on the order of hours after the needle, while antibody decay halflife
was on the order of many days. Conversely, because of the fast decay rates
on the order of minutes of IFN—~ observed by Foon et al (1985) and others
compared to the LNP absorption timescale of hours observed by Lutz et al
(2017), we will assume that § < 1 as well. We anticipate that the ratio of
the remaining decay rates to 4 are comparable and thus take a; ~ O(1).
Without any presupposition about the magnitude of production multipliers,
i, we simply assume formally that they are O(1). So long as terms are not
an order of magnitude larger than we have assumed, the model will be con-
sistently scaled and its structure and analysis will be valid. The actual size of
terms is dependent on specific case studies, a detail we resolve in Section 4.2.

Assuming the saturation parameters k; are small is generally associated with
limited saturation effect. While this is likely true in (4g) where IFN-vy decays
quickly, it is less clear in (4d) where autocatalytic production of interleukin
may significantly contribute to antibody production. However, if saturation
effects become important then this is likely a consequence of an overactive
immune system and we assume that is generally not the case.
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Based on the assumptions, we propose a reduced model to (4) where
k1 = kr = 0. Furthermore, since both € < 1 and § < 1 then the terms associ-
ated to A¢ in (4f) and Ap in (4g) are likely non-identifiable and therefore, we
will assume that Ap = A¢ = 0 without loss of generality. Finally in (4a) since
we have two competing sink terms we assume the second, being the smaller
of the two, is non-identifiable. Thus we will assume that a;, = 0. Overall, we
are led to the following reduced model:

L=-1 (6a)
V =L — eay'V, (6b)
T =V —earT, (6¢)
B =T + e\gIB — eapB, (6d)
A=¢(B - A), (6e)
C =V — eacC, (6f)
SF =T — F, (6g)
I =T—e\xIB—eal, (6h)

subject to the same initial conditions as (4). It may seem unsatisfactory that we
have neglected some small terms in the reduced model (6) while leaving others.
This is justified from (6e) where if we take e = 0 there is no mechanism for
antibody response. Therefore, necessarily, there must be some long timescale
antibody production driven by e. Thus, we leave the small terms associated to
this parameter. We note that this is also consistent with not scaling terms by
latent initial conditions. We demonstrate agreement between the full model
(4) and the reduced model (6) in Section 4.

3 Timescale Decomposition

We will now analyze the reduced model (6) to understand the impact of differ-
ent parameters on the long-term antibody response. We begin by noting that
L, V, T, and C in (6) can be solved analytically as these are a cascade of lin-
ear equations that decouple from one another. The solutions, subject to the
appropriate initial conditions L(0) =1 and V(0) = T'(0) = C(0), are

L(t) =e™", (7a)
e—eavt e—t
V(t) = b
0 = (7h)
—eart —(l—ear)t _ 1 —e(ay—ar)t _ 1
T(t) =+ : - < , (7c)
1—eay 1—ear e(lay — ar)
—eact —(l—eac)t __ 1 —e(ayv—ac)t __ 1
Ot) == ¢ — . (7d)
1—eay 1—eac elay — ag)
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We note in model (7) we have made the explicit assumption that ar # ay
and ac # ay for generality. We will use the assumption that all ay, ar, and
ap are unique throughout the remainder of the manuscript and discuss the
specific case where the parameters are equal in Appendix B.

The anti-body concentration, (6e) depends on the plasma B-cell concentra-
tion, B, and thus can not yet be solved in closed form. However, we can write
its solution in terms of the plasma B-cell concentration,

A(t) = [A te /O t B(s)e ds} e, 8)

We note that we can also solve (6g) which has the general solution,

FU):e”5{7+5iAKTWkﬂmdu}, (9)

with T" given by (7c). However, aside from a fast timescale of O(d) as described
in section 3.1, this equation is mostly in quasi-steady state with

F=T (10)
which is more insightful than the full solution (9).

The solutions (7), (8), and (9) already significantly decouple the eight equation
model (6) to a two equation model for B, and I which we now systematically
explore through a series of chronological time scales. The full description of
these timescales is presented and derived in sections 3.1 to 3.5, but are also
summarized in Table 1 for brevity.

3.1 IFN-~ Clearance

The first time scale emerges in (6g) when ¢ ~ O(4), recalling that ¢ is the ratio
of vaccine absorption to IFN-v decay. As such we let ¢ = dt; resulting in every
equation of (6) to effectively be in equilibrium except for (6g) which becomes

dF
= _T7
dt,

The CD4™ T-cells at this timescale are given by (7c) after substituting ¢ = §t;
and expanding for § < 1. This results in 7'~ 0 and thus that

F = Fe™t = Fet/°, (11)
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Timescale  Description

t = 6t1 (sec 3.1)  Clearance of IFN-v: The IFN-v is quickly cleared from the vaccine-induced immune
response. This timescale removes any latent IFN-v that exists as an initial condition.
If F = 0 then this timescale is irrelevant
t (sec 3.2) Vaccine Priming: This is the timescale chosen to be O(1) in the non-
dimensionalisation and therefore represents that absorption time of the vaccine. During
this time, early production of interleukin and plasma B-cells is primed by the vaccine.
To leading order there is no antibody production.

t =€ 1/3t3 (sec 3.3) Antibody autocatalytic growth: During the priming phase, vaccine induced pro-
duction of plasma B-cells and interleukin activates the body’s natural production
mechanism leading to explosive growth of each constituent and the production of sig-
nificant antibody.

t =¢ 't4 (sec 3.4) Peak and Decay of Antibody: The inhibiting effect of interleukin on its self-
production leads to terminal production of plasma B-cells and thus terminal production
of antibody. During this timescale all concentration production slows and decay becomes
dominant. This mechanistic transfer leads to the peak antibody response occurring in
this timescale. Depending on the decay kinetics of plasma B-cells and CD4% T-cells,
a balancing between production and removal of interleukin occurs leading to a quasi-
steady state interleukin concentration.

t=¢1 (— é loge + ts) (sec 3.5)  Interleukin cessation: The model necessitates that all concentrations decay to zero in
the absence of continued vaccine supply. This timescale resolves the quasi-steady state
concentration of interleukin allowing it to decay to zero.

Table 1: Summary of chronological timescales discussed in Sections 3.1 to 3.5.

Therefore, at this timescale we have that any initial concentration of IFN-vy
quickly clears the body. Conversely, if there is no initial concentration of IFN-
~ then this timescale can be ignored as none of the other components have yet
activated, since B and I are given by their initial conditions to leaing order
when t ~ O(9).

