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Abstract 

COVID-19, the disease caused by the SARS-CoV-2 virus, has had and continues to have 

extensive economic, social and public health impacts in the United States and around the world. 

To date, there have been more than 500 million reported cases of SARS-CoV-2 infection 

worldwide with more than 6 million reported deaths, more than 80 million of those cases and 

more than 1 million of those deaths have been reported in the United States. Retrospective 

analysis throughout the pandemic, which identified comorbidities, risk factors and treatments, 

has underpinned the response COVID-19. As the situation transitions from a pandemic to an 

endemic, retrospective analyses using electronic health records will be increasingly important to 

identify long term effects of COVID-19. However, these analyses can be complicated by the 

incompleteness of electronic health records, which in turns makes it difficult to differentiate 

visits where the patient has COVID-19. To address this, we trained a random forest classifier to 

assign a probability of a patient having been diagnosed with COVID-19 during each visit using 

demographic data, temporal data and visit-specific diagnoses (Training AUROC = 0.9867, 

Training OOB AUROC = 0.8957, Evaluation AUROC = 0.8958). Using these probabilities, we 

identified conditions associated with higher COVID-19 probabilities irrespective of clinical 

history and when accounting for previous diagnosis and estimated the hazards ratio for 

myocardial infarction (Hazards ratio = 121.736 (87.375, 169.611), p = 3.796E-177 and Hazards 

ratio = 80.262 (4.134, 4.637), p = 4.543E-256, respectively), urinary tract infection (Hazards 

ratio = 72.021 (58.116 - 89.253), p  < 2.225E-308 and Hazards ratio = 61.380 (51.273 - 73.479), 

p < 2.225E-308, respectively), acute renal failure (Hazards ratio = 1.264E4 (9.278E4 - 1.724E4), 
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p  < 2.225E-308 and Hazards ratio = 6.333E3 (4.947E3 - 8.108E3), p  < 2.225E-308, 

respectively) and type 2 diabetes (Hazards ratio = 345.730 (283.180 - 422.098), p  < 2.225E-308 

and Hazards ratio = 217.271 (187.898 - 251.235), p = 1.39E-22, respectively) when accounting 

for demographics and the ten most common clinical conditions.  
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Introduction 

The ongoing COVID-19 pandemic, caused by SARS-CoV2 infection of which there have been 

over 500 million cases worldwide, has resulted in more than 6.2 million deaths worldwide . In 1

the more than 30 months since the first infection is purported to have occurred  and the 26 2

months since the start of the pandemic as declared by the World Health Organization , the full 3

impact of SARS-CoV-2 and COVID-19 remains to be seen.  

Research has been paramount in responding to the COVID-19 pandemic from identifying 

patients susceptible to infection and at risk for severe disease , ,  to identifying beneficial 4 5 6

treatments , ,  and developing prophylactic measures , , . While there have been investigations 7 8 9 10 11 12

into the long term effects of COVID-19 , , , ,  continual retrospective analyses will be 13 14 15 16 17

important to identify all the long term effects and to understand the full scope of the impact of 

COVID-19. 

The long term effects of viral infections vary greatly. While some viruses, such as certain strains 

of the seasonal flu and the common cold, have no-to-little impact on the long term health of 

those who are infected, others can have profound long lasting effects , . Through long term 18 19

analysis, it was determined that varicella zoster, the virus that causes chicken pox, also causes 

shingles , a rash accompanied by pain, itching and tingling, in adults . Retrospective analyses 20 21

in patients infected with certain strains of human papilloma virus (HPV) have shown that there is 

an increased risk of developing anal, cervical , , penile, vaginal and vulvar cancers . More 22 23 24
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recently, researchers have identified that Epstein-Barr virus, which causes mononucleosis, also 

triggers multiple sclerosis , , a demyelinating disease affecting the central nervous system .  25 26 27

Much of the investigations into COVID-19, as well as varicella zoster, HPV, and Epstein-Barr 

virus infections, have utilized patients’ data sourced from electronic health records (EHRs). 

While EHRs provide a vast amount of data, such as clinical diagnoses, measurements, and 

procedures, they were not designed with the intention of being used for research and are 

incomplete. Research into COVID-19 has been further complicated by the novelty of the disease 

- the ICD10 code for COVID-19 (U07.1) was not effective until October 2020 . While the 28

diagnosis code was indicated for COVID-19 as early as April 2020, it was not used for all 

COVID-19 patients nor universally adapted, which hindering differentiating COVID-19 patients 

from non-COVID-19 visits. To address this, we used a random forest classifier to assign a 

probability of a patient having had COVID-19 during each of their visits (Training Set AUROC 

= 0.9867, Training Set OOB AUROC = 0.8957, Evaluation Set AUROC = 0.8958). 

