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Abstract

Background: The accurate estimation of the effective reproductive number (Re)
of epidemic outbreaks is of central relevance to public health policy and decision
making. We present estimateR, an R package for the estimation of the
reproductive number through time from delayed observations of infection events.
Such delayed observations may for example be confirmed cases, hospitalizations
or deaths. The Re estimation procedure is modularized which allows easy
implementation of new alternatives to the already-available methods. Users can
tailor their analyses according to their particular use cases by choosing among
implemented variations. The package is based on the methodology of Huisman et
al. developed as a response to the COVID-19 pandemic.

Results: The estimateR R package allows users to estimate the effective
reproductive number of an epidemic outbreak based on observed cases,
hospitalization, death or any other type of event documenting past infections, in
a fast and timely fashion. We validated the implementation with a simulation
study, and by comparing results from estimateR to results from the Huisman et
al. pipeline on empirical COVID-19 case-confirmation incidence. Compared to
existing methods, estimateR implements unique features whose benefit we
demonstrated with a simulation study. On simulated data, estimateR yielded
estimates of similar, if not better, accuracy than compared alternative publicly
available methods while being two to three orders of magnitude faster. In
summary, this R package provides a fast and flexible implementation to estimate
the effective reproductive number for various diseases and datasets.

Conclusions: The estimateR R package is a modular and extendible tool
designed for outbreak surveillance and retrospective outbreak investigation. It
extends the method developed for COVID-19 by Huisman et al. and makes it
available for a variety of pathogens, outbreak scenarios, and observation types.
Estimates obtained with estimateR can be interpreted directly or used to inform
more complex epidemic models (e.g. for forecasting) on the value of Re.

Keywords: R package; epidemiology; effective reproductive number; Re; Rt;
surveillance; monitoring; outbreak; COVID-19

Background

The coronavirus disease 2019 (COVID-19) pandemic has demonstrated that reliable

quantification of pathogen transmission is key to guide an informed and timely

response by public health authorities during an epidemic [1]. Moreover, accurate

knowledge of the transmissibility of pathogens in past outbreaks is essential to
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evaluate the effectiveness of pharmaceutical and non-pharmaceutical interventions

against pathogen spread [2, 3, 4].

The time-varying effective reproductive number Re (or Rt) is a measure of the

pathogen transmission in a population, with several methods proposed for its cal-

culation [5, 6, 7, 8, 9, 10]. The COVID-19 pandemic revealed that pre-pandemic

methods needed several improvements to monitor ongoing outbreaks (as opposed

to revisiting past outbreaks) and to deal with noisy, delayed observations of infection

events [1]. Thus, new methods were developed to fill this gap [11, 12, 13, 14].

Here, we present estimateR, an R package to estimate Re. This package imple-

ments an improved version of the methodology in Huisman et al. [14], originally

developed for COVID-19. The estimateR R package allows users to readily analyze

infectious disease outbreaks. The Re estimation relies on time series of observations

resulting from anterior infections. These can include case confirmations, hospital

admissions, intensive care unit admissions or deaths. Such events are delayed record-

ings of a fraction (or all) infection events of the epidemic outbreak of interest. The

delay between an infection event and a recording depends on the observation type

and is typically in the order of days. This delay is an intrinsic component of the

observation process. For instance, when recording deaths: individuals who eventu-

ally die from an infection do so after the disease has fully developed in its carrier

and has become fatal, and this process can take days, months or even years, de-

pending on the pathogen. In addition to their delay, the recordings typically come

with a form of observation noise. estimateR uses incidence data on a particular

type of observations (e.g. case confirmations), with potential noise. It combines it

with information on the distribution of delays from infection to the type of observa-

tion event of interest to reconstruct the timing of infection events which produced

the observed events. The incidence of infection events is then used to estimate the

effective reproductive number.

The original implementation of the Huisman et al. method, on which estimateR is

based, is a software pipeline developed specifically as a response to the COVID-19

pandemic [14]. This pipeline was extensively used and tested during the pandemic.

However, it lacks essential features in terms of shareability, usability, generality

and extendibility. estimateR is designed to address these shortcomings. As a result,

estimateR can be applied to a range of infectious diseases. It is fully-documented

and accessible to any R user. It is designed to be easily extended and improved

upon as Re estimation methods are developed further.

Implementation
Method summary

The estimateR R package provides tools to estimate the effective reproductive num-

ber in a timely fashion based on observational time series data from an epidemic.

The core method implemented by estimateR is an improved version of the method-

ology developed for COVID-19 in Huisman et al. [14]. A full description of the

method implemented in estimateR is provided in Appendix A.

In brief, this method consists of 4 separate steps chained together to estimate Re
and the associated 95% confidence interval from noisy and delayed observations of

infection events. First, the input data is smoothed to reduce the effect of observa-

tion noise on the resulting Re estimates. Then, a time series of infection events is
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reconstructed from the smoothed observation data. Each observation is modelled

as being the result of an infection event combined with a waiting time (until obser-

vation) drawn from a delay distribution. Thus, to reconstruct the original series of

infection events, the delay distribution is removed (deconvolved) from the observa-

tion data using an expectation-maximisation algorithm. Third, Re is estimated from

the inferred series of infection events, using the EpiEstim R package [8]. Finally, to

estimate the uncertainty around the Re point estimates, bootstrap replicates are

built from the original data. Each replicate goes through the three steps described

above, allowing the construction of a confidence interval.

Package structure

Each of the four analysis steps described above (1. smoothing, 2. deconvolution, 3.

Re inference and 4. bootstrapping) is built as an independent module and envisioned

as a building block in an analysis pipeline. The standard use case, i.e. estimating

Re from a time series of noisy and delayed observations of infection events, would

require all these building blocks. However, different use cases may arise: for instance,

a user might be interested in recovering a time series of infection events (and not in

Re) while another user may rely on incidence data that does not require smoothing.

Furthermore, in each of these building blocks or modules, one or multiple options

are provided for users to choose from. Each option corresponds to the implementa-

tion of a specific method for solving the problem that a particular module addresses.