3.2 Vaccine Priming

The next time scale occurs when t ~ O(1), i.e. the selected timescale from the
non-dimensionalisation. Having already removed terms via (7) and (8), and
recalling that F' = T from the quasi-steady limit (10), the reduced model at
this scale is

B =T + e\pIB — eapB, (12a)
I =T — eMIB — eal. (12b)
These equations are non-linear and do not have direct analytic solutions.

Exploiting the smallness of the parameter ¢ we can expand (7¢) when t ~ O(1)
and € < 1 to get,

Tret +t—1+ %(Ozv tor)(2e Tt — 42 -2) =Ty + Ty,  (13)

for the CD4% T-cell population at this timescale. The formulation of this
asymptotic series suggests we pose expansions B = By +€eBy and I = Iy +€ly
and substitute into (12). The leading order problem becomes

BO = j() =Ty (14)
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subject to By(0) = 0 and I4(0) = Z which has solution

2

t

By=5 —t+1- e !, (15a)
t2

IO:§—t+l—e_t+I. (15b)

Expanding (12) to O(e) we get

B, =T + A\glyBy — apBy, B1(0) =0, (16a)
I, =T, — MIgBo — anlp, 1,(0) =0, (16b)
which has solution
AB,5 B 4 AB mB) 3 np —t) .2
e () (2 )
1 2015 4t+ 3 5 t° + 2-i-/\Be t
A
—(n+ )t +np(l—e™") + 7]3(1 —e 2 (17a)
Als  Ata (A ma s —t_ MY 2
I =— |25 - 2t 22 (A f—ﬁ
1 [20 1 + 3 + 6 + | Are >
A
(A1 — a1 —np)t —ni(l —e ") + 51(1 - e_gt)} , (17b)

where we define

ng =ay + ot + ag — )\B(I+ 2),
ny =av +at + o1 + )\I(Z-‘r 2).

Having determined B, the anti-body concentration is given by expanding (8)
for ¢t ~ O(1) and e <« 1 which yields,

3 2

Alty=A+e %—%+(1—A)t+e—t—1 : (18)

The leading order anti-body response is given by its initial condition and
thus there is very little production at the ¢ ~ (O(1) timescale. This result
supports the physiological intuition that, at the O(1) timescale, the plasma
B-cells and interleukin have yet to develop. Thus, antibodies are close to their
background levels during this timescale.

The need for a longer time scale beyond ¢t ~ O(1) is immediately clear as
each of the concentrations T, B, A, and I grow without bound. From (13),
T loses asymptotic consistency when t ~ O(e~!) because the correction term
grows quicker than the leading order term. This represents a time where the
production of CD4% T cells from the vaccine has stopped and only decay of
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remaining cells is taking place. However, from (17a) the plasma B-cell con-
centration loses asymptotic consistency when t ~ O(eil/ 3), an earlier time
than t ~ O(e~1). This breakdown is also evident in (17b) for interleukin and
(18) for IgG antibody.

The early breakdown of the solution to the plasma B-cell concentration is due
to the rapid autocatalytic production of plasma B-cells as interleukin concen-
tration increases. Therefore, t ~ O(e~1/3) represents a switchover from the
vaccine production of plasma B-cells being the dominant contribution to the
self-stimulating autocatalytic production becoming dominant. We find that
this breakdown happens beyond the leading order dynamics necessitating the
two-term asymptotic expansion posed at this timescale.

3.3 Antibody Autocatalytic Growth

We introduce the new timescale t = e~!/3t3, substitute into (7c) and take
€ < 1 to get that the T-cell concentration at this scale is,

T ~ G% 1 €3 (O‘V ;“T> t52 = e V3(Ty, + /3Ty, + €2/3Ty,), (19)
where we have scaled T = e~ /3T5. Unsurprisingly, we see that T3 loses asymp-
totic consistency when tg ~ 0(6_2/ 3) equivalent to the asymptotic breakdown
when t ~ O(e71) as discussed in Section 3.2. Substituting the t3 timescale into
(15b) and (15a) shows that it is sensible to scale I = e 2/3I3 and B = ¢~ 2/3Bs.
This leads to the reduced model (6) at this scale

dB;

F :Tg + )\Blng — 62/301]333, (208,)

3

dr:

dT& =Ty — \I3B;5 — /3y 15. (20b)
3

Unlike the O(1) time in Section 3.2, the leading order solution will be sufficient
for capturing the dynamics at this timescale (see Appendix A) and this leading
order is given by

dBs,

| =t3 + Apl3,Bs,, (21a)

t3

dr

ﬁ”o —t3 — Ails, Bs,. (21b)
3

We obtain the leading order antibody concentration by substituting ¢ = ¢~'/3¢5
into (8) and expanding for € < 1 yielding,

Asy(ts) = A+ /O . Bs, (s)ds. (22)
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Multiplying (21a) by A; and (21b) by Ap and adding yields
(AtB3, + ABI3,)e, = (A1 + AB)t3 (23)
and thus

Agls, = @

t32 - )\IB303 (24)
where we have chosen the integration constant so that both B3 and I3 tend to
t32/2 as required for matching to (15a) and (15b) when t3 < 1. Substituting
(24) into (21a) yields

B
d 30 :tB_A'_M

s 5 t3°Bs, — A1 B3, . (25)

This non-linear equation can be solved using Kummer functions (see Appendix
A) leading to the solution

. M(b—s—l,%,z)—F%U(b—H,%,z)
BSO:E 1+3b F(bfl) . —1 ;
M(b,g,Z) + 31—‘(%) U(b,g,Z)
()\B —l-)\I) 3 3A\1 + A
= t b= ———
: 6 8o 3(A1 + A)
(26)

with M(z,y, z) and U(z,y, z) Kummer functions of the first and second kind
respectively and I'(z) the usual Gamma function (cf. Abramowitz and Stegun
(1983); Polyanin and Zaitsev (2017)). The leading order solution (26) satisfies
the correct matching condition that Bz, ~ t32/2 for t3 < 1 (see (A9) in
Appendix A for details) coming from the far-field behaviour of the solution
(15a) in the t ~ O(1) timescale . Having determined Bs, then I3, is deter-
mined from (24).

We show in Section A.1 of Appendix A that the solutions at this timescale do
not lose asymptotic consistency prior to t ~ O(e~!) when the CD4™ T-cell
concentration given by (19) loses asymptotic consistency and therefore there
are no additional intermediate timescales for antibody growth to consider.
This resolves the loss of asymptotic consistency for B, I, and A that was
discovered at the ¢ ~ O(1) timescale in Section 3.2. However, the loss of
asymptotic consistency in the CD4% T-cell concentration is still unresolved
as that occurred when t ~ O(e) due to the decay terms not being included.