Furthermore, we used these probabilities to identify conditions associated with a higher 

probability of the patient having had COVID-19 by comparing the distributions of COVID-19 

probability of visits that were followed with the diagnosis of a conditions at 1 week, 2 weeks, 3 

weeks, 4 weeks, 3 months, 6 months, 9 months and 1year using a Mann-Whitney U test. In 

applying a Cox proportional hazards model, we identified myocardial infarction ((Hazards ratio 

= 121.736 (87.375, 169.611), p = 3.796E-177 and Hazards ratio = 80.262 (4.134, 4.637), p = 

4.543E-256, respectively), urinary tract infection (Hazards ratio = 72.021 (58.116 - 89.253), p  < 
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2.225E-308 and Hazards ratio = 61.380 (51.273 - 73.479), p < 2.225E-308, respectively), acute 

renal failure (Hazards ratio = 1.264E4 (9.278E4 - 1.724E4), p  < 2.225E-308 and Hazards ratio = 

6.333E3 (4.947E3 - 8.108E3), p  < 2.225E-308, respectively) and type 2 diabetes (Hazards ratio 

= 345.730 (283.180 - 422.098), p  < 2.225E-308 and Hazards ratio = 217.271 (187.898 - 

251.235), p = 1.39E-22, respectively) when accounting for demographics and the ten most 

common clinical conditions. 

Results 

From the clinical data at New York-Presbyterian, we identified 1,844,018 visits for 636,063 

patients who sought treatment at least once between February 1st, 2020 and March 31st, 2022 

at /Columbia University Irving Medical Center (NYP/CUIMC). We omitted 270,905 visits for 

201,911 patients who did not not have any demographic data available in our clinical data set 

(Figure 1).  From these visits, we identified 9,340 visits (COVID-19 visits) where the patient was 

diagnosed with COVID-19 evidenced by the presence of the COVID-19 ICD-10 diagnosis code 

(U07.1) (Figure 1). Additionally, we identified 1,483,397 visits (non-COVID-19 visits) where the 

patient did not test positive for SARS-CoV-2 during that visit nor had a history of COVID-19 nor 

previously tested positive for SARS-CoV-2 infection (Figure 1). The set of COVID-19 visit was 

randomly split into distinct testing and evaluation sets, each with 4,670 visits and from the set of 

non-COVID-19 visits, we randomly identified distinct testing and evaluation non-COVID-19 

sets, each with 4,670 unique visits.  
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Among all visits between February 2020 and March 2022, as well as the COVID-19 and non-

COVID-19 training and evaluations sets, more than 50% of the visits were for patients who self 

identified as female and more than 85% of the visits were for patents who were at least 19 years 

old (adults and senior age groups) (Table 1). Across all of the groups, more than 35% of the visits 

were for patients who self identified as White, more than 15% were for patients who self 

identified as Black or African American and more than 29% were visits for patients who self 

identified as Hispanic or of Latino or Spanish origin (Table 1). In all groups, less than 5% of 

visits were for patients who self identified as American Indian or Alaskan Native, Asian or 

Native Hawaiian or Other Pacific Islander (Table 1). 

Among all visits between February 2020 and March 2022, the largest fraction of visits (5.17%) 

began in March 2021 (Table S1). The largest fraction of visits in the COVID-19 training and 

evaluation sets began in April 2020 (18.29% and 17.99%, respectively), while the smallest 

fraction of all visits began in April 2020 until March 2022 (1.64%) (Table S1). The fraction of 

visits in the non-COVID-19 training and evaluation sets that began in each month were similar to 

the faction of all visits that began in each month (Table S1). Among all visits between February 

2020 and March 2022, the four diagnosis listed in the most visits were encounter for supervision 

of normal pregnancy (2.38%), transplanted organ and tissue status (2.26%), other symptoms and 

signs involving the circulatory and respiratory system (2.18%) and essential (primary) 

hypertension (2.06%) (Table S2). Among the COVID-19 visits in the training and evaluation 

sets, diagnosis of other symptoms and signs involving the circulatory and respiratory system 

(20.75% and 19.21%, respectively), encounter for screening for malignant neoplasms (19.46% 
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and 19.08%, respectively), essential (primary) hypertension (8.84% and 9.27%, respectively) and 

transplanted organ and tissue status (8.22% and 8.78%, respectively) were frequently diagnosed 

(Table S2). The fraction of non-COVID-19 visits in the training and evaluation sets with the 

diagnoses listed was similar to the fraction of all visits with the diagnosis listed (Table S2).  

We collected demographic data for the patient in each visit (date of birth, self-identified sex, self-

identified race(s) and self-identified ethnicity), temporal data (during what month the visit 

started) and visit specific diagnosis data. In our dataset, there were 16,220 distinct ICD10 codes 

used to records diagnoses which we generalized to 1,600 category level ICD10 codes. We 

decided to use a random forest classifier to predict whether or not a patient was diagnosed with 

COVID-19 during their visit using demographic, temporal, and visit-specific clinical diagnoses. 