At the time of writing, the only module with more than one implemented option is

the Re estimation module, which implements an option to estimate Re as a contin-

uous function of time, and an option to estimate it as a piecewise constant function

of time (step-function). Both of these options are wrappers around the EpiEstim

package [8].

In future work, we plan on continuing to extend the possibilities offered by esti-

mateR by implementing additional options for the various modules. Others are also

invited to build on the existing code base by implementing new options, whether

for their own use or for the community.

The modular structure is complemented by a number of so-called “pipe functions”.

Each of these functions corresponds to a particular type of analysis that can be

carried out with estimateR. These functions are meant to cover a wide range of

use cases, such as the non-standard use cases described above, and to provide users

with ready-made tools to carry out their own tailored analyses.

In summary, the main goal of the code structure is to give as much freedom as

possible to users and method developers, while providing sensible default configu-

rations to ensure a high level of usability.

Inputs and outputs

In the standard use case of estimateR, Re values are estimated from noisy delayed

observations of infection events. Required inputs are a time series of observations,

the serial interval distribution of the outbreak (distribution of time elapsed between

successive cases in a transmission chain), and the distribution of the delay between

infection events and recorded observations. These delays can be expressed as a single

probability distribution or can combine several independent delay distributions. For

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277095doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277095
http://creativecommons.org/licenses/by-nc/4.0/


Scire et al. Page 4 of 28

instance, the delay between infection and hospital admission may be broken down

into two successive delays: one from infection to symptom onset and another from

symptom onset to hospital admission.

The default output of an estimateR analysis is a dataframe containing Re esti-

mates through time, along with 95% confidence interval boundaries. When relevant,

a date of reference can be passed as input, corresponding to the date of the first

incidence record. A date column is then included in the output. Optionally, results

from intermediate steps of the analysis can also be included in the output.

There are many more inputs to the main estimateR functions. These are associ-

ated with sensible default values applicable to a wide range of use cases, and are

well-documented to allow users to alter them when required. Specific use cases of

estimateR may require adapted inputs. As estimateR can handle delay distribu-

tions that vary through time, the delay information can also be input as a table

containing records through time of individually-recorded delays. Such a table can

be derived from a line list of the outbreak of interest. This information can also be

passed as a matrix specifying delay distributions through time. These options are

described in more details in the estimateR documentation.

Handling issues relating to incomplete data

Epidemic case data is intrinsically complex, as the true infection time is often un-

known and observed with a certain delay, and time series of observations may be

truncated or incomplete. We describe three new features, specific to estimateR, that

improve the Re estimates in the face of these issues, when compared to estimates

obtained with the method described by Huisman et al. [14].

Handling truncated incidence data

In some outbreaks, the window for which incidence data is available excludes the

beginning of the outbreak. This may happen for a number of reasons. For instance,

cases may not have been properly recorded and centralized before a particular date.

Or public health authorities may change the way incidence is recorded at some point

during an outbreak, rendering early data difficult to combine with newer data. To

better handle such issues, whenever smoothing incidence data at the beginning of

the time series, estimateR extrapolates incidence in the past assuming a growth

rate corresponding to the observed average growth rate over the first few data

points. This allows the smoothing function to reconstruct a trend at the beginning

of the time series closer to the most plausible trend. To avoid biasing downstream

computations, the extrapolated data points are discarded after the smoothing step

(see Appendix A for details).

Inference of the series of infection events

The deconvolution step to infer infection events from delayed observations is im-

plemented using an expectation-maximisation algorithm. This algorithm iteratively

improves on an initial guess for the time series of infection events. In estimateR this

initial guess is built from the series of delayed observations shifted towards the past

by a number of time steps. The gap left by this shift is filled by extrapolating the

series of observations assuming a constant growth rate equal to the last observed

rate (see Appendix A for details).
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Dealing with partially-delayed observations

In estimateR, when combining partially-delayed and fully-delayed observations (see

Appendix B for definition and details), the nowcasting of partially-delayed observa-

tions is performed before the partially-delayed series of observations is smoothed,

as opposed to what was done previously [14].

Results and Discussion
Validation on simulations

We present a simulation study to validate the implementation and assess the feasi-

bility of Re monitoring with estimateR. We start by testing estimateR on simulated

data in a usual use case. Then, we validate and investigate the impact of two fea-

tures unique to the method estimateR implements. First, we test the ability of

estimateR to combine so-called partially- and fully-delayed observations. Then, we

test estimateR on synthetic data with observation delays that vary through time.

In each part of the simulation study, we simulated infection events through time

following five different scenarios of reproductive number trends throughout an out-

break. The focus of these simulations is on testing how accurately the reproductive

number is estimated 1) during phases when Re is constant or gradually changing, 2)

when Re increases or decreases abruptly and 3) close to the present. The simulation

procedure is detailed in Appendix C.

Basic validation

We started by validating the estimateR implementation on a typical use case. The

delay from infection to observation is fixed through time and has a median of 14

time steps.

First, we considered a case without additional observation noise, only Poisson

noise from the simulation of infections is included (see Appendix C for details).

In this case, no smoothing is applied when estimating Re. Results are summarized

in Fig. 1, along with coverage of the 95% confidence intervals and the root mean

squared error (RMSE). In Appendix D, we detail why, by default, Re estimates

stop a few time steps before present. Re estimates are generally of good accuracy,

with coverage close to 1, corresponding to a slight over-coverage. Abrupt changes in

the true reproductive number are slightly smoothed over, which leads to a reduced

coverage and higher RMSE in regions of abrupt changes. This slight smoothing is

attributable to imperfect reconstruction of infection events during deconvolution

and to an implicit smoothing in the reported values Re(t): Re(t) correspond to the

average estimated Re over 3 time steps (see subsection Estimation of the effective

reproductive number Re in Appendix A).

We then considered a more realistic scenario by including additional observation

noise to simulated observations. Autocorrelated noise was generated using an au-

toregressive noise model of order 4 (AR(4)). The noise model and its coefficients

were selected to approximate country-level empirical COVID-19 incidence data [14].