3.4 Peak and Decay of Antibody

Introducing the timescale t = ¢~ 't4, we expand (7c) for T yielding,
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1 *OtTt4 _ *Otvt4 a e*aTM — efavt4
= ( ) = v +O(e)
e (av —ar) (av —ar) (27)

(1140 + 6T41 + O( ))

where we have scaled T = e '7T,. In Appendix A we show the behaviour of
B, A, and I when t3 > 1 given by (A20), (A17) and (A21) respectively. This
provides the matching scaling at the ¢4 timescale and therefore suggests we
scale B = ¢ 2B, and I = I, transforming the reduced model (6) at this scale
to

By,, =Ty + AplyBy — apBy, (28a)
€I, =Ty — MI4By — Early. (28D)

From (28b) we have that I, is in a quasi-steady state up to O(e?) and therefore,

T4 (20)

I —
o M By,

to leading order. As with the t3 timescale in Section 3.3, the leading order prob-
lem will be sufficient to capture the dynamics in this ¢4 timescale. Substituting
(29) into (28) yields

AB
B40t <1 + )\I ) T40 OéBB4O, (30)

which has solution

<1 + %) |: efOtTt4 e*avt4 + (av _ aT)efaBt4

By (tg) = 31
40( % (aV —ar) lap—ar ap-—ay (aB — aT)(aB —ay) (31)
‘We note that for ¢4 < 1 that
AB+ A1) o 3ct]
By~ ti=—— 32
* ( 2\ > 17N (32)

which matches Bz for t3 > 1 as required (see (A16) in Appendix A). Fol-
lowing (8), after taking t = e 1t, and scaling A = e 24y, then the antibody
concentration satisfies,

Ay, = ot { /0 " B, (s)esds} (33)
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to leading order.

Since we have assumed that ay, ar and ap have unique values, for t4 > 1,

—a;ty
Ty~ 2 : (34)

aj—ai

where a; = min(avy, ar) and a; = max(ay, ar). Similarly for plasma B-cells,

B (1 + AB) o7k ti>1 (35)
! ) (&= @)@ — )’ !

where &; = min(ay, ar,ap), &, = max(ay,ar,ap), and & < &; < &. If
&; = ap then from (29),

(av — ap)(aT —ap)

Iy, ~ e~(@—am)ts 0 a5ty — . 36
0 oy — i) (As + A1) * (36)
If instead ag > &; then &; = «; and
aB — &
Iy ~—— t 1 37
A+ AL 4> (87)

which is a constant. However, if we look at the full equation (28b) then the
steady state interleukin concentration, Ig°, is

I

IOO = =
4 )\IBEO + €20

(38)

because T5° = B® = 0. Therefore if " and B decay at the same rate then a
final timescale emerges to resolve the decay of interleukin.

3.5 Interleukin Cessation

We assume for this Section that ap > &; so that (37) is in disagreement with
the steady state interleukin (38) when ¢4 > 1 necessitating the new timescale.
Physiologically, this will occur when plasma B-cells do not decay slower than
CD4* T-cells. The failure of interleukin decay stems from neglecting the o
term in the denominator of (38) which cannot be done if By ~ O(e?). From
(35) this occurs approximately when e~®*1 = €2 or t} = —a% log e and so we
introduce a fifth and final timescale, ¢ = ¢ (] +t5) = ¢ (=2 loge + 15)
with the additive form of ¢5 originating from the exponential decay behaviour
in B. We substitute this timescale into (7c) for T to yield,

e—()éj,ts

= €T5O, (39)

Oéj*Oéi
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to leading order. The reduced model (6) at this order becomes a fully non-
linear coupled model which cannot be solved analytically. However, from (35)
we know that B, is decaying exponentially for ¢4 > 1. The introduction of
the t5 timescale was to include the natural decay of interleukin and as such
we will approximate the plasma B-cell concentration with (35) substituting in
the t5 timescale,

AB e~ its
B ~ 2 1 —_— - 2B . 40
° E(_{r )@%—%Wm—aﬁ oo (40)

With this approximation, the antibody response can also be continued from
(33).

Using (39) and (40) allows simplification of the reduced model (6) to a linear
equation for interleukin,

Iso,. + (MiBs, + an)ls, =T5,, (41)
with solution,
ap — o o G(s)ds | —G(t) &
]50 = | — —|—/ T50€ R e ; g(t) = )\I/ B50 ds + agts.
AB+ A1 J 0
(42)

We note that in (42) we have used I5, = (ap — a;)(Ag + A1)~} when t5 = 0
following (37).

The t5 timescale captures the final decay of interleukin and thus completes
the dynamics of the model.

4 Results

We begin by demonstrating that the five timescales discussed in Section 3
reasonably capture the model dynamics. We plot L, V., T, C, and F, which
can be determined analytically for all time, in Figure 1. We plot B, A, and I,
which required asymptotic decomposition, in Figure 2. We simulate both the
full model (1) and the reduced model (6) to demonstrate the negligible effect of
ignoring the parameters A, Ac, ar,, and ;. We have chosen ag > ay > at so
that interleukin cessation dynamics can be observed. To indicate the different
timescales described in Section 3 we alternate a gray-white background with
the first gray background being the ¢; range, the first white background being
the ¢t ~ O(1) range, the next gray background being the ¢35 range etc. We plot
the time on a logarithmic axis to capture the full range of dynamics from O(J)
to O(e~1). In Figure 2, for the asymptotic expansion comparison, we use only
the leading order terms that were derived in Section 3. The one exception to