The diagnosis code for COVID-19 (U07.1) was removed from the data to be used in the training 

the model prior to generalization. Instead of binary outcome (patient having been diagnosed with 

COVID-19 during their visit or not), we used the fraction of estimators identifying the visit as 

one where the patient was diagnosed with COVID-19 as the probability of the patient having 

COVID-19 during the visit. An initial random forest classifier of 200 estimators was fit using the 

COVID-19 and non-COVID-19 training sets with bootstrapped sampling and using out-of-bag 

sampling (Training AUROC = 0.9923, Training OOB AUROC = 0.8838, Evaluation AUROC = 

0.8838) (Figure S1A). In order to optimize the performance of the model, we monitored the 

AUROC of the training set, the training set using out-of-bag estimates and the evaluation set 

while increasing the number of estimators from 20 to 200 and achieved a maximum AUROC in 

the evaluation set with 190 estimators (Training Set AUROC = 0.9924, Training Set OOB 
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AUROC = 0.8836, Evaluation Set AUROC = 0.8839) (Figure 2A). We further optimized the 

performance of the model by monitoring the AUROC while increasing the maximum depth of 

the model from 1 to 100 with 190 estimators and achieved a maximum AUROC in the evaluation 

set with a depth of 69 (Training Set AUROC = 0.9867, Training Set OOB AUROC = 0.8957, 

Evaluation Set AUROC = 0.8958) (Figure 2B). The optimized model trained with 190 estimators 

with a maximum depth of 69 was fit to the data representing all 1,573,113 visits (Figure 2C).  

We evaluated the features utilized in the final model using the Gini importance (Table 2, Table 

S3). Diagnosis of abnormalities of breathing (R06), other symptoms and signs involving the 

circulatory and respiratory system (R09) and cough (R05) during the visit had the highest 

importance in the final model (Table 2). The distribution of the COVID-19 probabilities of the 

visits where the diagnoses were noted were skewed to higher COVID-19 probability than those 

where the diagnosis were not noted in both the training and evaluation sets (Wasserstein distance  

= 0.4602, 4510, 0.4458, respectively in the training set) (Figure 3 B-D, Table 2). Visits starting in 

April 2020, June 2021 and July 2021 were the temporal features with the highest importance in 

the final model (Table 2). The distribution of the COVID-19 probabilities of visits that started in 

April 2020 were skewed to higher COVID-19 probabilities than those that did not start in April 

2020 (Wasserstein distance = 0.4353 in the training set) (Figure 3E, Table 2). Conversely, the 

distributions of the COVID-19 probabilities of visits that started in June 2021 and July 2021 

were skewed to lower COVID-19 probabilities than those started at other times (Wasserstein 

distance = 0.3871, 0.3780, respectively in the training set) (Figure 3F-G, Table 2). Patients self-

identifying as White, of Hispanic or Latino or Spanish origin, and female were the demographic 
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features with the highest importance in the final model (Table 2). The distributions of COVID-19 

probabilities of visits where the patients self identified as White or female were skewed to lower 

COVID-19 probabilities that those where the patient did not (Wasserstein distance = 0.0573, 

0.0711, respectively in the training set) (Figure 3H, 3J, Table 2). The distribution of COVID-19 

probabilities of visits where the patients self identified as of Hispanic or Latino or Spanish origin 

were skewed to higher COVID-19 probabilities that those where the patient did not (Wasserstein 

distance = 0.0920) (Figure 3I, Table 2).  

We further evaluated the model by evaluating the distributions of COVID-19 probabilities for 

visits within inclusion and exclusion criteria for the training and evaluation sets (Figure 1). 

Compared to the distribution of COVID-19 probabilities for all of the visits between February 

2020 and March 2022 (Figure 4A), visits where the patient was diagnosed with COVID-19 based 

on the presence of the U07.1 ICD-10 code (N=9,340) during the visits were skewed to higher 

COVID-19 probabilities (Wasserstein distance = 0.4695) (Figure 4B). The distribution of 

COVID-19 probabilities of visits where the patient tested positive for SARS-CoV-2 infection 

(N=18,156) was bimodal with a skewed to higher COVID-19 probabilities (Wasserstein distance 

= 0.2319) (Figure 4C). The distribution of COVID-19 probabilities of visits where the patient 

tested negative for SARS-CoV-2 infection (N=238,438) was marginally skewed to to higher 

COVID-19 probabilities (Wasserstein distance = 0.0550 ) (Figure 4D). The distribution of 

COVID-19 probabilities of visits where clinical diagnosis notes indicated that the patient did not 

have COVID-19 (N=168) was skewed to higher COVID-19 probabilities (Wasserstein distance = 

0.4158) (Figure 4E).The distribution of COVID-19 probabilities of visits where the patient had a 
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noted history of COVID-19 (N=899) was skewed to higher COVID-19 probabilities 

(Wasserstein distance = 0.3547) (Figure 4F). 