Conversely to simulations without additional noise, observations were smoothed

prior to the Re estimation. As shown in Fig. 1, coverage is slightly reduced and

error is slightly increased due to the added noise, e.g. coverage is around 0.85 in the

scenario with a linearly-decreasing Re (and higher in other scenarios), whereas it is
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Figure 1: Summary of Re inference on simulated data. Each row corresponds to a

different scenario of Re changes through time. Values shown in blue correspond to

data simulated without additional observation noise whereas the green values corre-

spond to data simulated with an autocorrelated noise model. The first column shows

estimated Re values, with the ground truth as a black line. For each noise model,

the median (over 100 replicates) estimate is shown as a line and the 95% confidence

interval is shown as a ribbon. The second column shows corresponding coverage

values (fraction of replicates for which the ground truth is inside the confidence

intervals) and the third column shows the root mean squared error (RMSE).

1 without additional noise. Overall, these simulations confirm the general validity

of the estimateR implementation.

As a complement, we re-analyzed the ideal-case simulations without additional

observation noise. To investigate the impact of unnecessary smoothing, we included

the initial smoothing step. Results are summarized in Additional figure 1. We see

that the unnecessary smoothing of observations causes a stronger smoothing of Re

trends. Therefore, coverage is decreased in time windows with abrupt Re changes,

when compared to the estimates obtained without the smoothing step in Fig. 1;

results do not seem to be affected otherwise. Therefore, when using estimateR,

it is not recommended to smooth observations that are not overly noisy, as this

decreases the ability to detect rapid changes in Re trends. Similar conclusions were

reached when testing the original software pipeline implementing the Huisman et

al. method [14].
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Validation on simulated data containing partially-delayed observations

We performed a variation on the simulation study presented above to test estimateR

and investigate the effect of combining partially- and fully-delayed observations. As

described in greater details in Appendix B, a pair of types of observations can be

called “partially-delayed” and “fully-delayed” when one type of observations (the

partially-delayed observations) can be constructed as an intermediary step between

infection and the other type of observations (the fully-delayed observations). For

instance, under certain assumptions, onset of symptoms can be seen as intermedi-

ary steps between infection events and case confirmation events. The advantage of

partially-delayed observations is that they, by definition, provide less delayed obser-

vations of infection events than fully-delayed observations do. Therefore, they tend

to paint a less-blurred picture of the underlying outbreak dynamics.

Figure 2: Summary of Re inference on simulated data combining partially-delayed

and fully-delayed observations. Each row corresponds to a different scenario of Re

changes through time. Each plot overlays values obtained on simulations obtained

with four different values of p (probability of making a partially-delayed observation

for a given infection event) : from purple to yellow, p = 0, 0.3, 0.6, 1. The first column

shows estimated Re values, with the ground truth as a black line. For value of p,

the median (over 100 replicates) estimate is shown as a line and the 95% confidence

interval is shown as a ribbon. The second column shows the corresponding coverage

values (fraction of replicates for which the ground truth is inside the confidence

intervals) and the third column shows root mean squared error (RMSE).

We simulated pairs of partially-delayed and fully-delayed time series as described

in Appendix C. We tested four scenarios for p: 0, 0.3, 0.6, 1. With p = 0, we obtained
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the classic scenario whereby we only had access to fully-delayed observations (e.g.

only dates of case confirmations were accessible). Conversely, with p = 1, we ob-

tained a scenario for which, for instance, dates of onset of symptoms were recorded

for all confirmed cases. Additional autocorrelated observation noise was included in

this analysis.

From these simulated observations, we tested the ability of estimateR to recover

the dynamics of Re through time. Results (estimates, coverage and and RMSE

values) are summarized in Fig. 2. The higher the probability of a partially-delayed

observation (e.g. symptom onset event) the better the Re estimates follow real Re

values before and after abrupt Re changes, as seen in the first and second row close

to the present and in the fifth row around time step 70. The relative coverage is

slightly lower for higher values of p in the first (stable period before Re drop) and

fourth scenario, but RMSE values do not increase compared to lower values of p. The

decreased coverage seems to be attributable to slightly more jittery Re estimates as

p increases, which could be addressed by increasing the smoothing parameter σ (see

Appendix A for additional details). Overall, when partially-delayed observations are

available, including them can improve the Re estimation during periods of rapid

Re changes. Precision in estimates during these periods is particularly relevant to

outbreak monitoring.

Validation on simulated data generated with time-varying delay distributions

Finally, we investigated the effect of time-varying delay distributions on the esti-

mation of Re. Delays between infection events and case observations can shorten or

lengthen throughout the course of an outbreak [14], and estimateR can account for

these variations.

To test and validate this capability, we simulated outbreaks with time-varying

delay distributions, as described in Appendix C. The delay from infection to ob-

servation gradually changed from a short to a long delay over the course of the

simulated outbreak or from a long to a short delay. Autocorrelated observation

noise was added to the simulated observations. We then analysed the results as-

suming a constant distribution corresponding to either the delay distribution at

the start of the outbreak or at present time, or assuming the correct time-varying

distribution.

We summarise Re estimation results in Fig. 3 and report coverage and RMSE

values in Additional figure 2. In Fig. 3A, delayed observations were simulated with

delay distributions that went from long to short over time. When misspecifying the

delay distribution and assuming a long constant delay, Re estimates are very inac-

curate, especially close to the present time. When assuming a short constant delay,

estimates close to the present are accurate but accuracy suffers further in the past,

in particular wherever Re changed abruptly, as it does in the last row of Fig. 3A.

On the contrary, when specifying the correct time-varying delay distribution in the

analysis, Re estimates behave well for the entire range. Similar conclusions can be

drawn for Fig. 3B with the roles of the short and long delays reversed.

