1	
2	Association between skull bone mineral density and periodontitis:
3	evidence from the National Health and Nutrition Examination Survey
4	(2011-2014)
5	Fuqian Jin ^{1,2} Jukun Song ^{3&} Yi Luo ^{2&} Beichuan Wang ^{1,2&} Ming Ding ^{1,2&} Jiaxin Hu ^{1,2¶} Zhu
6	Chen ^{1,2*}
7	¹ School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
8	² Department of Oral Medicine, Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
9	³ Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang,
10	Guizhou, China
11	[¶] These authors contributed equally to this work.
12	^{&} These authors also contributed equally to this work.
13	* Corresponding author
14	E-mail: <u>zhuchen@gzu.edu.cn</u> (ZC)
15	Membership list can be found in the Acknowledgments section.
16	Abstract
17	Background and Objective: Bone mineral density (BMD) and periodontitis have been the subject of
18	many studies. However, the relationship between skull (including mandible) BMD and
19	periodontitis has not been extensively studied. An objective of this cross-sectional study was to
20	examine the relationship between skull BMD and periodontitis using data from the National Health

21

44

and Nutrition Examination Surveys (NHANES) for 2011-2012 and 2013-2014.

22	Materials and Methods: From 19,931 participants, 3,802 were screened and included with no
23	missing values in the study. We examined the distribution of variables by grouping the skull BMD
24	levels into quartiles. Periodontitis is defined by the Centers for Disease Control and Prevention
25	(CDC) and the American Periodontal Association (AAP) in 2012. An interaction test was
26	conducted using stratified and adjusted logistic regression models, and multivariate logistic
27	regression analysis was performed, along with curve fitting and a threshold effect analysis were
28	performed on the relationship between skull BMD and periodontitis.
29	Results: The results showed a negatively relationship between skull BMD and the risk of
30	periodontitis. Although the inflection point was found (the skull BMD= 2.89g/cm ²), it was not
31	statistically significant, indicating that the skull BMD and periodontitis are linearly related, which 1
32	unit increase in the skull BMD (g/cm ²) was associated with a 30% (OR=0.70; CI=0.57, 0.87;
33	p=0.0010) reduction in the risk of periodontitis events.
34	Conclusions: Periodontal disease may be related to low skull BMD, for those people, oral hygiene
35	and health care should be more closely monitored. Validation of our findings will require further
36	research.
37	Introduction
38	The burden of periodontitis continues to be a worldwide public health problem, and the majority of
39	periodontitis incidence is observed in those between 55 and 59 years of age, while younger people
40	are experiencing an increasing incidence of periodontitis(1). Periodontitis is chronic inflammation
41	of the tissue supporting teeth, and if it progresses, it can lead to alveolar bone loss and ultimately
42	tooth loss(2). It is intended that periodontitis occurs when dental plaque accumulates on the teeth
43	and results in an imbalance between bacterial invasion and host defense(3). Meanwhile, host

responses to general health conditions as well as be associated with periodontitis(4, 5).

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Osteoporosis and periodontitis have been associated in most cross-sectional studies, especially for postmenopausal women(6-9).

Bone mineral density (BMD) measures are the optimal method for diagnosing osteoporosis and osteopenia. The World Health Organization recommends using dual energy X-ray absorptiometry (DXA) to assess the BMD of the spine, hip, and forearm(10). Apparently, osteoporosis has been associated with periodontal disease risk periodontal diseases(11). Human osteoporosis may negatively impact alveolar bone height, but periodontitis-induced bone loss is not affected by skeletal homeostasis (12). A study by Munhoz et al. documented the BMD of mandible was measured by DXA in systemically healthy subjects and then found that the low BMD of mandible may be related to chronic periodontitis(13). The mandible has high bone turnover, increased blood flow, and is more sensitive to osteoclast and osteoblast activity than any other sites, however, researchers encountered difficulties working with the mandible because of its complex bone mineral distribution (10). Meanwhile, the skull is connected by irregular shapes and thickness of the bones, fibrous joints, and complex muscle relationships, which seems to rule out the possibility of analyzing a single bone(14). The skull (including mandible) BMD, which as part of the wholebody BMD measurement, is well correlated to the rest of the skeleton(15). Due to very little mechanical strain and weight bearing on the skull, it is a unique part of the skeleton, at the same time, the measurement of a skull's BMD may be used to screen for hereditary diseases, skeletal artifacts, or to assess oral bone loss (15, 16). Athletes with stress sites in their skeleton can increase bone density through impact loading sports, the study by Courteix et al.(17) reported that in gymnasts, the skull BMD is lower than other people because of the absence of stress. It is possible to screen for osteoporosis by measuring BMD with axial skull CT because patients with a positive head CT scan for the condition are twice as likely to suffer fractures as healthy people are(18). Research on the relationship between skull BMD and periodontitis in a large and representative

> population is necessary to develop. Due to this, we analyzed secondary data based on available data from NHANES. Study objectives are to determine if there is a significant relationship between skull BMD and periodontitis and to understand the associated confounders.