In order to identify what, if any, conditions are associated with a history COVID-19, we 

identified visits where the patient returned to the hospital within 7 days, 14 days, 21 days, 28 

days, 3 months, 6 months, 9 months and 12 months by comparing the distributions of COVID-19 

probabilities of visits where the patient returned within each time period and then segregated the 

visits into those where a particular condition was observed in the followup and those where the 

condition was not (Figure 1). We used a Mann-Whitney U test to compare between the two 

distributions for each conditions irrespective of whether or not the patient was previously 

diagnosed with the condition (Figures 5 left, Table S4) and only if the patient was not diagnosed 

with the condition prior to the visit (Figure 5 right, Table S5). We identified, among other 

conditions, the distribution of COVID-19 probability preceding myocardial infarction was 

significantly different from the distribution of COVID-19 probability not preceding myocardial 

infarction both with and without accounting for previous clinical history in all time periods 

(Mann-Whitney U test statistic = 1.206E8, FDR correct p < 2.225E-308, Mann-Whitney U test 

statistic = 1.339E8, FDR correct p < 2.225E-308, respectively within one year) (Figure 5). We 

observed a similar difference with and without accounting for previous clinical history for 

urinary tract infection (Mann-Whitney U test statistic = 1.968E8, FDR correct p < 2.225E-308, 

Mann-Whitney U test statistic = 2.562E8, FDR correct p < 2.225E-308 within one year), acute 

renal failure (Mann-Whitney U test statistic = 8.969E7, FDR correct p < 2.225E-308, Mann-

Whitney U test statistic = 1.234E8, FDR correct p < 2.225E-308 within one year), and type 2 

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 5, 2022. ; https://doi.org/10.1101/2022.07.02.22277179doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.02.22277179


diabetes (Mann-Whitney U test statistic = 2.317E8, FDR correct p < 2.225E-308, Mann-Whitney 

U test statistic = 3.273E8, FDR correct p < 2.225E-308 within one year) (Figure 5).  

To further investigate the association between COVID-19 probability and the onset of 

conditions, we calculated the hazard ratio using a Cox proportional hazards model for 

COVID-19 probability irrespective of previous clinical history (Figure 6 A left) and respective of 

previous clinical history (Figure 6 A right). Increasing COVID-19 probability in the preceding 

visit was associated with increase risk of myocardial infarction within one year with and without 

accounting for previous clinical history (Hazards ratio = 93.713 (73.906-118.829), p  = 

2.199E-307 and Hazards ratio = 82.557 (65.102-104.693), p = 2.414E-290, respectively) (Table 

3). A similar association was observed within one year with and without accounting for previous 

clinical history for urinary tract infection (Hazards ratio = 75.241 (63.192 - 89.587), p  < 

2.225E-308 and Hazards ratio = 62.038 (52.176 -73.765), p < 2.225E-308, respectively), acute 

renal failure (Hazards ratio = 7762.722 (6156.997 - 9787.216), p  < 2.225E-308 and Hazards 

ratio = 5488.974 (4345.262 - 6933.722), p < 2.225E-308, respectively) and type 2 diabetes 

(Hazards ratio = 403.553 (350.901 - 464.106), p  < 2.225E-308 and Hazards ratio = 270.035 

(235.213 - 310.013), p < 2.225E-308, respectively) (Table 3).  

Among the visits with a followup within one year, the ten most frequently observed phenotypes 

were essential hypertension (401.1), shortness of breath (512.7), hyperlipidemia (272.1), other 

complications of pregnancy NEC (646), cough (512.8), back pain (760), injury, NOS (1009), 

gastroesophageal reflux disease (530.11), other headache syndromes (339), and pulmonary 
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collapse; interstitial and compensatory emphysema (508), respectively. When accounting for 

demographics and the ten most frequently observed phenotypes in a multivariate Cox 

proportional hazards model, increasing COVID-19 probability in the preceding visit was 

associated with increase risk of myocardial infarction within one year with and without 

accounting for previous clinical history (Hazards ratio = 121.736 (87.375, 169.611), p = 

3.796E-177 and Hazards ratio = 80.262 (4.134, 4.637), p = 4.543E-256, respectively) (Table 3). 

A similar association was observed within one year with and without accounting for previous 

clinical history for urinary tract infection (Hazards ratio = 72.021 (58.116 - 89.253), p  < 

2.225E-308 and Hazards ratio = 61.380 (51.273 - 73.479), p < 2.225E-308, respectively), acute 

renal failure (Hazards ratio = 1.264E4 (9.278E4 - 1.724E4), p  < 2.225E-308 and Hazards ratio = 

6.333E3 (4.947E3 - 8.108E3), p  < 2.225E-308, respectively) and type 2 diabetes (Hazards ratio 

= 345.730 (283.180 - 422.098), p  < 2.225E-308 and Hazards ratio = 217.271 (187.898 - 

251.235), p = 1.39E-22, respectively) (Table 3, S6). 