In summary, our simulation study demonstrates the validity of the estimateR

implementation. Results obtained are in line with those presented on the origi-

nal implementation of the Huisman et al. method [14]. Estimates are accurate,
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Figure 3: Summary of Re inference on simulated data with time-varying delay dis-

tributions. A: Re estimates on simulated data, with observation delays gradually

changing from a long (at time 0) to a short (at time 150) observation delay distribu-

tion. B: Re estimates on simulated data, with observation delays gradually changing

from a short (at time 0) to a long (at time 150) observation delay distribution. A

and B: Each row corresponds to one of five Re scenarios. Each column corresponds

to a different delay distribution in the analysis. In the first two columns, delay dis-

tributions are fixed and either short or long. In the third column, delay distributions

are allowed to vary when estimating(from short to long or long to short). In each

plot, the ground truth Re is shown as a black line, the median (over 100 replicates)

estimate is shown as a green line and the 95% confidence interval is shown as a

green ribbon.

both in reconstructing past outbreak dynamics or close to the simulated present,

which highlights the suitability of estimateR for outbreak monitoring. Nevertheless,

simulations also show some limitations: we observed situations of over- and under-

coverage and, as previously described [14], the smoothing required to account for

the observation noise can smooth abrupt variations in Re.

Impact of method improvements

In the Implementation section, we described three features unique to estimateR

for handling incomplete data. For each of these features, we compared Re estimates

obtained with the estimateR method and the Huisman et al. method. Simulations

were performed as in the above simulation study (see Appendix C for details), with

autocorrelated observation noise incorporated each time and fed to both methods

with the same parameter values.

Handling truncated incidence data

To investigate the impact of extrapolating observation counts that were truncated

off, we assumed a constant Re, simulated 100 outbreaks and truncated the simulated

observations, removing all data points before the 30th time step. The results in

Fig. 4A show that early values of Re are difficult to estimate because an important

part of the data informing these estimates is missing. In the example shown in
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Figure 4: Impact of method improvements. Each panel shows the impact of one

of the three method alterations, by summarizing Re estimates over 100 simulated

replicates. In each plot, the ground truth Re is shown as a black line, and the

median estimate is shown in dark purple and yellow respectively for estimateR and

the Huisman et al. method. The coloured ribbons are bounded by median confidence

interval boundaries over 100 replicates. A: Early estimates for truncated incidence

data. B: Most recent estimates when using or not using the latest trend in the

deconvolution step. C: Most recent estimates nowcasting before or after smoothing

partially-delayed observations.

Fig. 4A, early Re values are overestimated compared to the ground truth. Still,

these estimates are less biased with estimateR than with the Huisman et al. method.

Inference of the series of infection events

To investigate the impact of extrapolating future observations in the initial step

of the deconvolution algorithm, we assumed a sharply increasing Re before a sta-

bilization close to the present — similar to the “Abrupt increase” scenario of our

simulation study — and focused on the most recent Re estimates from both imple-

mentations (Fig. 4B). Re estimates are close to the ground truth with estimateR

whereas a stronger upward bias is observed with the Huisman et al. method.

Dealing with partially-delayed observations

Finally, we investigated the impact of nowcasting unseen partially-delayed observa-

tions before smoothing instead of doing so after smoothing. To do so, we performed

simulations of partially-delayed and fully-delayed observations with p = 1: all in-

fections have a partially-delayed observation associated to them. We assumed a

reproductive number evolving as in the “Linear increase” scenario of our simulation

study, and report results in Fig. 4C. We observe a downward bias on Re estimates

with the Huisman et al. method, whereas no such bias appears with estimateR.

Overall, method improvements implemented in estimateR mitigate some of the

biases that can appear with the method presented by Huisman et al. [14].

Comparison on empirical data

In complement to a simulation study, to ensure that estimateR behaves as expected

on empirical data, we analysed COVID-19 incidence data from 9 countries using

estimateR and compared with results obtained with the software pipeline described

in Huisman et al. [14]. The analyses are parametrized as described in Huisman et

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277095doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277095
http://creativecommons.org/licenses/by-nc/4.0/


Scire et al. Page 11 of 28

al. Re estimates are truncated before March 1, 2020 as case counts are deemed

unreliable before this date. Results are summarized in Fig. 5. Both implementa-

tions yield very similar results. As expected given the modifications described in

the Handling issues relating to incomplete data subsection of the Implementation

section, larger differences can occur close to the most recent estimate. For Switzer-

land (Fig. 5A), more differences arise, in particular in confidence interval widths.

These differences result from different ways of extracting the time-varying delay

distributions from the available line list data (details for estimateR are described

in Appendix A). For all other countries, constant delay distributions are assumed,

thus these differences do not show up in estimates.

Figure 5: Re estimates through time on COVID-19 case data (from 2020-2021) from

nine countries. Each plot shows estimates built with estimateR (in green) and with

the Huisman et al. software pipeline (in purple).

Comparison with existing methods

Comparison on simulated data

We compared the accuracy of estimates from estimateR against epidemia [11] and

EpiNow2 [12], two prominent and recently-developed R packages implementing their

own Re estimation method.

We first attempted to apply these packages to simulated data with an autocor-

related observation noise model, as in the simulation study presented above. We

did not manage to set up an analysis that could provide meaningful results on such

simulated data with either package. Thus, we defaulted to applying log-normal dis-

tributed multiplicative noise, with independent values drawn from one time step

to the next. As in the simulation study we validated estimateR on, we simulate
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outbreaks on five scenarios of Re trajectory to allow performance comparison in

different contexts (see simulations details in Appendix C). We restricted the anal-

ysis to 50 replicates (instead of 100) with epidemia and EpiNow2 due to the time

taken by computations. Parameter specifications are listed in Table 1.

Figure 6: Comparison of Re inference on simulated data for three software packages:

estimateR, epidemia and EpiNow2. A Re inference results. Each row corresponds to

a different scenario of Re changes through time. The ground truth is shown in black,

estimateR, epidemia and EpiNow2 estimates are in blue, green and red, respectively.

For each method, the median of point estimates is shown as a line and the ribbon is

bound by the median of the lower and upper confidence interval boundaries over the

analysed replicates (100 replicates for estimateR, 50 for epidemia and EpiNow2). B

Computation time (on a log scale) required to complete the Re estimation process

on one simulated data replicate.