Materials and methods

Data source

In the present cross-sectional retrospective analysis, continuous National Health and Nutrition Examination Survey (NHANES) data from cycles 2011-2012 and 2013-2014 were analyzed. The Centers for Disease Control and Prevention (CDC) manages the National Center for Health Statistics (NCHS) which conducts the NHANES to assess the health and nutritional status of children, adults, and the elderly. Approval of both datasets was granted by NCHS Research Ethics Review Board (ERB), protocol #2011-17 and informed consent was received from all participants. Authors did not collect the data but obtained it from the CDC website which can be downloaded for free (https://wwwn.cdc.gov/nchs/nhanes/Default.aspx). This manuscript meets the criteria stated at the STROBE guidelines.

Study population

There were 19,931 participants in the two cycles of 2011-2012 and 2013-2014, we selected participants who integrally underwent skull BMD assessment(n=10,104), which including 8-59 years old. In total, 4,123 participants provided complete oral examination, which including 30-59 years old. Then those who simultaneous with incomplete clinical and sociodemographic data were removed. In the study, 3802 out of 19,931 participants were screened.

Variables

The independent variable in the present study was the skull BMD (g/cm²), which with Apex 3.2 software, scans were acquired on the Hologic Discovery model A densitometers (Hologic, Inc, Bedford, Massachusetts) and participants aged 8-59 years were eligible. The targeted dependent variable was periodontitis (dichotomous variable). Mobile examination centers (MEC) were used to

97	conduct the periodontal examinations of participants 30 years and older. For the oral health
98	examination, the NHANES operating manuals described the training and calibration processes.
99	Clinical attachment loss (AL) was defined as the distance between the cement-enamel junction
100	(CEJ) and the sulcus base, and the probing depth (PD) was defined as the distance between the free
101	gingival margin (FGM) and the sulcus base. Based on the 2012 CDC/American Academy of
102	Periodontology (AAP) periodontitis case definitions, participants must have at least two teeth that
103	meet specific probing thresholds(19). Specifically, individuals who exhibited at least two
104	interproximal sites with an attachment loss of at least 3 mm and at least two interproximal sites
105	with probing depths of at least 4 mm which are not on the same tooth or at least one site with a
106	probing depth of at least 5 mm, were considered to have at least mild periodontitis. In this study,
107	mild, moderate and severe periodontitis were uniformly classified as periodontitis group.
108	Covariates include demographic, examination, and questionnaire variables. Demographic
109	variables include gender, age (30-39, 40-49, and 50–69 years), race, education (more than high
110	school, high school and less than high school), poverty income ratio, which was divided into (PIR
111	<1 , $1 \le PIR \le 2$, $PIR \ge 2$). Examination variables include comprehensive grip strength (kg), which
112	
	was divided into three equal parts (low, middle, and high). Meanwhile, body mass index (BMI)
113	was classified into three groups (<25, 25-30, and \geq 30). The questionnaire variables include the last
114	7 days frequency of floss use (<4 times, \geq 4times), whether smoking (smoked at least 100
115	cigarettes in life?). Drinking (Had at least 12 alcohol drinks/1yr?) Depression, using the PHQ-9,
116	you can determine the frequency of nine depressive symptoms(20). General health condition.
117	Whether the doctor diagnosed hypertension, diabetes and hypertriglyceridemia. We divided the
118	sleep time by the optimal sleep time reported in the literature: <7 hours and 7 hours(21). A detailed
119	description of the variables can be found on the NHANES website.
120	
101	
121	Statistical analysis
122	Variables that are continuous in this study are converted into categorical ones, and categorical

123	variables are expressed by frequency or percentage. Data analysis focused mainly on these three
124	points this study: (a) which factors modifying or interfering with the relationship between skull
125	BMD and periodontitis; (b) when the interference factors have been adjusted or after stratifying,
126	what is the real relationship between skull BMD and periodontitis; and (c) do skull BMD and
127	periodontitis have a linear or non-linear relationship? As a result, three main steps can be outlined
128	for data analysis. Firstly, we examined the distribution of variables by grouping the skull BMD
129	levels into quartiles and then, an interaction test was conducted using stratified. Secondly,
130	multivariate logistic regression analysis was performed by constructing three statistical models:
131	model I, no covariates are adjusted; model II, sociodemographic data are adjusted only; model III,
132	all covariates were adjusted. Finally, a smooth curve fitting (penalized spline method) and a
133	threshold effect analysis were performed, calculating the inflection point using a recursive
134	procedure and constructing a two-stage weighted linear regression model on either side of the
135	inflection point. A recursive algorithm is used to determine the inflection point, then we build a
136	weighted two-stage linear regression model on both sides of the inflection point. Log likelihood
137	ratio tests are used to determine whether the model is a linear regression model or two piecewise
138	linear regression models. In order to make sure that our data analysis was robust, we carried out
139	sensitivity analyses as follows: According to the quartile level of skull BMD, we divided the
140	samples into four groups, moreover, we transformed the quartile classification variables into
141	continuous variables and calculated the trend P. We examined the possibility of nonlinearity by
142	using skull BMD as a continuous variable. All the analyses were performed with the statistical
143	software packages R (http://www.R-proje ct.org, The R Foundation) and Empower Stats
144	(http://www.empow erstats.com, X&Y Solutions, Inc, Boston, MA). All tests were two-sided and P
145	values lower than 0.05 were considered statistically significant.
147	
146	Results
147	Baseline characteristics of participants
148	An overview of the baseline characteristics of selected participants from the NHANES 2009 to
170	An overview of the basenne characteristics of selected participants from the NFIANES 2009 to