We further stratified the COVID-19 probabilities into quintiles and generated Kaplan-Meier 

curves for the data within one year (Figure 6B-E).  The Kaplan-Meier curves stratified by 

COVID-19 probability for myocardial infarction showed three distinct sets, (i) COVID-19 

probability greater than 0.6, (ii) COVID-19 probability greater than 0.4 and less than or equal to 

0.6 and (iii) COVID-19 probability less than or equal to 0.4, with higher incidence observed in 

the sets of higher COVID-19 probability (Figure 6B). The Kaplan-Meier curves for urinary tract 

infection showed three sets, (i) COVID-19 probability greater than 0.8, (ii) COVID-19 

probability greater than 0.4 and less than or equal to 0.8 and (iii) COVID-19 probability less than 
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or equal to 0.4, up to 8 months with the higher incidence observed in the sets of higher 

COVID-19 probability (Figure 6C). The Kaplan-Meier curves for acute renal failure showed four 

distinct sets, (i) COVID-19 probability greater than 0.8, (ii) COVID-19 probability greater than 

0.6 and less than or equal to 0.8,  (iii) COVID-19 probability greater than 0.4 and less than or 

equal to 0.6 and (iii) COVID-19 probability less than or equal to 0.4, with the higher incidence 

observed in the sets of higher COVID-19 probability (Figure 6D). The Kaplan-Meier curves for 

the onset of type 2 diabetes showed three distinct sets (i) COVID-19 probability greater than 0.6, 

(ii) COVID-19 probability greater than 0.4 and less than or equal to 0.6 and (iii) COVID-19 

probability less than or equal to 0.4, with higher incidence observed in the sets of higher 

COVID-19 probability (Figure 6E). 

Discussion  

In this study, we collected demographic, temporal and clinical data from 434,152 patients who 

sought treatment at New York-Presbyterian over 1,573,113 visits between February 2020 and 

March 2022, who had at least one interaction with Columbia University Irving Medical Center, 

to develop an algorithm to identify conditions that are associated with COVID-19. The 26 month 

period from which our data is sourced encompasses the height of the first wave of the COVID-19 

pandemic (Spring 2020) when New York City was an epicenter in the United States as well as 

the subsequent Delta and Omicron waves . Additionally, our data encompasses periods, such as 29

summer 2020 when case counts were at some of their lowest levels throughout the pandemic, as 
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well as the period following development of treatments for COVID-19 and prophylactics for 

SARS-CoV-2 infection.  

Using data for patients who had COVID-19 diagnosed (as determined by the presence of the 

U07.1 ICD-10 diagnosis code) and non-COVID-19 patients, we trained an optimized random 

forest classifier with high performance as evaluated in an independent data set, and applied it to 

the full set of 1,573,113 visits. Instead of the binary classification that would result from the 

random forest classifier, we instead treated the fraction of estimators that identified the visit as a 

COVID-19 visit as a probability of a patient having been diagnosed with COVID-19 during that 

visit. While the random forest classifier is overfitting based on the high AUROC observed in the 

training set, we were comfortable using it because it performed similarly in the training set using 

out-of-bag estimates and the evaluation set. Based on the presence of U07.1 ICD-10 diagnosis 

code, there were only 9,340 where the patient was diagnosed with COVID-19, however our 

model identified 198,562 visits where the patients had a probability of having been diagnosed 

with COVID-19 greater than 0.5. 

When evaluating our model, the most important features represented previously identified 

differences between demographic groups, such as those who identify as Hispanic or Latino or of 

Spanish origin or Black or African American ,  (Table 2, Figure 3). Important temporal features 30 31

represented periods of extreme case counts in New York City, such as spring 2020 and summer 

202127 (Table 2, Figure 3). Important clinical diagnoses were reflective of known symptoms of 
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COVID-19 , such as abnormalities of breathing (R06), other symptoms and signs involving the 32

circulatory and respiratory system (R09) and cough (R05) (Table 2, Figure 3).  

Using these visit specific probabilities, we identified conditions that developed within different 

time periods after the visit (up to 7 days, 14 days, 21 days, 28 days, 3 moths, 6 months, 9 

months, and 12 months) and used a Mann-Whitney U test to identify conditions that were 

associated with increased COVID-19 probability. Among others, our analysis identified 

myocardial infarction, urinary tract infection, acute renal failure and type 2 diabetes as being 

associated with. COVID-19 (Figure 5). In further analysis of the results of our results, we 

estimated the hazards ratio of COVID-19 probability for each of these conditions (Table 3). Cox 

proportional hazards model indicated that higher COVID-19 probability in the preceding visit 

was associated with an increased risk of myocardial infarction, urinary tract infection, acute renal 

failure and type 2 diabetes within one year. Our result for myocardial infarction is consistent with 

those of researchers who identified a higher risk of heart attack and ischemic stroke in 

COVID-19 patients using self-controlled case series14. Results from a retrospective observational 

study of patients in early 2020 observed that severe COVID-19 disease is associate with acute 

kidney injury16. Other researchers have identified an increased risk of type 2 diabetes in patients 

who had been infected with SARS-CoV-2 compared to patient who had not and compared to a 

historical control17. 