Springer Nature 2021 BTEX template

mRNA vaccine timescales 17

this is the t2 =t ~ O(1) timescale in Section 3.2 where a two-term expansion
was computed to show the loss of asymptotic consistency. Therefore, we use
the full two-term expansion for comparison.
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Fig. 1: Comparison of the full model (4), the reduced model (6), and the
analytic approximations to L, V, T', C, and F' given by (7) and (10) respectively
with parameters € = § = kp = k1 = 0.01, a, = ar = ac = a;r = \; = 1,
ay = 2, and ag = 3 on a logarithmic non-dimensional time series. For all
simulations the initial conditions are L(0) = A(0) = F(0) = I(0) = 1 and
V(0) = T(0) = B(0) = C(0) = 0. We alternate the plot with gray and white
patches to indicate the regions where each timescale is valid. Since we have
taken € = 0.01 then the start of each time interval is t; = 0.01, to =t = 1,
t3 = 4.64, t4 = 100, and t5 = 921.03 which are non-dimensional times. For F'
we note the red-dashed curve represents that quasi-steady limit F' = T derived
for all timescales beyond t; as detailed in section 3.
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Fig. 2: Comparison of the full model (4), the reduced model (6), and the
asymptotic approximations to B, A, and I described in Section 3 with param-
eters e = 6 = kp = k1 = 001, ap, = ar = ac = o = \; = 1, ay = 2,
and ap = 3 on a logarithmic non-dimensional time series. For all simu-
lations the initial conditions are L(0) = A(0) = F(0) = I(0) = 1 and
V(0) = T(0) = B(0) = C(0) = 0. We alternate the plot with gray and white
patches to indicate the regions where each timescale is valid. Since we have
taken ¢ = 0.01 then the start of each time interval is ¢; = 0.01, t5 = 1,
t3 = 4.64, t4, = 100, and t5 = 921.03.

We observe excellent agreement between simulation and analytic results in
Figure 1. Since we have chosen a non-zero initial condition for IFN-~, in Figure
le the initial condition decays to zero in the ¢; timescale before reaching the
F =T quasi-steady value as discussed in Section 3.1. Figure 2 showcases the
role of the autocatalytic timescale t3 discussed in Section 3.3. The plasma B-
cell and antibody response in Figures 2a and 2b, respectively, do not have a
substantial region in the t3 timescale where the asymptotic solutions compare
favourably with the numerical ones. Instead, the solution transfers smoothly
from the ¢ ~ O(1) timescale (discussed in Section 3.2) to the ¢4 timescale (dis-
cussed in Section 3.4). However, as seen in Figure 2¢c, the interleukin dynamics
are highly captured by the asymptotic solution in the t3 timescale and its
maximal concentration is reached within the t3 region. Interleukin plays an
activator-inhibitor role in the system. It activates the plasma-B cells to initiate
the autocatalytic production but inhibits itself which ultimately terminates
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the autocatalytic production. The maximal value of interleukin represents a
shift from the activator to inhibitor role. As observed in Figure 2c¢ the maxi-
mum occurs quite early in the ¢3 timescale explaining why B and A quickly
follow the dynamics at the t4 timescale described in Section 3.4. We emphasize
that the solutions in each timescale are formally valid for an arbitrary small
parameter, €, for the regions they are defined. When choosing an actual value
for €, such as € = 0.01 in Figure 2 then the asymptotic structure can break-
down numerically. This is particularly important for the autocatalytic region
described in section 3.3 which occurs at an order e~ /3. Formally, e~ 1/3 > 1,
however, if € = 0.01, for example then e~'/3 = 4.6 which is not particularly
large. In this timescale we have I ~ O(e=2/%) ~ 21 when ¢ = 0.01. As can be
seen in Figure 2c¢ and is detailed in section 4.1, interleukin transitions through
its maximum throughout the t3 timescale and so very quickly I returns to
O(1) practically entering the ¢4 regime. Thus, numerical realizations of ¢ may
cause the solutions in timescales t5, t3, and t4 to be appear to be valid longer
(or shorter) than theoretically predicted in the analysis. We could improve
the asymptotic agreement by considering the composite solution which is the
sum of the different asymptotic solutions with their overlapping contributions
removed, but omit the details here.

4.1 Maximal Concentrations

The asymptotic solution for interleukin and plasma B-cells at the t3 timescale
provides us a mechanism to determine the maximal interleukin concentration.
At the maximal concentration, I3;, = 0, and thus from (23) that Bs;, =
Al Y(A\1+p)t3 to leading order. Substituting this into the differential equation
for Bsg (25) yields,

“ A2 2
f i By
S 2B

MO As) 2, — 0, (13)

where t3 is the ‘time at which the maximal interleukin concentration occurs
and we define B3 = Bs(t3). Solving (43) for the plasma B-cell concentration

yields,
~2
4 AL+ Ap)t 16
B, = Mitdn)ts (), o 16 ) (44)
4 ()\1 + )\B)th

This expression only has a solution so long as 3 is large enough, namely

. 6\ .

t3 > —— =t3 . 45

: ((AI + A13)2) ’ #2)

Prior to this time, B3 cannot grow fast enough to generate an optimal value
for the interleukin concentration. Therefore, while (45) does not provide any
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insight into the value for t3, it does provide an estimate for the minimum time
before interleukin begins inhibiting antibody production which is useful infor-
mation for understanding the dynamics of the immune response. To actually
estimate the value for #3, it is more useful to solve (43) for £3. This yields,

i AB + \/)\2]3 + 2)\%()\1 + )\B)Bg
3 = =
At(A1 + Ag)Bs

(46)

Using (45) as an initial guess, we can compute Bs from (26). Substituting
this value into (46), we update f3. We then iterate until we converge to a
desired tolerance. For the parameters in Figure 2c, we have that t3 = 1.714
and I3(f3) = 0.8035. Taking scales into account, these correspond to non-
dimensional time t; = 7.953 and concentration Iy, = 17.31 and are

comparable to the maximal values numerically obtained from simulating the
full model (4), ti™ =9.227 and I}™ = 17.25 respectively.

max

The maximum for plasma B-cells occurs in the ¢4 timescale. From (30), the
maximum B concentration to leading order occurs when

(1 + >)\\]3> T40 = aBB4D. (47)
1

From (27) and (31) this happens when t, = f45, occurring when

o (- (%z‘)oiéj o~ (@i—atas (f%j - O:éi)éf/e e~ (@—adlis o (4g)

G — &;)é; (G — G5) by

|~

Recall that ay, ar, and ap are ordered such that &; < &; < d&y. The
expression (48) is a polynomial equation in e~&l5 and thus can be solved
in a straight forward way. From the parameters in Figure 2a we have that
(48) gives t4p = log(3) and By(fap) = 5-. Accounting for scaling, these
correspond to non-dimensional time tp . = log(3)e~! = 109.9 and concen-
tration Bg,,,, = % = 1.483 x 10% and compare favourably to the numerical
values from the simulation of the full model (4) given by 3" = 111.3 and
BE™ = 1.467 x 10°. Interestingly, we find that the leading order maximal
time given by (48) is independent of the parameters Ap and Ar, depending
only on the decay parameters.