- 1492014 is shown in Table 1. Differences in the distribution of poverty income ratio, hours of sleep,150Frequency of floss use (last 7 days), alcohol consumption, hypertriglyceridemia, depressive151symptoms, general health condition in four skull BMD groups (quartiles, Q1-Q4) were not152statistically significant (all p values > 0.0 5). In comparison to Q4 group, high skull BMD subjects153were periodontal health participants, female, 40-49 years old, more than high school education154level, BMI≥30, low combined grip strength, no smoking, no hypertension and diabetes history.
- 155

156 Table 1. Baseline Characteristics of participants (N=3802)

		The Skull Bone mineral density g/cm2				
	Q1	Q2	Q3	Q4		
Characteristic	(1.215-1.976)	(1.977-2.216)	(2.217-2.478)	(2.479-3.786)	P-value	
No. of participants	951	945	955	951		
Periodontitis					< 0.001	
No	505 (53.10%)	538 (56.93%)	591 (61.88%)	608 (63.93%)		
Yes	446 (46.90%)	407 (43.07%)	364 (38.12%)	343 (36.07%)		
Sex					< 0.001	
Male	628 (66.04%)	555 (58.73%)	431 (45.13%)	293 (30.81%)		
Female	323 (33.96%)	390 (41.27%)	524 (54.87%)	658 (69.19%)		
Age					< 0.001	
30-39	327 (34.38%)	331 (35.03%)	351 (36.75%)	311 (32.70%)		
40-49	263 (27.66%)	328 (34.71%)	347 (36.34%)	377 (39.64%)		
50-59	361 (37.96%)	286 (30.26%)	257 (26.91%)	263 (27.66%)		
Race					< 0.001	
Mexican American	149 (15.67%)	137 (14.50%)	103 (10.79%)	115 (12.09%)		
Other Hispanic	103 (10.83%)	85 (8.99%)	76 (7.96%)	83 (8.73%)		
Non-Hispanic White	372 (39.12%)	408 (43.17%)	380 (39.79%)	317 (33.33%)		
Non-Hispanic Black	109 (11.46%)	125 (13.23%)	234 (24.50%)	330 (34.70%)		
Other Race Including Multi- Racial	218 (22.92%)	190 (20.11%)	162 (16.96%)	106 (11.15%)		
Education Level					0.025	
More than high school	555 (58.36%)	561 (59.37%)	600 (62.83%)	592 (62.25%)		
High school	188 (19.77%)	215 (22.75%)	202 (21.15%)	195 (20.50%)		

Less than high	208 (21.87%)	169 (17.88%)	153 (16.02%)	164 (17.25%)	
school Poverty income ratio					0.392
Poverty income ratio	190 (19.98%)	166 (17.57%)	169 (17.70%)	185 (19.45%)	0.572
$1 \le PIR \le 2$	200 (21.03%)	214 (22.65%)	185 (19.37%)	202 (21.24%)	
PIR≥2	561 (58.99%)	565 (59.79%)	601 (62.93%)	564 (59.31%)	
Body mass index	501 (50.5570)	505 (59.1970)	001 (02.9370)	504 (57.5170)	<0.001
BMI<25	322 (33.86%)	257 (27.20%)	262 (27.43%)	208 (21.87%)	
25≤BMI<30	391 (41.11%)	370 (39.15%)	307 (32.15%)	257 (27.02%)	
BMI≥30	238 (25.03%)	318 (33.65%)	386 (40.42%)	486 (51.10%)	
Combined grip strength					< 0.001
Low	274 (28.81%)	267 (28.25%)	343 (35.92%)	376 (39.54%)	0.001
Middle	298 (31.34%)	314 (33.23%)	303 (31.73%)	354 (37.22%)	
High	379 (39.85%)	364 (38.52%)	309 (32.36%)	221 (23.24%)	
Hours of sleep					0.16
<7 hour	405 (42.59%)	400 (42.33%)	385 (40.31%)	432 (45.43%)	0.10
\geq 7 hour	546 (57.41%)	545 (57.67%)	570 (59.69%)	519 (54.57%)	
Frequency of floss use (last 7 days)					0.6
<4 times	564 (59.31%)	547 (57.88%)	548 (57.38%)	535 (56.26%)	
≥4 times	387 (40.69%)	398 (42.12%)	407 (42.62%)	416 (43.74%)	
Smoke consumption					0.003
No	524 (55.10%)	532 (56.30%)	555 (58.12%)	599 (62.99%)	
Yes	427 (44.90%)	413 (43.70%)	400 (41.88%)	352 (37.01%)	
Alcohol consumption					0.062
No	200 (21.03%)	202 (21.38%)	204 (21.36%)	244 (25.66%)	
Yes	681 (71.61%)	691 (73.12%)	695 (72.77%)	658 (69.19%)	
Unknow	70 (7.36%)	52 (5.50%)	56 (5.86%)	49 (5.15%)	
Hypertension history					0.002
No	724 (76.13%)	692 (73.23%)	664 (69.53%)	662 (69.61%)	
Yes	227 (23.87%)	253 (26.77%)	291 (30.47%)	289 (30.39%)	
Diabetes history					0.022
No	860 (90.43%)	852 (90.16%)	863 (90.37%)	825 (86.75%)	
Yes	91 (9.57%)	93 (9.84%)	92 (9.63%)	126 (13.25%)	
Hypertriglyceridemia					0.057
No	626 (65.83%)	649 (68.68%)	680 (71.20%)	669 (70.35%)	
Yes	325 (34.17%)	296 (31.32%)	275 (28.80%)	282 (29.65%)	
Depressive symptoms					0.641
No	818 (86.01%)	815 (86.24%)	819 (85.76%)	822 (86.44%)	
Yes	66 (6.94%)	76 (8.04%)	79 (8.27%)	79 (8.31%)	