Results are summarized in Fig. 6. Fig. 6A presents the median of mean estimates

and 95% confidence intervals across all analyzed replicates. For EpiNow2, we only

show non-nowcast results for easier comparison with estimateR. Performance met-

rics (coverage and RMSE) are plotted in Additional figure 3.

On this simulated data, estimateR performs best. It achieves a consistently high

coverage and low error. It is more accurate than the other two packages at follow-

ing abrupt Re changes, in the past or close to the simulated present-time. epidemia

strongly overestimates Re in parts of the first, fourth and fifth scenarios whereas

EpiNow2 slighlty underestimates Re in parts of the first, fourth and fifth scenar-

ios. Moreover, epidemia uncertainty intervals are very wide; this leads to an over-

coverage (coverage above 0.95 for a 95% confidence interval) (Additional figure 3A)

for some data windows.
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Several sources of model misspecifications can explain the relatively poor per-

formance of epidemia and, to a lesser extent, of EpiNow2. First, EpiNow2, as of

the time of writing, only handles log-normal delay distributions. The gamma de-

lay distributions used in simulations had to be fitted by log-normal distributions

to use EpiNow2, resulting in an imperfect delay specification. Moreover, for both

packages, we specified negative binomial observational models, whereas noise in

the simulated data results from Poisson noise when generating infections combined

with log-normal noise when generating observations. epidemia offers the option to

specify a log-normal observation model, but we did not manage to set up an anal-

ysis with this option (the inference either failed or returned diverging Re values).

This model misspecification is likely the cause of performance issues observed. We

note that estimateR assumes an autocorrelated observation noise, and thus the

estimateR analysis is also misspecified. estimateR seems to prove more robust to

misspecification than epidemia and EPiNow2, at least in this case.

We did our best to learn how to use and parametrize both epidemia and EpiNow2,

with help from available resources and documentation, as well as EpiNow2 devel-

opers, so as to produce a comparison that is as fair as possible. Still, we cannot

exclude that better results could have been obtained by a more experienced user of

either method.

Speed comparison

In addition to comparing estimated values, we compared the computation speed of

the three methods. Fig. 6B shows the distribution of computing time observed when

estimating the reproductive number on a single simulated time series of observa-

tions. The observations were made during the computation of estimates presented

in panel A. estimateR is by far the fastest method of the three, about a hundred

times faster than epidemia, which is itself about two times faster than EpiNow2.

In our simulation study, with the machine we used (MacBook Pro, with a 2.3 GHz

Dual-Core Intel Core i5, with 4 logical CPU cores), analyzing a time series of ob-

servations took 9 seconds with estimateR on average, whereas it took 14 minutes

(850 seconds) with epidemia and 25 minutes with EpiNow2 (1520 seconds).

We note that this comparison is not exactly one-to-one: each epidemia and

EpiNow2 analysis of a time series of observations required 4 cores (to run Markov-

Chain Monte Carlo chains in parallel), while estimateR analyses only required a

single core. Thus, when using estimateR, one can use e.g. 4 cores at once to es-

timate the reproductive number of 4 different time series in parallel, further in-

creasing the speed advantage of estimateR. The faster computation speed observed

with estimateR is likely due to the complexity of carrying out posterior distribution

sampling for Bayesian computations required for both epidemia and EpiNow2; this

complexity is absent from estimateR.

Feature comparison

Like epidemia [11] and EpiNow2 [12], estimateR accounts for delays between in-

fection events and observations, which is essential for outbreak monitoring [1]. To

the best of our knowledge, estimateR is the only existing software package that

allows for delay distributions that vary through time, and that can combine inci-

dence data from partially-delayed and fully-delayed observations. As demonstrated
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in simulations, both of these features improve the accuracy of the estimations. In

general, the availability of high-quality data, in particular of line lists rather than

aggregated data, is necessary to harness the power of these features. In contrast to

the epidemia and EpiNow2 packages, estimateR does not permit any forecasting of

future epidemic dynamics [11, 12].

Limitations

The estimation method implemented in estimateR is subject to known limita-

tions [1, 14]. In particular, we emphasize that properly accounting for the specific

transmissibility of imported cases can be important when a large fraction of cases

recorded are not local cases [15]. Like EpiEstim, estimateR can account for a seg-

regation of local and imported cases whereby imported cases do not result from

infection by existing local cases, but contribute to future infections. Unlike the

method presented by Tsang et al. [15], estimateR does not allow for a difference in

transmissibility between local and imported cases.

In its current version, estimateR can only handle non-negative delay distributions

which can be a limitation when handling specific types of observed events (such as

pre-symptomatic case observations). Moreover, estimateR makes strong simplifying

assumptions on the outbreak studied. First, it assumes a constant serial interval

when estimating Re from reconstructed infection events [8], whereas relaxing this

assumption can improve estimates [10, 1]. Also, a constant ascertainment rate is

assumed for all observations. When the ascertainment rate changes in time, Re

estimates are unreliable until the ascertainment rate is stable again.

Conclusions
We present estimateR, an R package for estimating the reproductive number

through time from incidence data. This software is a new implementation of the

Re estimation pipeline in Huisman et al. [14] with improvements. Compared with

two existing popular software packages, estimateR is faster and is more accurate in

the tested simulation scenarios. estimateR offers off-the-shelf functions with sensible

default settings for a wide range of use cases. This R package provides simple-to-use

functions to monitor an ongoing outbreak, to revisit past outbreaks, and to inform

epidemic models that require Re estimates as input. With its modular design, it

exposes the inner steps of the analysis; more experienced users can use these func-

tions as building blocks, combining them or using them individually in their own

analyses. The package is structured to make it as simple as possible for users to

implement their own extensions and upgrades. Our goal is that estimateR can serve

as a collaborative tool for the scientific community.

Appendix
Appendix A: Method description

This section contains a full description of the base method implemented in esti-

mateR. This method was developed by Huisman et al. and the text of Appendix

A is adapted from the original method publication [14], with modifications spe-

cific to estimateR (main modifications are listed in the Handling issues relating to

incomplete data subsection of the main text).
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Smoothing of noisy observations

To smooth the incidence data, estimateR implements local polynomial regression

(LOESS). By default, estimateR performs LOESS smoothing with 1st order poly-

nomials and a smoothing parameter σ set such that 21 time steps in the local

neighbourhood of each point are included.