While this study shows that demographic, temporal and clinical data can be utilized to predict the 

probability of a patient having COVID-19 during their visit, the model and the important features 
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are specific to NYP/CUIMC. An implementation this model elsewhere is expected to identify 

important temporal features specific to the site (e.g. periods of extreme case counts varied 

between New York City and London) and demographic variables depending on the patients 

seeking treatment at those sites. However, it would be expected to identify similar clinical 

variables that are representative of known symptoms or comorbidities associated with 

COVID-19. While the results concur with other studies, they are not without their biases as this 

study relied on patients who sought treatment at New York-Presbyterian on multiple occasions 

and was unable to incorporate data from patients who may have also sought outside treatment 

due to the nature of primary care in the United States. Finally, in identifying effects of 

COVID-19, we are limited by the novelty of the disease itself since other effects may take years 

or decades to develop.  

Conclusion 

Our study demonstrated a new method to conduct retrospective analyses for identifying the 

effects of COVID-19. By implementing a model trained on clinical data at the visit level and 

using the output from a random forest classifier as a probability instead of a binary outcome, we 

mitigated the need to definitively distinguish cases. Additionally, the results from our study can 

be used to direct further investigations into the effects of COVID-19. As the COVID-19 

pandemic transitions to an endemic situation, our method can be utilized to understand potential 

pathophysiological difference in symptoms associated with COVID-19 spikes. Moreover, as this 
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method was designed using concurrent clinical data, it can be adapted to other novel or emerging 

diseases.  

Methods 

Ethics statement 

The study is approved by the Columbia University Irving Medical Center Institutional Review 

Board (IRB) no. AAAL0601 and the requirement for informed consent was waived. A data 

request associated with this protocol was submitted to the Tri-Institutional Request Assessment 

Committee of New York-Presbyterian/Columbia and Cornell and approved.  

Preparation for data modeling and statistical modeling 

We used MySQL 5.7.35 and Python 3.9.10 with numpy 1.19.5, pymysql 1.0.2, and pandas 1.2.3 

libraries to extract and prepare data for modeling. For each visit, we identified the age of the 

patient at the start of the visit as (i) birth to 13 years old, (ii) 13 to 19 years old, (iii) 19 to 60 

years old and (iv) over 60 years old and if the patents indicated their sex as female. For each 

visit, we identified whether the patient indicated their race(s) as (i) American Indian or Alaskan 

Native, (ii) Asian, (iii) Black or African American, (iv) Native Hawaiian or Other Pacific 

Islander or (v) White, and whether the patient indicated their ethnicity as of Hispanic or Latino or 

Spanish Origin. Additionally, we used the start date of the visit to categorize the visit by month 

between February 2020 and March 2022.  We identified 16,220 distinct ICD10 clinical diagnosis 

codes listed for patients in the 26 month period not including U07.1, which was indicated for 
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COVID-19 in October 2020 and generalized the diagnoses codes to 1,600 distinct category levels 

codes. All variables were treated as a binary categorical variables with 1 indicating that the 

patient was a part of the age group, or self-identified as female or self-identified as the specific 

race or ethnicity or or had a diagnosis code listed during that visit and 0 indicating the inverse.  

Training and evaluating the random forest classifier  

We used Python 3.9.10 with sklearn 0.24.2 and pickle) libraries to fit, evaluate and apply a 

random forest model. The  random forest classifier was refined using maximum depth and the 

number of estimators to maximize AUROC in the independent evaluation set.  

Identifying phenotypes associated with COVID-19 

Clinical diagnosis data from each visit between February 2020 and March 2022 were mapped 

from the ICD10 vocabulary to PheCodes. Additionally, historical condition data from our clinical 

data warehouse was mapped from SNOMED vocabulary to PheCodes. We used Python 3.9.10 

with numpy 1.19.5, pandas 1.2.3, and scipy 1.6.2 libraries to statistically evaluate the 

distributions. For visits with a follow up within each time interval (e.g. within 1 week), we 

discerned the visits where the PheCode was observed in the followup and the visits where the 

PheCode was not observed and compared between the distributions using a Mann-Whitney U 

test. p-values of 0 are presented as p < 2.225E-308 (the minimum value for a float object in 

Python) in the manuscript and tables, while p-values of 0 are recast as half the minimum non-

zero p-value per test for stylistic purposes in figures.  In evaluating instances where the patient 
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was not previously diagnosed with the condition, we eliminated all patients who had a previous 

history of the condition (i.e. had the diagnosis prior to the start of the visit).  

Cox Proportional Hazards modeling and Kaplan-Meier curve fitting 

From our cases visits (those visits where the patient returned with the condition within one year), 

we identified the time to event as the time from the end of the preceding visit to the the first 

instance of the condition within one year of the visit. In our non-case visits, we censored the data 

at the final interaction with NYP/CUIMC within the time period. We used Python 3.9.10 with 

numpy 1.19.5, pandas 1.2.3, and lifelines 0.25.10 libraries to determine and statistically evaluate 

the hazards ratios associated with COVID-19 probability. In order to build Kaplan-Meier curves, 

we stratified our data by the COVID-19 probability of the preceding visit (≤ 0.2. > 0.2 and ≤ 0.4, 

> 0.4 and ≤ 0.6, > 0.6 and ≤ 0.8, and > 0.8) and fit individual curves to each stratified dataset.   

Data availability 

All supplementary tables are available from GitHub as .csv files (https://github.com/tatonetti-lab/

predict-covid-effects). 