	Unknow	67 (7.05%)	54 (5.71%)	57 (5.97%)	50 (5.26%)	
G	eneral health					0.566
c	ondition					
	Excellent/Very	777 (81.70%)	751 (79.47%)	765 (80.10%)	774 (81.39%)	
	good/Good					
	Fair/Poor	174 (18.30%)	194 (20.53%)	190 (19.90%)	177 (18.61%)	

Abbreviations: PIR, poverty income ratio. BMI, body mass index.

161	Subgroup analyses
162	In Table 2, the results of a subgroup analysis examining the associations between skull BMD and
163	periodontitis are presented. A negative correlation was found between skull BMD and
164	periodontitis, and alcohol consumption (No: OR = 0.96 95%CI: 0.63-1.46; Yes: OR = 0.66,
165	95%CI: 0.51-0.86, P for interaction=0.023) was associated with it even more. The effect of the
166	skull BMD on periodontitis showed no difference in the following subgroups: sex, age, race,
167	education levels, poverty income ratio, body mass index, combined grip strength, hours of sleep,
168	Frequency of floss use (last 7 days), smoke consumption, hypertension history, diabetes history,
169	and general health condition (all P for interaction >0.10) (Table 2)

Table 2. Effect of size of the skull bone mineral density on periodontitis in prespecified and exploratory subgroups in Each Subgroup.

	NO.of participants			
Characteristic		OR (95%CI)	P -value	P for interaction
Sex				0.45
Male	1907	0.83 (0.60, 1.14)	0.252	
Female	1895	0.69 (0.52, 0.91)	0.010	
Age				0.92
30-39	1320	0.74 (0.49, 1.13)	0.162	
40-49	1315	0.68 (0.47, 0.98)	0.040	
50-59	1167	0.72 (0.51, 1.01)	0.058	
Race				0.74
Mexican American	504	0.54 (0.30, 0.98)	0.043	
Other Hispanic	347	0.62 (0.32, 1.22)	0.168	

798 676 2308 800 1 694 710 801 2291 1049	0.86 (0.57, 1.30) 0.69 (0.40, 1.19) 0.81 (0.61, 1.07) 0.71 (0.46, 1.12) 0.66 (0.41, 1.06) 0.80 (0.51, 1.28) 0.97 (0.62, 1.51) 0.63 (0.47, 0.84)	0.484 0.186 0.138 0.142 0.088 0.358 0.886 0.002	0.56
2308 800 1 694 710 801 2291 1049	0.81 (0.61, 1.07) 0.71 (0.46, 1.12) 0.66 (0.41, 1.06) 0.80 (0.51, 1.28) 0.97 (0.62, 1.51)	0.138 0.142 0.088 0.358 0.886	
800 694 710 801 2291 1049	0.71 (0.46, 1.12) 0.66 (0.41, 1.06) 0.80 (0.51, 1.28) 0.97 (0.62, 1.51)	0.142 0.088 0.358 0.886	
800 694 710 801 2291 1049	0.71 (0.46, 1.12) 0.66 (0.41, 1.06) 0.80 (0.51, 1.28) 0.97 (0.62, 1.51)	0.142 0.088 0.358 0.886	0.70
1 694 710 801 2291 1049	0.66 (0.41, 1.06) 0.80 (0.51, 1.28) 0.97 (0.62, 1.51)	0.088 0.358 0.886	0.70
710 801 2291 1049	0.80 (0.51, 1.28) 0.97 (0.62, 1.51)	0.358	0.70
801 2291 1049	0.97 (0.62, 1.51)	0.886	0.70
801 2291 1049	0.97 (0.62, 1.51)	0.886	
2291 1049			
1049	0.63 (0.47, 0.84)	0.002	
		0.002	
			0.52
	0.75 (0.48, 1.17)	0.202	
1325	0.64 (0.44, 0.93)	0.018	
1428	0.81 (0.58, 1.12)	0.196	
1			0.11
1260	0.64 (0.45, 0.92)	0.014	
1269		0.196	
1273		0.050	
			0.31
1622	0.70 (0.51, 0.96)	0.025	
	(,)		0.32
2194	0.71 (0.54, 0.95)	0.019	
			0.61
2210	0.72 (0.54, 0.97)	0.028	
			0.02
850	0.96 (0.63, 1.46)	0.846	
	0.02 (0.01, 2.10)	0.001	
2742	0.76 (0.59, 0.98)	0.036	0.80
1000		0.012	0.66
3400	0.74 (0.59, 0.92)	0.008	0.00
	1325 1428 1260	1325 $0.64 (0.44, 0.93)$ 1428 $0.81 (0.58, 1.12)$ 1260 $0.64 (0.45, 0.92)$ 1269 $0.78 (0.54, 1.13)$ 1273 $0.67 (0.45, 1.00)$ 1622 $0.70 (0.51, 0.96)$ 2180 $0.79 (0.59, 1.05)$ ast 7 days) 2194 2194 $0.71 (0.54, 0.95)$ 1608 $0.80 (0.58, 1.11)$ 2210 $0.72 (0.54, 0.97)$ 1592 $0.76 (0.56, 1.05)$ 850 $0.96 (0.63, 1.46)$ 2725 $0.66 (0.51, 0.86)$ 227 $0.82 (0.31, 2.13)$ 2742 $0.76 (0.59, 0.98)$ 1060 $0.67 (0.46, 0.99)$ 3400 $0.74 (0.59, 0.92)$	1325 $0.64 (0.44, 0.93)$ 0.018 1428 $0.81 (0.58, 1.12)$ 0.196 1260 $0.64 (0.45, 0.92)$ 0.014 1269 $0.78 (0.54, 1.13)$ 0.196 1273 $0.67 (0.45, 1.00)$ 0.050 1622 $0.70 (0.51, 0.96)$ 0.025 2180 $0.79 (0.59, 1.05)$ 0.104 ast 7 days) 2194 $0.71 (0.54, 0.95)$ 0.019 1608 $0.80 (0.58, 1.11)$ 0.181 2210 $0.72 (0.54, 0.97)$ 0.028 1592 $0.76 (0.56, 1.05)$ 0.095 850 $0.96 (0.63, 1.46)$ 0.846 2725 $0.66 (0.51, 0.86)$ 0.002 227 $0.82 (0.31, 2.13)$ 0.681 1060 $0.67 (0.46, 0.99)$ 0.036 1060 $0.74 (0.59, 0.92)$ 0.008