Importantly, σ should be adapted by estimateR users to the level of noise observed

in their raw incidence data. This can be done by smoothing the raw observations

with varying σ values until the smoothed trend matches expectations.

Before smoothing, the raw time series of observations (O0, . . . , ON ) is padded at

its left boundary with values extrapolating the initially observed trend (see the Han-

dling issues relating to incomplete data subsection of the main text). To extrapolate

these values, we first compute the average ratio between the incidence observed on

a time step and the previous time step:

a =
1

n

n−1∑
i=0

Oi+1

Oi
, (1)

n being the number of time steps included in this average, by default, it is set to 5

in estimateR.

Then, we build the padding values (O−y, . . . , O−1) by

O−i = O0 × a−i. (2)

The number of padding values y is proportional to the length of the raw time series

N and to the smoothing parameter σ.

After padding, LOESS smoothing is applied, and the smoothed values (S−y, . . . , S−1)

are discarded to keep (S0, . . . , SN ), the smoothed observations. Finally, the

smoothed observations are normalised so that their sum is equal to the total number

of raw observations (
∑
i≥0Oi).

Estimation of the infection incidence through deconvolution

To recover the non-observed time series of infection incidence from a time series

of (optionally-smoothed) observations, estimateR implements a deconvolution al-

gorithm. This algorithm deconvolves the time series of observations with a delay

distribution specific to the type of observations (case confirmations, hospital ad-

missions, deaths), to recover an estimate of the time series of infection events. It

is an expectation-maximisation algorithm, generalised from the description made

by Goldstein et al. [16], which is itself an adaptation of the Richardson-Lucy algo-

rithm [17, 18].

Formally, the method infers a deconvolved output time series (λ1, . . . , λN ) from

an input time series (D̄K , . . . , D̄N ), where K ≥ µ (µ being the median of the delay

distribution) and D̄i indicates the (smoothed) number of observations on time step

i (e.g. confirmed cases, hospitalisations, or deaths). Let mj
l be the probability that

an infection on time step j takes l ≥ 0 time steps to be observed. If no time-

variation of the delay distribution is assumed mj
l = ml. Let qj be the probability
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that an infection that occurred on time step j is observed during the time-window

of observations, i.e. is counted towards (D̄K , . . . , D̄N ). Then:

qj =

N−j∑
l=K−j

mj
l . (3)

Let Ei be the expected number of observed cases on time step i, for a given infection

incidence (λk):

Ei =


∑i
j=1 λjm

j
i−j for K ≥ i ≥ N

0 for 0 < i < K .
(4)

The deconvolution algorithm uses expectation maximisation [19] to find a final

infection incidence estimate, which has the highest likelihood of explaining the ob-

served input time series. To do so, it starts from an initial guess of the infection

incidence time series Λ0 = (λ0
1, . . . , λ

0
N ), used to compute E0

i according to equation

4, and updates the estimate in each iteration n according to the following formula:

λn+1
j =

λnj
qj
·
N∑
i=K

mj
i−jD̄i

Eni
. (5)

The iteration proceeds until a termination criterion is reached. Here, we follow

Goldstein et al. and iterate until the χ2 statistic drops below 1 [16]:

χ2 =
1

N −K + 1

N∑
i=K

(Eni − D̄i)
2

Eni
, (6)

or 100 iterations have been reached.

For the initial estimate of the incidence time series Λ0, the time series of ob-

servations is shifted backwards in time by the median of the delay distribution µ.

However, this leaves a gap of unspecified values at the start and end of the time

series Λ0. We augment the shifted time series with the first observed value (D̄K) on

the left. On the right side, we replace the missing values with an extrapolation of

future observations. This extrapolation is specific to estimateR; it is done as follows:

λN−i = D̄N × (
D̄N

D̄N−1
)µ−i, (7)

for 0 ≤ i < µ.

Time-varying delay distributions When information on the time variation of de-

lays between symptom onset and observation is available (e.g. through a line list),

estimateR can take it into account during the deconvolution step. In this expla-

nation, we need to break down the delay from infection to observation into two

successive delays: an incubation period, which we assume to be fixed in time for
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simplicity, and a delay from onset of symptoms to observation which we allow to

vary through time.

Recall that mj
` is the probability that an event occurring on time j (corresponding

here to the onset of symptoms on time j) takes ` time steps to be observed. The

(mj
0, . . . ,m

j
`max

) time-varying delay distributions from onset of symptoms to obser-

vation are determined as follows: for each date j, the n0 most recent recorded delays

between symptom onset and observation, with onset date before j, are taken into

account; `max being the highest observed delay (over all time steps). In estimateR,

n0 is, by default, at least 500 and up to 20% of all observations (both are flexible

parameters).

The incidence data is right-truncated, meaning that, close to the present, hosts

with recent onset of symptoms and with longer delay until observation have not been

captured yet. Thus, the raw distribution of observed delays is biased towards shorter

delays close to the present. To circumvent this effect, we fix the distribution for the

reporting delay (mj
`) after a certain time step j, so that delay distributions are

not downward biased for infection dates close to the present. Let (m̄0, . . . , m̄`max)

be the overall empirical delay distribution (aggregated over the entire window of

observations) and n the 99th percentile of this distribution (n is the smallest integer

for which
∑n
i=1 m̄i ≥ 0.99). For symptom onset dates z that are closer to the present

than n (i.e. N − z < n, where N is the index of the last available data point), we

fix (mz
0, . . . ,m

z
`max

) to be equal to (mN−n
0 , . . . ,mN−n

`max
).

Finally, the fixed incubation period and the time-varying delay from symptom

onset to observation are convolved to generate a time-varying delay distribution

from infection to observation.

Estimation of the effective reproductive number Re

estimateR implements a wrapper around the method developed by Cori et al. [8],

implemented in the EpiEstim R package, to estimate Re from a time series of

infection events.