The maximum for IgG antibody also occurs in the ¢4 timescale and from
(6e) occurs at a time f44 when A, = B, (with Ay given by (33) and By
given by (31)). Due to the integration in the solution for A4, this may not
be an exponential polynomial (such as is the case with the parameters in
Figure 2). However, it can still be solved with a straightforward root-finding
process. This yields the time of the maximum antibody concentration for the
parameters in Figure 2b as {44 = 1.973 with concentration A4(f4,4) = 0.1031.
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Accounting for scales, these values are t4, = 197.3 and A4, = 1.031 x 103
for non-dimensional time and concentration, which compare well to the
numerical maximal values from simulating the full model (4), tj‘iax = 198.6
and A%™ = 1.021 x 10°. Since the antibody is determined as an integral of
the plasma B-cells, its time of maximum concentration also does not depend
on the growth parameters Ag and Ar.

4.2 Comparison to Data

Parameter fits to the full model (1) for 22 different data sets were performed
by Korosec et al (2022) using mixed-effects modelling software Monolix. The
data available was for IgG antibodies, interleukin, and IFN—+v from patients
receiving two doses of SARS-CoV-2 vaccine produced by Pfizer-BioNTech
(BNT162b2) or Moderna (mRNA-1273). Each data point refers to a time
point measurement of either antibody, IFN-v, or interleukin for a given
patient. Since each study has multiple patients, some studies have multiple
measurements at a given time. Patients are distinct between studies, but
within each study,patients are followed chronologically through time taking
additional measurements at different time points. However, these individual
patient trajectories cannot be identified from the aggregate data. Therefore,
for the purpose of parameter fitting in Korosec et al (2022), “individual”
refers to all of the data in a single data set and “population” refers to the
collection 22 data sets. For all details about parameter estimates including
inferred parameter distributions see Korosec et al (2022) and the supplemen-
tary material therein.

Using the fit dimensional parameters from Korosec et al (2022), we compute
the equivalent non-dimensional parameters in Table 2 where we also include
the average values for each of the two vaccines considered. We bold values
in Table 2 that violate the model assumption of parameters being O(1) or
smaller. The scales for each of the vaccine model compartments given by (3)
as well as the non-dimensional non-zero initial values Ay and Zy are computed
in Table 3 for each of the parameter sets (an initial condition F = 0 was taken
for all data). We compute the timescales discussed in Section 3 for each of the
data sets in Table 4 along with the number of data points that occur within
each timescale. The number of data points is important because it provides a
measure of data resolution and the ability to capture all the dynamics of the
immune response.

The number of data points in Table 4 is slightly misleading. Many data sets
have multiple patients and therefore much of the data is taken at a single
time point for multiple people rather than as a time series for a single person.
Secondly, the number of data points in 0 < ¢ < ¢1 (first column of bold values)
are all initial values taken just after vaccination (day 0) and do not actually
capture any of the fast IFN-y dynamics discussed in Section 3.2. The model
analysis predicts that the majority of antibody activity occurs within the ¢3
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and t4 timescales and this is precisely where the majority of data points are
collected. Furthermore, we remark the onset of the ¢, timescale which is the
timescale over which antibody concentrations peak and decay aligns remark-
ably well with the timing of the second dosage given as the last column of
Table 4.

Table 5 calculates an estimation of the maximal concentration and times
they occur for interleukin, plasma B-cells, and IgG antibody following the
discussion in Section 4.1. The sequence of timescales discussed in Section 3
indicates that interleukin reaches maximal value first (in the t3 timescale)
which triggers the inhibition process of plasma B-cells leading to its maximal
value (in the ¢4 timescale) and then the maximal value of antibody followed
shortly. Thus, generally we suspect an ordering of t; < ip < ta
which holds in Table 5 except for data sets 8 and 10 from Bergamaschi et al
(2021). These values have been indicated in bold in Table 5.

max max

We plot the data of each reference data set, along with the full simulated
model (4) and each of the asymptotic approximations, in Figure 3 for antibody
data and Figure 4 for IFN-v and interleukin data. As with Figure 1 and 2,
we alternate gray-white backgrounds to showcase the different timescales. We
plot the asymptotic solutions in each of the regions they are valid, but only
include the time regions up to the terminal data point in each study. Based on
the discussion surrounding Figure 2c¢ about practical asymptotic consistency,
we extend the asymptotic solutions for t and ¢4 into the t3 regime because
the practical validity can be different than what is theoretically predicted.
In Figure 4c and 4e, we do not include the ¢4, asymptotic solution in the t3
region because it is outside the plotting window. In Figures 3 and 4 we also
plot three vertical dashed lines which correspond to the maximal times (in
chronological order) for each of the concentrations I, B, and A given in Table
5. If less than three lines are present it means that the predicted optima occur
outside the time window where data was available.
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Fig. 3: Comparison of the full model (4), the analytic approximations
described in Section 3 and data from the cited reference for IgG antibody A.
Parameters and initial values are listed in Table 2 and Table 3 respectively
(with corresponding number entry). The alternating patches are the timescale
windows in Table 4. The vertical dashed lines are the times for the maximal
concentrations in interleukin (pink), plasma B-cells (orange), and antibody
(teal) from Table 5 ordered chronologically. We note the scales on the axes are
different for some sub figures.
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Fig. 3: Continued from previous page. Comparison of the full model (4), the
analytic approximations described in Section 3 and data from the cited refer-
ence for IgG antibody A. Parameters and initial values are listed in Table 2
and Table 3 respectively (with corresponding number entry). The alternating
patches are the timescale windows in Table 4. The vertical dashed lines are
the times for the maximal concentrations in interleukin (pink), plasma B-cells
(orange), and antibody (teal) from Table 5 ordered chronologically. We note
the scales on the axes are different for some sub figures.
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Fig. 4: Comparison of the full model (4), the analytic approximations
described in Section 3 and data from the cited reference for IFN-y (F') and
interleukin (7). Parameters and initial values are listed in Table 2 and Table 3
respectively (with corresponding number entry). The alternating patches are
the timescale windows in Table 4. The vertical dashed lines are the times for
the maximal concentrations in interleukin, plasma B-cells, and antibody from

Table 5 ordered chronologically. We note the scales on the axes are different
for some sub figures.