Hypertriglyceridemia				0.07
No	2624	0.68 (0.53, 0.88)	0.003	
Yes	1178	0.88 (0.60, 1.28)	0.490	
General health condition	1	·		0.95
Excellent/Very good/Good	3067	0.73 (0.57, 0.92)	0.009	
Fair/Poor	735	0.86 (0.54, 1.37)	0.519	

Abbreviations: PIR, poverty income ratio. BMI, body mass index. CI, confidence interval. OR, odds ratio.

173 174 175 176 177 Adjusted for sex, age, race, education level, PIR, BMI, combined grip strength, hours of sleep, Frequency of floss use (last 7 days), smoke consumption, alcohol consumption, hypertension history, diabetes history, hypertriglyceridemia, general health condition except the subgroup variable.

178	Relationship between skull BMD and periodontitis.
179	The correlation between skull BMD and periodontitis levels is shown in Table 3. When all
180	covariables were considered, the full-adjusted mode indicated that with each additional unit of skull
181	BMD, periodontitis risk decreased by 30% (OR=0.70; CI=0.57, 0.87; p=0.0010), with P for trend
182	lower than 0.05. The skull BMD was stratified by quartile in sensitivity analysis and estimated P
183	for trend to ensure robustness of results. Compared to the reference Q1 group, the estimated
184	increase in skull BMD was 0.91, 0.78, 0.67 respectively for the Q2, Q3, and Q4 groups. The P for
185	trend of 0.0002, the results of skull BMD as a continuous variable were also consistent.

187 Table 3. Relationship between skull bone mineral density and periodontitis. 188

Exposure	Non-adjusted model (OR, 95%CI, P)	Minimally adjusted model (OR, 95%CI, P)	Fully-adjusted mode (OR, 95%CI, P)
The skull BMD, g/cm2	0.64 (0.54, 0.76) < 0.0001	0.72 (0.59, 0.89) 0.0017	0.70 (0.57, 0.87) 0.0010
The skull BMD (quartile)			
Q1	Ref	Ref	Ref
Q2	0.85 (0.71, 1.02) 0.0803	0.92 (0.75, 1.12) 0.3914	0.91 (0.74, 1.12) 0.3753
Q3	0.70 (0.58, 0.83) < 0.0001	0.79 (0.65, 0.97) 0.0234	0.78 (0.63, 0.96) 0.0188
Q4	0.64 (0.53, 0.76) < 0.0001	0.69 (0.56, 0.86) 0.0007	0.67 (0.54, 0.83) 0.0004
P for trend	<0.0001	0.0003	0.0002

189

- 190 Abbreviations: BMD, bone mineral density. CI, confidence interval. OR, odds ratio.
- 191 Non-adjusted model adjust for: None.

192 Minimally-adjusted model adjust for: Sex; Age; Race; Education Level; PIR.

193 Adjust II model adjust for: Sex; Age; Race; Education Level; Poverty income ratio; BMI; Combined grip strength; Frequency of floss use 194 (last 7 days); Hours of sleep; Smoke consumption; Alcohol consumption; Diabetes history; Hypertension history; Hypertriglyceridemia; 195 196 Depressive symptoms.

- 197

198	Dentification of linear relationship
199	The smooth curve fitting is shown in Fig 1 (Association between skull bone mineral density and
200	periodontitis). We identified a linear correlation between skull BMD and periodontitis using the
201	generalized additive model (Table 4). We compared linear regression and two-piecewise linear
202	regression, the point of inflection was 2.89g/cm ² . For the left and right inflection points, the odds
203	ratio and confidence intervals are 0.65 (0.50-0.82) and 1.76 (0.49-6.30), respectively. However, the
204	P value for the log-likelihood ratio test is 0.150 (>0.05), indicating that the linear regression model
205	should be used to fit the data.

206

207

Table 4. Threshold Effect Analysis of the skull bone mineral density and periodontitis using Piece-wise Linear Regression.