Disease transmission is modelled with a Poisson process. An individual infected

at time t − s is assumed to cause new infections at time t at a rate Re(t) · ws,
where ws is the value of the infectivity profile s time steps after infection. The

infectivity profile sums to 1, and can be approximated by the (discretised) serial

interval distribution [8]. The likelihood of the incidence It at time t is thus given

by:

P (It|I0, . . . , It−1, Re(t)) =
(Re(t)Λt)

It e−Re(t)Λt

It!
, (8)

where Λt =
t∑

s=1

It−sws . (9)

The Re inference is performed in a Bayesian framework, and an analytical solution

can be derived for the posterior distribution of Re(t) (see [8]; Web Appendix 1). By

default in estimateR, the prior on Re(t) is a gamma distribution with mean 1 and

standard deviation 5. The mean of the posterior distribution of Re is reported as

being the point estimate.
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Two options are available to estimate Re: either it is treated as gradually changing

through time or it is treated as a step-wise function of time. In the former case, the

reported Re estimate for time step T summarises the average estimated Re over

a period of τ time steps ending on time step T . By default in estimateR, τ = 3.

In the latter, Re is assumed to be constant on a number of intervals spanning the

entire epidemic time window. The boundaries of these intervals must be given as

user input.

Uncertainty estimation

To account for the uncertainty in the raw case observations, a 95% bootstrap confi-

dence intervals is constructed for Re. First, the case observations are re-sampled as

follows: given the original case observations Dt, t = K, . . . , N , LOESS smoothing is

applied to the log-transformed data log(Dt + 1) to obtain the smoothed values ĥt

and additive residuals et. Here log-transformation is used to stabilise the variance

of the residuals.

From et, residuals are re-sampled to get e∗t . This is done by an overlapping block

bootstrap method to account for the time series nature of the data. Specifically,

given the original residuals (eK , . . . , eN ), we first sample a block (e∗1
1 , . . . , e

∗1
b ) with

default block length b = 10. Weekly patterns in case observations can optionally be

accounted for, if relevant. If so, the sampled block is built to start on the same day

of the week (e.g. Tuesday) as the original case observations DK . That is, we keep

the longest part (e∗1
m1
, . . . , e∗1

b ) from (e∗1
1 , . . . , e

∗1
b ) such that e∗1

m1
has the same day

of the week as DK . Then, we sample a new block (e∗2
1 , . . . , e

∗2
b ) and keep the longest

part (e∗2
m2
, . . . , e∗2

b ) of (e∗2
1 , . . . , e

∗2
b ) such that the corresponding day of e∗2

m2
follows

on e∗1
b (i.e. has the next day of the week if weekly patterns are accounted for). We

glue these two sampled blocks together to get the temporal re-sampled residuals

(e∗1
m1
, . . . , e∗1

b , e
∗2
m2
, . . . , e∗2

b ). We repeat this process of adding blocks until the length

of the re-sampled residuals is equal to or larger than the original residuals. In the

latter case, we cut the last part of the re-sampled residuals to make sure its length

is the same as the original residuals.

Finally, the bootstrap case observations are obtained by

D∗
t = max(exp(ĥt + e∗t )− 1, 0). (10)

The smoothing-deconvolution-estimation method is applied to the bootstrap case

observation to obtain an estimate for Re(t), denoted by θ̂∗(t). By repeating the

above steps B times (B = 100 by default), we obtain θ̂∗1(t), . . . , θ̂∗B(t). Then, we

construct a Normal based bootstrap confidence interval for each time point t by:

[θ̂(t)− qz(1−
α

2
)ŝd(θ̂∗(t)), θ̂(t) + qz(1−

α

2
)ŝd(θ̂∗(t))], (11)

where θ̂(t) denotes the estimated Re(t) based on the original case observations,

qz(1− α
2 ) denotes the 1− α

2 quantile of the standard normal distribution, and ŝd(θ̂∗)

denote the empirical standard deviation of θ̂∗1(t), . . . , θ̂∗B(t), (by default α = 0.05,

to obtain 95% confidence intervals).
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An implicit assumption for the above bootstrap confidence interval to be reason-

able, is that the variance of the residuals et is a constant over time t and does

not depend on the value of the log-transformed data log(Dt + 1). This assumption

roughly holds when the case incidence is high. During periods of low case incidence

however, this assumption is no longer appropriate. Therefore, to be conservative

and rather err on the side of too large uncertainty intervals, we also consider the

credible interval of Re which is obtained by taking the 0.025 and 0.975 quantiles

from the posterior distribution of Re using EpiEstim based on the original data Dt.

The final reported interval is then the union of the credible interval and the 95 %

bootstrap confidence interval.

Appendix B: Combining types of observations

In real life outbreaks, more than one observation event can originate from a single

infection event. For instance, for a diseased patient who eventually dies after having

been admitted in the hospital due to an infection, a single infection event can give

rise to a number of successive observations such as: a case confirmation event,

a record of hospital admission, of ICU admission, and of death. In total in this

example, a single infection event gave rise to four delayed observations.

In the framework estimateR adopts, different types of observation events cannot

in general be combined into the estimation of a single Re value [14]. If four types

of observations are made, as in the example above, we would recommend inde-

pendently estimating Re from each type of observation assuming that the delay

distribution specific to each type of event is known. This recommendation is made

because each type of observation event is associated with its own (different) inher-

ent sources of biases and its own subgroup in the infected population, with smaller

or larger overlaps [14].

Let us consider a specific context, with similarities to the context of data gathering

of several countries during the COVID-19 pandemic. For simplicity, we ignore all

hospital- and death-related observation events: we assume that the entire fraction

of infection events which ends up being recorded is observed via a case confirmation

event. Also, we assume that all confirmed cases are symptomatic. Moreover, when

infected individuals are tested positive to the infection of interest, they are asked

to report the date at which their symptoms started (the symptom onset date). For

various reasons, not all positively-tested individuals report this data. We assume

the data is collected into a line list of all confirmed cases, with optional symptom

onset date attached.