Code availability  

All scripts used for data preparation and analysis are available from GitHub as Jupyter 

Notebooks (https://github.com/tatonetti-lab/predict-covid-effects).  
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Model Training Set Model Evaluation Set All Visits

non-COVID-19 COVID-19 non-COVID-19 COVID-19 Feb 2020 - Mar 
2022

N(visits) 4,670 4,670 4,670 4,670 1,573,113

N(patients) 4,606 4,178 4,592 4,137 434,152

Age Child (< 13) 
 (% of visits)

365

7.82%

235

5.03%

326

6.98%

242

5.18%

122,140

7.76%

Age Adolescent (≥ 13 and < 19) 
 (% of visits)

146

3.13%

115

2.46%

156

3.34%

115

2.46%

49,232

3.13%

Age Adult (≥ 19 and < 60) 
 (% of visits)

2,375

50.86%

2,159

46.23%

2,324

49.76%

2,099

44.95%

772,606

49.11%

Age Senior (≥ 60) 
 (% of visits)

1,784

38.20%

2,161

46.27%

1,864

39.91%

2,214

47.41%

629,135

39.99%

Self Identified Sex as Female 
 (% of visits)

2,756

59.01%

2,412

51.65%

2,885

61.78%

2,403

51.46%

941,558

59.85%

Self Identified as American Indian 
or Alaskan Native 

 (% of visits)

14

0.30%

18

0.39%

11

0.24%

< 10

< 0.41%

3,994

0.25%

Self Identified as Asian 
 (% of visits)

108

2.31%

124

2.66%

120

2.57%

116

2.48%

39,091

2.48%

Self Identified as Black or African 
American 

 (% of visits)

728

15.59%

803

17.19%

702

15.03%

811

17.37%

245,104

15.58%

Self Identified as Native Hawaiian 
or Other Pacific Islander 

 (% of visits)

< 10

< 0.21%

10

0.21%

< 10

< 0.21%

< 10

< 0.21%

1,520

0.10%

Self Identified as White 
 (% of visits)

1,900

40.69%

1,645

35.22%

1,974

42.27%

1,669

35.74%

643,848

40.93%

Self identified as Hispanic or of 
Latino or Spanish Origin 

 (% of visits)

1,433

30.69%

1,873

40.11%

1,367

29.27%

1,782

38.16%

473,501

30.10%

Table 1 Demographics of patients of visits used for model training, model evaluation and all visits between February 2020 and March 2022. 
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Feature Importance
Wasserstein Distance

Training Set Evaluation Set All Visits 

Abnormalities of breathing diagnosis 
noted during visit (R06)

0.0650 0.4602 0.4640 0.5074

Other symptoms and signs involving the 
circulatory and respiratory system 
diagnosis noted during visit (R09)

0.0628 0.4510 0.4355 0.4718

Visit started in April 2020 0.0543 0.4353 0.4371 0.4209

Cough diagnosis noted during visit 
(R05)

0.0259 0.4458 0.4293 0.5160

Viral pneumonia, not elsewhere 
classified diagnosis noted during visit 

(J12)
0.0236 0.4979 0.4777 0.6738

Encounter for other special examination 
without complaint, suspected or 

reported diagnosis diagnosis noted 
during visit (Z01)

0.0234 0.2969 0.3009 0.4270

Transplanted organ and tissue status 
diagnosis noted during visit (Z94)

0.0229 0.3066 0.3145 0.4175

Fever of other and unknown origin 
diagnosis noted during visit (R50)

0.0195 0.4400 0.4169 0.5089

Respiratory failure, not elsewhere 
classified diagnosis noted during visit 

(J96)
0.0176 0.5022 0.4920 0.6076

Self Identified as White 0.0148 -0.0573 -0.0615 -0.0079

Visit started in June 2021 0.0148 -0.3871 -0.3630 -0.2007

Self identified as of Hispanic or Latino 
or Spanish Origin

0.0141 0.0920 0.0899 0.0287

Self Identified Sex as Female 0.0141 -0.0711 -0.0759 -0.0187

Visit started in July 2021 0.0130 -0.3780 -0.3570 -0.1868

Visit started in August 2021 0.0126 -0.3432 -0.3643 -0.1722

Visit started in September 2021 0.0117 -0.3439 -0.3266 -0.1826

Visit started in February 2020 0.0115 -0.3903 -0.3221 -0.1221

Visit started in October 2021 0.0112 -0.3539 -0.3586 -0.1855

Type 2 diabetes mellitus diagnosis noted 
during visit (E11)

0.0106 0.4029 0.3949 0.4329

Acute kidney failure diagnosis noted 
during visit (N17)

0.0104 0.4751 0.4700 0.5350

Table 2 Importance for the top 20 important features and Wasserstein distance between distribution where the feature is observed and the feature is not 
observed. Negative Wasserstein distance indicates that the average COVID-19 probability in the set of visits where the feature was observed is less than the 
average of the set where the feature was not observed. 
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Myocardial infarction (411.2) Urinary tract infection (591) Acute renal failure (585.1) Type 2 diabetes (250.2)