208

Outcome	Periodontitis (OR, 95%CI, P)
Fitting by weighted linear regression model	0.70 (0.57, 0.87) 0.0010
Fitting by weighted two-piecewise linear regression mode	
Inflection point	2.89
< 2.89	0.65 (0.52, 0.82) 0.0003
≥ 2.89	1.76 (0.49, 6.30) 0.3827
Log likelihood ratio test	0.152

209

- Abbreviations: CI, confidence interval. OR, odds ratio.
- 210 211 212 212 213 Adjusted for Sex; Age; Race; Education Level; Poverty income ratio; BMI; Combined grip strength; Frequency of floss use (last 7 days); Hours of sleep; Smoke consumption; Alcohol consumption; Diabetes history; Hypertension history; Hypertriglyceridemia; Depressive

symptoms.

214

216

Discussion

239	circle, leading to more severe periodontitis.
238	et al.(27) found the same result. Osteoporotic changes in the periodontium seems to create a vicious
237	which persisted even after injury, impacted the rate of alveolar bone regeneration. Likewise, Arioka
236	significantly reduced 18% and 25%, respectively, and A reduced number of osteoprogenitor cells,
235	thinner, along with periodontal ligament(PDL) width and cell density in the PDL were
234	phenotype, 8 weeks later, it was found that the alveolar bone of osteoporotic mice was significantly
233	osteopenic or osteoporotic phenotype in long bones, successfully constructed the jaw osteoporotic
232	periodontitis. Chen et al.(26) performed ovariectomized mice model, which reliably produced
231	Preclinical studies in ovariectomized animals may explain the link between the low skull BMD and
230	skull BMD and periodontitis.
229	knowledge, the first study to utilize a national survey (NHANES) to analyze the association between
228	point was found (the skull BMD= 2.89g/cm ²), it was not statistically significant. This is, to our
227	events. The relationship between skull BMD and periodontitis was linear. Although the inflection
226	was associated with a 30% (OR=0.70; CI=0.57, 0.87 p=0.0010) reduction in the risk of periodontitis
225	displayed significantly lower risk of periodontitis, which 1 unit increase in the skull BMD (g/cm ²)
224	remodeling(25). After adjusting for various potential factors, participants with higher skull BMD
223	intake has been associated with slowing age-related bone loss by reducing the overall rate of bone
222	be an important risk factor for periodontitis(22-24). On the other hand, low-to-moderate alcohol
221	consumption playing an important role in skull BMD and periodontitis. Drinking is well-known to
220	the relationship between skull BMD and periodontitis. Interestingly, we found that alcohol
219	hypertension history, diabetes history, hypertriglyceridemia, general health condition interfere with
218	hours of sleep, Frequency of floss use (last 7 days), smoke consumption, alcohol consumption,

241	the consequence of estrogen and BMD could be inferred(8). Hunziker et al.(28) suggest that
242	declining estrogen secretion can result in a decrease in mandibular BMD in periodontitis patients.
243	The average age of menopause varies by race and lifestyle, but it is around 50 years in most
244	countries(29). In our study, however, it was not found that the prevalence of periodontitis was
245	higher in females over 50 years old than it was in males. In line with the literature(16), we observed
246	higher skull BMD in woman than in either of the groups of man. The study of Obrant et al.(16)
247	found that women aged 18 to 87 years had significantly higher skull BMD than men of the same
248	age. Wells et al.(30) indicated that women and men have the same bone mineral content in their
249	trunks and limbs before they turn 16, however, from about this age, bone mineral content in all
250	body regions was significantly different between males and females, especially in men, therefore,
251	adult men's skull bone mass is a small portion of their total bone mass. Paschall et al.(31)
252	investigated the suitability of measuring the skull BMD for estimating age in older adults using
253	DXA and found that a steady increase in the skull BMD in women occurs until they reach 55 years
254	old, at which point an abrupt decline has occurred, in contrast, BMD values in males decrease
255	slightly around 75 years old, but remain steady throughout life. The reason for this difference is the
256	skull BMD did not change synchronously with the rest of the skeleton. Meanwhile, because skull
257	BMD makes up most of the whole body's BMD, when it is excluded from the whole-body BMD,
258	fracture risk can be better predicted (32, 33).
259	Furthermore, the mandibular inferior cortex such as mental index (MI) is a part of the panoramic
260	radiograph that can be used to detect osteoporosis in asymptomatic individuals(34, 35). The results
261	of studies indicate that postmenopausal female dental patients who have MI less than 3 mm on
262	panoramic radiographs, osteoporosis or lower skeletal BMD may be a risk(36, 37). Notably, instead
263	of being diagnostic criteria, these clinical indexes tend to warn about osteoporosis. Additionally, it
264	was not found that these index values correlated with either the maxillary or mandibular BMD(38),
265	nor with periodontitis(39).
266	According to our investigation, data from a large population is used to assess the association