4.3 Multiple Doses

We note that the original model (1) as posed does not allow for multiple
doses which is seemingly problematic as all patient data used in Section 4.2
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does include a second dose with second dosage times given in Table 3. Math-
ematically, it is straight-forward to account for additional doses in the model
by including impulse terms to the LNP compartment of the model. However,
when we compare the model with one and two doses to the data we seem to
get a paradoxical conclusion that the one-dose model fits better despite the
patient having received two doses (see Figure 5 for an example). One possible
explanation is that the parameters fit in Korosec et al (2022) have accounted
for a second dose through fitting. Furthermore, the second dosage time is in
the t4 timescale where the peak of antibody occurs, thus creating a potential
resolution issue. However, since the second dose does not affect the immune
response timescales, nor the general analysis completed here, we save any
further discussion of multiple doses for future work.

Model: 1 dose

— = Model: 2 dose
O Data

—-=-2nd dose

g
)

-1

0 20 40 60 80 100
t (days)

Fig. 5: Comparison of data from Wang et al (2021) to the full model (4) with 1
or 2 doses using the parameters of data set 18 in Tables 2, 3 and second dosage
time in Table 4. The alternating patches are the timescale windows in Table 4

5 Discussion

During the model formulation in Section 2.1 we identified parameters Ap, Ac,
and «f, as likely being unidentifiable due to very small pre-factors and hence
neglected them in the reduced model (6). Table 2 confirms this hypothesis as
each of these parameters are very small based on fit data. We further set each
of the saturation parameters to zero under the notion that we would not be
over-saturated in plasma B-cells and interleukin. These parameters are indeed
generally small in Table 2 justifying the assumption.

A further assumption in the non-dimensional model (4) was that the parame-
ters are O(1) or smaller so that the model is sensibly scaled. We note that this
is mostly true in Table 2 with exceptions to this noted in bold. Data set 14
from Bergamaschi et al (2021) has an anomalous value for ap. From Figure
4f we observe that most of the data is concentrated around the peak with
some later data corresponding to the second dose time. Since ap is a decay
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parameter it will have the most significant contribution on interleukin after
the peak value. Furthermore, from Section 3.4 the quasi-steady interleukin
concentration (37) depends linearly on ap, however there is very little data in
this region to inform the parameter. Therefore, the value of ag in data set 14
may be a consequence of poor data fidelity.

The more interesting anomalous parameters are those for Ag (data sets 11,
12, and 13) and k; (data sets 12 and 13) as these all belong to data collected
by Widge et al (2021) for the mRNA-1273 vaccine. The data in this paper
measured antibody response for various ages. Data set 11 is for ages 18-55,
data set 12 ages 56-70, and data set 13 ages 70 and over. We see a dramatic
difference between those under and over the age of 55. While age effects
on response were discussed by Korosec et al (2022), the parameter contrast
was not as apparent in the dimensional form. Ag and xj are associated with
the autocatalytic production of plasma-B cells and ultimately antibodies.
A higher value leads to more rapid production which due to the inhibiting
effects on interleukin can also lead to quicker decay.

We note in Table 4 that the t3 timescale representing the onset of autocat-
alytic production starts several days later in the older-patient data sets of
Widge et al (2021) than the younger-patient data set, but the ¢4 timescale
representing peak antibody starts a few days sooner. Therefore, overall, the
time window over which antibody levels are high is much narrower for ages
56 and greater compared to those below this age. We also note that the
youngest age group has ap as the slowest decay parameter compared to the
two older data sets and thus does not have predicted interleukin cessation.
There is no confirmation for this in the data set because interleukin data was
not recorded for these cohorts.

Interestingly, the predicted maximal antibody concentrations from Table 5
are higher for the two older-age data sets of Widge et al (2021) compared
to the data set for those under 56 with the highest maximum concentration
predicted in the 56-70 data set. However, the decay rates ap and ar also
increase, as observed in Table 2 and therefore a high concentration will also
experience rapid decay, potentially explaining this counter intuitive result
and providing insight into the body’s immunosenescence. We find that Ap
and A; seem to be age-dependent. These parameters dictate how well the
body transitions from vaccine priming (the adapted immunity response) to
self-production of antibody precursors (the innate immune response) and
therefore provide detail on the immunogenicity of the vaccine. Overall, the
analysis indicates the existence of, and possible mechanism for, an age depen-
dent vaccine and natural immune response. A reduced vaccine efficacy with
age has been reported in studies such as by Menni et al (2022).

The anomalous bold values in Table 2 also skew the mean values for the
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mRNA-1273 vaccine making it appear as if there is discernible difference
between that and the BNT162b2 vaccine. However, if data sets 12 and 13
of Widge et al (2021) are removed then the new mean for vaccine mRNA-
1273 (Mean M* in Table 2) is much more comparable with the mean for
BNT162b2, indicating that there is no appreciable difference between the
vaccines in terms of immune response parameters. It may appear in Table
5 that there are discernible differences in peak antibody levels between the
two vaccines as computing the means for the two vaccines shows a nearly 20
fold difference between the two. However, this comparison cannot be made
because the antibody concentrations that are reported are in arbitrary units
and may be different for each study. While it is omitted here, redoing the
analysis on the maximal antibody concentration in dimensionless units shows
approximately a two-fold difference which makes them more comparable.

The data sets of Suthar et al (2022) separated antibody response by sex with
data set 19 being male and data set 20 being female. We see, both from the
parameters in Table 2 and the timescales in 4, that there is no discernible
difference between sexes in the vaccine response.

Interestingly, aside from the two over-55 groups of Widge et al (2021), none of
the mRNA-1273 studies considered here have interleukin cessation, whereas
all of the BNT162b2 studies do with the exception of those by Suthar et al
(2022). However, it is worth noting that the studies by Suthar et al (2022) also
have data at the latest time points of all of the studies considered. Overall,
the late-time study of interleukin concentration in each of the mRNA-1273
and BNT162b2 vaccines would be an interesting exploration.