All conditions New Conditions All conditions New Conditions All conditions New Conditions All conditions New Conditions

Mann-Whitney U Test 
(Test statistic, p value, FDR 

corrected p value

1.339E+08 
2.944E-299 

< 2.225E-308

1.206E+08 
1.793E-306 

< 2.225E-308

2.562E+08 
2.944E-299 

< 2.225E-308

1.968E+08 
1.793E-306 

< 2.225E-308

1.234E+08 
2.944E-299 

< 2.225E-308

8.969E+07 
1.793E-306 

< 2.225E-308

3.273E+08 
2.944E-299 

< 2.225E-308

2.317E+08 
1.793E-306 

< 2.225E-308

Cox Proportional Hazards 
Univariate Fit 

(Hazards ratio, 95% CI, p value)

82.557  
(65.102, 104.693) 

2.414E-290

93.713 
(73.906, 118.829) 

2.199E-307

62.038 
(52.176, 73.765) 

< 2.225E-308

75.241 
(63.192, 89.587) 

< 2.225E-308

5488.974 
(4.345E3, 6.934E3) 

< 2.225E-308

7762.723 
(6.157E3, 9.787E3) 

< 2.225E-308

270.035 
(235.213, 310.013) 

< 2.225E-308

403.553 
(350.901, 464.106) 

< 2.225E-308

Cox Proportional Hazards 
Multivariate Fit 

(Hazards ratio, 95% CI, p value)

80.262 
(62.417, 103.208) 

4.543E-256

121.736 
(87.375, 169.611) 

3.796E-177

61.380 
(51.273, 73.479) 

< 2.225E-308

72.021 
(58.116, 89.253) 

< 2.225E-308

6333.163 
(4.947E3, 8.108E3) 

< 2.225E-308

12647.836 
(9.278E3, 1.724E4) 

< 2.225E-308

217.271 
(187.898, 251.235) 

< 2.225E-308

345.730 
(283.180, 422.098) 

< 2.225E-308

Table 3 Results of Mann-Whitney U test, univariate Cox proportional hazards ratio and multivariate Cox proportional hazards ratio for COVID-19 probability within 1 year.
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Figure 1 Data processing flowchart Identification of COVID-19 and non-COVID-19 training sets (purple) and 
evaluation sets (orange). NV indicates the number of visits and NP indicates the number of patients in each 
group. Note: the exclusion criteria used to identify non-COVID-19 visits are not mutually exclusive. 
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Figure 2 Model performance optimization (A) AUROC in training set, training set using out-of-bag estimates, and evaluation set plotted against number of 
estimators (dashed line indicates maximum AUROC in evaluation set, n_estimators = 190) (B) AUROC in training set, training set using out-of-bag estimates, and 
evaluation set plotted against maximum depth (dashed line indicates maximum AUROC in evaluation set, max_depth = 69) (C) ROC curves of  training set, 
training set using out-of-bag estimates, and evaluation set.
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Figure 3 Distribution important features in random forest classifier in training and evaluation sets (A) 
Distribution of COVID-19 probability in COVID-19 (yellow) and non-COVID-19 (blue) training (left) and 
evaluations (rights) sets (top). Distribution of cases (red) and non-cases (purple) for important diagnoses (B-D), 
temporal (E-G) and demographic (H-J) features for training and evaluation sets.  Note: R06 - abnormalities of 
breathing, R09 - other symptoms and signs involving the circulatory and respiratory system diagnosis noted 
during visit, R05 - cough.
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Figure 4 Distribution of COVID-19 probability for visits different patient groups (A) Distribution of 
COVID-19 probability for all visits. Distribution of visits where patients were diagnosed with COVID-19 (B), 
tested positive for SARS-CoV-2 infection (C), tested negative for SARS-CoV-2 infection (D), where clinical 
diagnosis note indicated the “COVID-19 was ruled out” (E) and visits where the patient had a history of 
COVID-19 (F). 
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Figure 5 Statistical testing of conditions associated with COVID-19 -log10(corrected p-value) for each 
phenotype (colored by family) from Mann-Whitney U test between distributions of COVID-19 probabilities of 
cases and non-cases for each phenotype within (A) 7 days, (B) 14 days, (C) 21 days, (D) 28 days, (E) 3 months, 
(F) 6 months, (G) 9 months and (H) 1 year irrespective of previous clinical list (left) and when accounting for 
clinical history (right).
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Figure 6 Statistical testing of conditions associated with COVID-19 (A)-log10(p-value) for each phenotype 
(colored by family) from Cox Proportional Hazards test for COVID-19 probability of the previous visit for 
conditions developed within 1 year irrespective of clinical history (left) and when accounting for clinical history 
(right). Kaplan-Meier curves for (B) myocardial infarction, (C) urinary tract infection, (D) acute renal failure, 
(E) type 2 diabetes stratified by COVID-19 probability quintile within 1 year irrespective of clinical history 
(left) and when accounting for clinical history (right). 
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