267	between skull BMD and periodontitis for the first time. Moreover, our study included craniofacial
268	bones, used the most ideal method (dual-energy X-ray absorptiometry) to detect BMD. However,
269	despite those advantages, there were a few limitations. Firstly, NHANES data do not include all
270	confounding factors. For example, people with high BMD are not distinguished, because the
271	increase of BMD may also be secondary to a series of potential diseases affecting bone, Secondly,
272	this study can't be compared with other studies because rarely studied on the skull BMD and
273	periodontitis, the scope of discussion is limited. Therefore, the study could not reflect the most real
274	relationship between skull BMD and periodontitis, and more information should be studied and
275	public health data used.
276	Conclusion
277	Periodontal disease may be related to low skull BMD, for those people, oral hygiene and health care
278 279	should be more closely monitored.
	Sunnarting information
280	Supporting information
281	Supplement table 1. Univariate analysis for periodontitis.
282	Acknowledgments
283	We would like to thank the NHANES databases for making this data available.
284	Author Contributions
285	Conceptualization: Fugian Jin, Jukun Song, Yi Luo
200	
286	Formal analysis: Beichuan Wang, Ming Ding, Jiaxin Hu
287	Funding acquisition: Yi Luo

288	Investigation: Fuqian Jin, Jukun Song, Zhu Chen
289	Methodology: Fuqian Jin, Jiaxin Hu
290	Supervision: Jukun Song, Zhu Chen, Yi Luo
291	Writing - original draft: Fuqian Jin, Beichuan Wang, Ming Ding, Jiaxin Hu
292	Writing - review & editing: Fuqian Jin, Jukun Song, Yi Luo, Beichuan Wang, Ming Ding, Jiaxin
293	Hu, Zhu Chen
294	
295	Data availability statement
296	The NHANES database is available for download
297	(https://wwwn.cdc.gov/nchs/nhanes/Default.aspx)
298	Funding statement
299	A grant from the Science and Technology Plan Project of Guiyang in 2014([2014]003) and 2019
300	([2019]9-7-13).
301	Conflict of interest disclosure
302	All authors declare that they have no conflicts of interest to report.
303	Ethics approval statement
304	Approval of both datasets was granted by NCHS Research Ethics Review Board (ERB), protocol
305	#2011-17 and informed consent was received from all participants.

306	ORCID
307	Fuqian Jin Dhttps://orcid.org/0000-0002-3911-2363
308	Zhu Chen https://orcid.org/0000-0002-6167-4389
309	References
310 311 312 313 314 315 316 317 318 320 321 322 323 324 325 326 327 328 329 331 332 333 334 335 336 337 338 339 341 342 343 344 345 346 347 348 349 350	 Wu L, Zhang SQ, Zhao L, Ren ZH, Hu CY, Global, regional, and national burden of periodontitis from 1990 to 2019: results from the Global Burden of Disease study 2019. Journal of periodontology. 2022. Pihlstrom BL, Michalowicz BS, Johnson NW, Periodontal diseases. Lancet (London, England). 2005;366(9499):1809-20. Passos JS, Vianna ML, Gomes-Fihlo IS, Cruz SS, Barreto ML, Adan L, et al. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis international: a journal established as result of cooperation between ses. Postgraduate medicine. 2018;130(1):98-104. Oztürk Tonguç M, Büyükkaplan US, Fentoglu O, Gümis BA, Cerçi SS, Kirzioglu FY. Comparison of bone mineral density in the jaws of patients with and without chronic periodontitis. Drun maxillo facial radiology. 2012;41(6):509-14. Lee Y. Association between osteoporosis and periodontal disease among menopausal women: The 2013-2015 Korea National Health and Nutrition Examination Survey. PloS one. 2022;17(3):e0265631. Hong SJ, Yang BE, Yoo DM, Kim SJ, Cho HG, Byun SH, Analysis of the relationship between periodontitis and osteoporosis/flactures: a cross-sectional study. BMC oral health. 2012;12(1):125. Kim CK, Lee KS, Lee HK, Cho YH, Hwang TY, et al. Relationship between bone mineral density, its associated physiological factors, and tooth loss in postmenopausal Korean women. BMC women's health. 2015;15:65. Kim UK, Kong KA, Kim HY, Lee HS, Kim SJ, Lee SH, et al. The association between bene mineral density and periodontitis in Korean adults (KNHANES 2008-2010). Oral Dis. 2014;20(6):609-15. Sun Y, An MM, Wang J, Yang F, He I, Dudzek CA, et al. Assessment of the Bone Mineral Content in the Mandible by Dual-Energy X-Ra