Non-anomalous Ap values in Table 2 are almost all O(1). The three smallest
values are of order O(1072) and belong to IFN-y data set 6 and interleukin
data sets 8 and 10. It is not surprising that IFN-+ parameter fitting may not
capture a representative value of A\g as the profile entirely mimics that of the
CD4*% T-cell population whose dynamics do not depend on Ag. As for the
interleukin data sets, observing Figures 4c and 4e, we note that the graphs
indeed look strange. Unlike the other interleukin data, there is no early peak,
likely due to influence from the later data when the second dose is adminis-
tered. Figures 4d and 4f where Ag ~ O(1) do have early peaks in the model
simulation. While we do not plot it here, changing the value of A\g for data
sets 8 and 10 to be of O(1) indeed introduces a peak into the model consistent
with the other data sets. Another indication that the fitting to data sets 8
and 10 is problematic is observed in Table 5 where for those particular data
sets we have the anomalous result that tp . < t,, counter to the other
data sets and overall model analysis. Overall, the scaling analysis allows us to
interrogate parameters far from the mean and analyze their validity.
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Unlike the parameter Ag, the values of A\; are much smaller than O(1) gener-
ally, except for the anomalous data sets 12 and 13 previously discussed. Even
though the analysis assumed A; ~ O(1) the fact that A\; < 1 does not impact
the overall immune response, it just creates some additional complexity
between timescales t3 and t4. Specifically, if Az ~ O(1) and A\; < 1 then when
the t3 timescale begins, the plasma B-cell concentration is very high but the
interleukin concentration remains small because of the weak non-linear decay.
As such, the plasma B-cell concentrations grow explosively during which a
new timescale t5 will emerge. This timescale separates from ¢3 similar to
the interleukin cessation scale, and the concentration of plasma B-cells will
become large enough that the weak interleukin inhibition becomes dominant.
Overall, the interleukin activator-inhibitor dynamics proceed sequentially
from activation to inhibition rather than concurrently as was presented here.
Since the overall behaviour is captured by the limit we have chosen here, we
omit details of the more general case.

Many of the insights discussed on data fidelity and parameter estimates
are due to the explicit analytic expressions obtained. These expressions also
provide biological insight. For example, through (45) we understand the min-
imum time for interleukin to begin inhibiting antibody production and that
it depends on two dimensionless groupings, A\g and A;. We discussed that
the peak antibody response seems to highly correlate with age and the result
of (45) provides a reduced set of parameters to investigate age dependence
in. Our study also showed the delicate relationship that each of the decay
parameters have to long-term immune behaviour. If B-cells decay quickest so
that ap is the largest decay parameter then quasi-steady interleukin concen-
trations can persist for a long time. Otherwise, interleukin decays quickly.
This means that interleukin concentration data at long time points after
vaccination can provide insight into the whether the system is dominated by
T-cell or B-cell decay.

5.1 Conclusions and Future Work

Overall, we have presented a model for LNP delivered mRNA vaccines origi-
nally derived in Korosec et al (2022). Through non-dimensionalisation we were
able to reduce the model and identify five distinct timescales where different
parts of the immune response dominated. Comparing our model to data we
were able to identify data sets with different immune response, namely those
associated with age, and also identify parameter sets which significantly differ
from the mean.

Identifying important timescales of the immune response dynamics provides a
framework for clinical data collection. The timescales are determined from two
parameters, the rate of vaccine conversion in cells, ury, and the decay rate of
IgG antibodies, v4. If those can be measured independently then timescales
can be estimated and clinicians have windows with which to collect data. This
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avoids unnecessary sampling and missing important dynamics. Furthermore,
it increases the likelihood of capturing data related to peak concentrations
which can lead to stronger parameter estimation and thus stronger model
prediction. If estimates of ury and s are not available because of novel or
emerging diseases, we recommend a two-stage trial. The first will create coarse
window estimates based on parameters from comparative diseases. Parameter
estimation will be done on these windows to refine estimates of the timescales
at which point the refined trials discussed above can be conducted.
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Appendix A Plasma B-cell concentration in
the t3 Timescale

The autocatatlyic problem is given by (20) in Section 3.3 with timescale ¢t =
e~1/3t5. We pose an expansion Bs ~ Bsg + €'/3Bs; where the leading order
problem is given by (25) in Section 3.3,

ngo ()\I + )\B)

—t
dts st

t32Bsy — A\ Bsg. (A1)

As this is a non-linear Riccati equation we can simplify using the transforma-

tion B3y = % which allows us to write (A1) as

AL+ A
u" - ytggul - )\Itgu = 0, (A2)

where prime indicates differentiation with respect to t3. Further transforming

u = tsw(z) with z = % yields,
dPw (4 dw 3A1+ A
— 4+ (= — —bw = 0; h= LB A3
i (3 Z> = 0T 300 + Ap)’ (A3)

which is Kummer’s differential equation and has as solutions Kummer’s func-
tions M(x,y,2) and U(z,y,z) (see Kummer (1837); Tricomi (1947); Slater
(1960); Polyanin and Zaitsev (2017)),

4 4
U}:OMM (b73,z> +OUU (b,3,z), (A4)

for arbitrary constants Cj; and Cy. Therefore, B3y has solution,

B30:7: =

A5
)\I’LL /\Itgw 61/3)\121/3 ( )

w dz

s gy s
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which from (15a) must satisfy Bsy ~ % = ﬁzwg for z < 1.

Substituting (A4) into (A5) and expanding for z < 1 yields

{1 + ?:jjl‘z”} ~ m (CMF (b - ;) —3CyTl (2/3)) 23, (A6)

to leading order where I'(z) is the usual Gamma function (see for example
Polyanin and Zaitsev (2017)). (A6) does not match the required form of Bj
for z < 1 and therefore we must choose Cy; so that this term is zero,

_ (-3
Cy = WCM. (A7)

W=

win
~—

Returning to the expansion (A6) the next order term is

w dz 2 AB + At

where we have used the definition of b from (A3). Substituting this into (A5)
we get that to leading order Bj, satisfies,

. A + Ap)Y/3 312 62/3
Bsy %! ( ]133 I1)/3 : = TR (A9)
61/3 12 AB + A1 2(\1 + Ag)?/

which satisfies the correct matching condition for all C'y;. Therefore, without
loss of generality we can take Cjy=1. Overall then, the solution for Bs satisfies

1
=—
30 = \is [1+
r(b—1)(b—12
b M (b+1,4, Qo) 4 %U (b+1, 4, Qepg?)
3 —1
r(b—1
M (b, %’ ()‘Bg’)\l)tg?)) + 3(r‘(%3))U (b, %’ ()\Bg’)\l)tg?))
(A10)
A.1 No Loss of Asymptotic Consistency
The next order problem of (20) is
dB
dtzl = — 1+ As(I31 B30 + I30B31), (Alla)
dr.
=31 — 1 — A(Is1 Bsg + IsoBsy), (A11b)

dts
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where once again multiplying (Alla) by A; and (Allb) by Ag and adding
produces a reduced equation

ABl3; = —(A1 + A)t — AiB3;. (A12)

Substituting this into (Alla) and recognizing from (22) that B3y = d(ﬁzo yields

an equation for Bsq,

A+ AB

Bsy,, + (2M14g, — 3¢t?) Byy = —1 — 6¢t By, ¢ ;

(A13)

which is linear and has solution,

ts
B3, = —e_H(t3)/ (1 + 6¢sBsg)e ) ds, H(s) = 2\1(Az0(s) — A) — cs>.
0
(A14)

We already know from the solution for the CD4" T-cells in the t3 timescale
given by (19) that an important timescale emerges when tz ~ O(e=%/3)
(t ~ e 1). However, in Section 3.2 the solution for B, A, and I broke down
sooner thus introducing the t3 timescale. It is therefore important to inves-
tigate any additional timescales that may emerge between t ~ O(1) and
t ~ O(e~1). To do so we investigate Bzy and Bs; for t3 > 1.