- Wiener RC. Relationship of Routine Inadequate Sleep Duration and Periodontitis in a Nationally Representative Sample. Sleep
 disorders. 2016;2016:9158195.
- 22. Baumeister SE, Freuer D, Nolde M, Kocher T, Baurecht H, Khazaei Y, et al. Testing the association between tobacco smoking,
- alcohol consumption, and risk of periodontitis: A Mendelian randomization study. Journal of clinical periodontology. 2021;48(11):1414-20.
- Gay IC, Tran DT, Paquette DW. Alcohol intake and periodontitis in adults aged ≥30 years: NHANES 2009-2012. Journal of
 periodontology. 2018;89(6):625-34.
- Han SJ, Yi YJ, Bae KH. The association between periodontitis and dyslipidemia according to smoking and harmful alcohol use in a
 representative sample of Korean adults. Clinical oral investigations. 2020;24(2):937-44.
- Gaddini GW, Turner RT, Grant KA, Iwaniec UT. Alcohol: a simple nutrient with complex actions on bone in the adult skeleton.
 Alcoholism: clinical and experimental research. 2016;40(4):657-71.
- 26. Chen CH, Wang L, Serdar Tulu U, Arioka M, Moghim MM, Salmon B, et al. An osteopenic/osteoporotic phenotype delays alveolar
 bone repair. Bone. 2018;112:212-9.
- Arioka M, Zhang X, Li Z, Tulu US, Liu Y, Wang L, et al. Osteoporotic Changes in the Periodontium Impair Alveolar Bone Healing.
 Journal of dental research. 2019;98(4):450-8.
- 28. Hunziker J, Wronski TJ, Miller SC. Mandibular bone formation rates in aged ovariectomized rats treated with anti-resorptive agents alone and in combination with intermittent parathyroid hormone. Journal of dental research. 2000;79(6):1431-8.
- 29. Shi J, Zhang B, Choi JY, Gao YT, Li H, Lu W, et al. Age at menarche and age at natural menopause in East Asian women: a genomewide association study. Age (Dordrecht, Netherlands). 2016;38(5-6):513-23.
- 369 30. Wells JC. Sexual dimorphism of body composition. Best practice & research Clinical endocrinology & metabolism. 2007;21(3):415 30.
- 31. Paschall A, Ross AH. Biological sex variation in bone mineral density in the cranium and femur. Science & justice : journal of the
 Forensic Science Society. 2018;58(4):287-91.
- 373
 32. Taylor A, Konrad PT, Norman ME, Harcke HT. Total body bone mineral density in young children: influence of head bone mineral density. Journal of Bone and Mineral Research. 1997;12(4):652-5.
- 375 33. Ringertz J. Effect of bone density of the head on total body DEXA measurements in 100 healthy Swedish women. Acta radiologica
 (Stockholm, Sweden : 1987). 1996;37(1):101-6.
- 34. Munhoz L, Takahashi DY, Nishimura DA, Ramos E, Tenorio JDR, Arita ES. Do Patients with Osteoporosis Have Higher Risk to
 Present Reduced Alveolar Ridge Height? An Imaging Analysis. Indian journal of dental research : official publication of Indian Society for
 Dental Research. 2019;30(5):747-50.
- 380 35. Ren J, Fan H, Yang J, Ling H. Detection of Trabecular Landmarks for Osteoporosis Prescreening in Dental Panoramic Radiographs.
 Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology
 Society Annual International Conference. 2020;2020:2194-7.
- 383 36. Taguchi A, Tanaka R, Kakimoto N, Morimoto Y, Arai Y, Hayashi T, et al. Clinical guidelines for the application of panoramic 384 radiographs in screening for osteoporosis. Oral Radiol. 2021;37(2):189-208.
- 385 37. Jonasson G, Hassani-Nejad A, Hakeberg M. Mandibular cortical bone structure as risk indicator in fractured and non-fractured 80year-old men and women. BMC oral health. 2021;21(1):468.
- 387 38. Gulsahi A, Paksoy CS, Ozden S, Kucuk NO, Cebeci AR, Genc Y. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices. Dento maxillo facial radiology. 2010;39(5):284-9.
- 389 39. Mudda JA, Bajaj M, Patil VA. A Radiographic comparison of mandibular bone quality in pre- and post-menopausal women in Indian 390 population. Journal of Indian Society of Periodontology. 2010;14(2):121-5.

1.

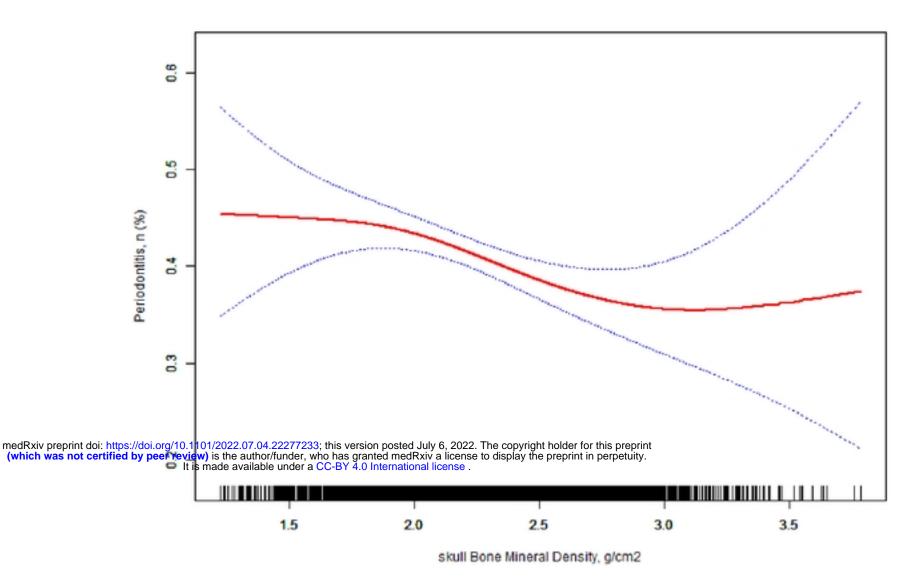


Fig 1. Association between skull bone mineral density and periodontitis.

Solid red line represents the smooth curve fit between variables. Blue bands represent the 95% of confidence interval from the fit. All adjusted for Sex; Age; Race; Education Level; Poverty income ratio; BMI; Combined grip strength; Frequency of floss use (last 7 days), Hours of sleep; Smoke consumption; Alcohol consumption; Diabetes history; Hypertension history; Hypertriglyceridemia; Depressive symptoms.

Fig 1