The asymptotic expansions of the Kummer functions for large argument
are (see for example Abramowitz and Stegun (1983); Andrews et al (1999);
Polyanin and Zaitsev (2017)),

4 r(4
M (b, 3 z> NPE;))GZZM/S’ z>1 (Al5a)
U <b, ;U) ~z b 2> 1, (A15b)

and so from (26) for t3 > 1 we have that

1 F(b)(}\l + )\B) 3Ct32
By, R — 1 SURAT B3 )|~ Al
30 NG | T 30 6r(b+1) ° PV (A16)

and also from (22) that,

t3 + 3
Ag— A= / Bsods ~ ch (A17)
0 1

With these asymptotic expansions then, from (A14), we have that,

H(ts) ~cts®,  t3>1, (A18)
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and also that

P t 3
B31 ~ (1 — ic) G(tg)eic%d — 7t3’ G(t) = / e” ds. (Alg)
1 0

G(t) can be written in terms of an incomplete Gamma function (see Polyanin
and Zaitsev (2017)) and thus the first term in (A19) vanishes for t3 > 1. Thus,
overall we have that

3
Bg tgf%l )TC <t32 - 61/32t3) 5 (A20)
I

and Bs does not lose asymptotic consistency at least up to O(e'/3) since t3 <
t3? for t3 > 1. Similarly from (21b) and (A11b) we have the expressions for
interleukin under t3 > 1 satisfy I3y = I3; = 0 and therefore

Iy ~ O(¥?). (A21)

Thus, interleukin also does not lose asymptotic consistency up to the order
considered. Finally from (8), since A is bounded from above by the integral
of B then since B does not lose asymptotic consistency then neither does A.

Therefore, there are no additional intermediate timescales between
t~O(e/3) and t ~ O(¢~1) for new dynamics to occur.

Appendix B Equal decay parameters

Here we consider the case when the parameters «; are not unique. For simplic-
ity we will consider the case when they are all equal to each other, i.e. a; = «
recognizing that sub cases mixing equality and inequality will result in a com-
bination of this analysis and that presented in Section 3. The reduced model
from (6) is

L=-1 (B22a)
V =L —eaV, (B22b)
T =V — eaT, (B22c)
B =T + e)glIB — eaB, (B22d)
A=¢(B - A), (B22e)
I =T — e\IB —eal, (B22f)

subject to initial conditions V' (0) = T'(0) = B(0) = 0, L(0) = 1, A(0) = A, and
I(0) = Z. We note that we have removed the equation for F' as it is unchanged
from Sections 3.1 and 3.2 where F' ~ T. We have also removed the equation
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for C since when ar = ac = a then C =T As with (6) we can solve directly
for L, V, and T,

L(t) =e™" (B23a)
Vi(t) =e_€1a:;_t (B23D)
T(t) _ ((1 — 6(1)(751_16)2);0‘ + e ’ (B23c)

and if we knew B then the antibodies would still be given by (8). Thus we
need only to solve for B and I in (B22) which are analyzed through each of
the timescale regimes in Section 3.

We begin following Section 3.2 where ¢ ~ O(1). The original expansion of T
when ay # ar given by (13) is not impacted by the singularity structure of
ay = ar. As such the solution when the parameters are equal is the same
as that in Section 3.2 when ay = ar = a. Since the loss of asymptotic
consistency was not related to the «; parameters we still have breakdown
when t ~ O(e7/3), and for the t3 timescale in Section 3.3, once again the
singularity structure does not play a role when expanding 7. Furthermore,
since we only considered the leading order behaviour which did not depend
on ay or ar then the solutions for B and I are the same to leading order,
(26) and (24) respectively.

The t4 timescale of Section 3.4, where peak and decay of antibody occurs,
is where the «; parameters have a dominant role and the singularity struc-
ture appears in (27) for example. When the parameters are the same then
substituting ¢ = e~ 't4 into (B23c) and expanding for ¢ < 1 yields

t4e—oct4

T ~ + 2ate™ = e (Ty, + €Ty, + O(€2)). (B24)

From here, the setup follows that of Section 3.4 with the equations to solve
given by (28) leading to interleukin quasi-steady state (29) and differential
equation for the plasma B-cells given by (30) with the change in all three that

T}, is replaced by T40. The plasma B-cell solution becomes

tﬁ(AB + )\I)efat‘l

B40 (ta) = 3 )

(B25)

which we observe still satisfies the required (32) for t4 < 1. From (33) we
obtain the antibody concentration

. A + A _ —a
Ay (ts) = m [2e7" — ((a — 1)%t] + 2(a — 1)ta + 2)e~ ], (B26)
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which itself has a singularity issue if & = 1. In this particular case the solution
reduces to

()\B + )q)tie_t“

A4O (t4) = 6AI

(B27)

When all of the parameters are equal then min(ay, ar, ap) = min(ay, at) =
«a and so the interleukin cessation timescale described in Section 3.5 should
occur as the exponential decay rates for both CD4% T-cells and plasma B-
cells are identical. However, the identical decay rates also introduces algebraic
terms and so the quasi-steady interleukin concentration (29) becomes

o2t
TN+ AL

(B28)

We observe the interesting result that when the parameters are equal the
interleukin concentration still decays to zero, but with a power law decay
rather than an exponential one.

The reduction of the solution in the ¢4 timescale allows an easy analysis of
the maximal plasma B-cell concentration where, from (B25), we conclude
that the maximal concentration of plasma B-cells occurs when t; = 207!
with maximal B-cell concentration By, = 2a‘2/\1_1()\B + A1)e~2. For general
« the maximal concentration of antibody does not have a clean analytic
form because of the mixture of polynomial and exponential terms in (B26).
However, when o = 1 then the antibody concentration is given by (B27) and
has a single exponential term. Upon differentiating, the maximum concentra-
tion occurs at t4 = 3 for all Ag and A; with maximal concentration given by
Ay = 9/207 (A + A1)e 3. The independence of the maximal concentration
time on Ag and Aj is discussed in Section 4.
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