One could treat the confirmed cases and the symptom onset dates as two different

observation types, yielding two distinct Re estimates. However, in this example,

symptom onset observation events represent only a subset of all confirmed cases

and we have no reason to believe that symptom onset observations do not carry all

reporting biases associated with confirmed cases plus other biases specific to their

own reporting. Thus, we attempt to make use of the information on symptom onset

events differently.

We assume that the delay from infection to case confirmation can be broken down

into two independent successive delays: a first delay from infection to symptom on-

set (the incubation period) and a subsequent delay from onset of symptoms to case
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confirmation. Symptom onset events can be seen as intermediary steps between

infections and case confirmations. As the random delay associated with each ob-

servation event is similar to a blurring effect, symptom onset observation events

provide a less-blurred image of the original infection events than the case confir-

mations do. Thus, if the symptom onset date of an individual is known, their date

of infection can be better pinpointed than if only their case confirmation date is

known. The better the infection events are reconstructed, the better the outbreak

dynamics can be reconstructed and the more accurate the Re estimates.

Thus, when an observation event is an intermediary step on the path to a final

observation event, it is desirable to use the former event as the starting point to the

infection event reconstruction instead of the latter. estimateR allows to do so by

combining the incidence of these two types of events: the intermediary events (we

call them “partially-delayed observations”) and the final observation event (we call

them “fully-delayed observations”). Symptom onset events and case confirmations

as described in the above lines are examples of a pair of partially-delayed and fully-

delayed observation events.

When partially-delayed observations are independent from their corresponding

fully-delayed observations, i.e. they are not contingent on the corresponding fully-

delayed observations, it is straightforward to combine the two types of observations

to estimate Re. One simply needs to treat them as two different observation time

series, from which to independently infer infection events. The two resulting time

series of infection events can then be summed up to build a single time series,

from which Re can be estimated. The only caveat is that there must be no overlap

between the two types of observations: each infection event should be recorded as

either a partially-delayed or a fully-delayed observation.

In many cases, however, a partially-delayed observation is not independent from,

but contingent on, its corresponding fully-delayed observation. In that case, when

combining the two types of observations, one needs to account for the fact that each

partially-delayed observation is only known once a fully-delayed observation of the

same infection event is made. This is precisely the case in the example described

above: symptom onset dates are only known once a symptomatic individual is tested

positively; symptom onset dates are only known retrospectively, and contingent on

a case confirmation. Therefore, recordings of symptom events for time steps close

to the present represent only a fraction of the eventual recordings made for these

time steps (once all corresponding case confirmations have been made). Thus, the

incidence of symptom onsets (and of all partially-delayed observations with similar

properties) close to the present underestimates the real incidence and it must be

transformed to correct for this effect. A so-called nowcasting procedure is applied to

such partially-delayed observations, this procedure accounts for yet-to-be-recorded

events: partially-delayed events that have already happened, but have not yet been

recorded. To do so, we compute the maximum-likelihood estimator of the eventual

number of partially-delayed observations for a particular time step by dividing the

number of observations made so far by the probability of such an observation to

have been recorded before present [20, 21]. As in the case where partially-delayed are

independent from fully-delayed observations, the nowcast partially-delayed obser-

vation incidence and fully-delayed incidence can be then be used to independently
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reconstruct latent infection events, and the two resulting time series of infection

events can be summed up into a single series. Again, there must no be any overlap

in recorded cases between the partially-delayed and fully-delayed observations.

Appendix C: Simulation procedure

We simulate observations using the following procedure.

Simulating infection events

An Re trajectory is first constructed over 150 time steps, each trajectory translating

one of the five scenarios of interest. For each scenario, we simulate 100 outbreaks.

Each outbreak is seeded with one imported case per time step for five consecutive

time steps. The number of infection events on day t, It, is drawn from a Poisson

distribution with mean Re(t)Λt, with Λt as defined in equation (9). For the infec-

tivity profile ws, we use the discretised serial interval for SARS-CoV-2: a draw from

a Gamma(shape =2.73, scale=1.39) + 1 [22].

Generating delayed observations

Basic validation Observations are derived from the simulated infections by con-

volving the infection incidence with a delay distribution, representing the distribu-

tion of delays from infection to observation. In the basic validation set up, the

delay distribution is the result of the convolution of two delay distributions: a

Gamma(shape=3.2, scale=2.1) distribution which could represent an incubation

period, and a Gamma(shape=2.7, scale=2.6) distribution which could represent a

delay from symptom onset to case confirmation (or hospital admission, or any other

type of observation).

Validation on simulated data generated with time-varying delay distributions

When generating observations with time-varying delay distributions, the delay dis-

tribution with which the infection incidence is convolved gradually moves from a

shorter delay distribution to a longer one, or vice-versa. This change happens regu-

larly from the start of the simulated outbreak to the simulated present time. Delays

are composed of a Gamma(shape=3.2, scale=2.1) distribution for the initial incuba-

tion period, and a distribution for the delay between onset of symptoms to case con-

firmation (short delay: Gamma(shape=2, scale=2); long delay: Gamma(shape=2,

scale=8).

Validation on simulated data containing partially-delayed observations We gen-

erate pairs of partially-delayed and fully-delayed observation series with a slightly

different procedure. First, a partially-delayed observation event is generated for each

infection event, drawing a sample from a gamma-distribution meant to represent

an incubation period Gamma(shape=3.2, scale=2.1). Then, from each partially-

delayed observation, we simulate a fully-delayed observation event by drawing a

sample from a delay distribution representing a delay from symptom onset to

case confirmation Gamma(shape=3, scale=5). Partially-delayed observations are

assumed to be contingent on their associated fully-delayed observation. Thus, we

discard partially-delayed observation events with a fully-delayed observation event
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posterior to the simulated present time, as those partially-delayed observation have

not been recorded yet.

We then build two incidence series, the first one for partially-delayed observations

and the second for fully-delayed observations. For each infection event, we record the

partially-delayed observation event with a probability p in the first incidence series.

Otherwise, we record the fully-delayed observation event in the second incidence

series.

Including additional observation noise

To increase the realism of the generated observations [14], we combine them with

autocorrelated noise. This noise νt is generated using an autoregressive noise model

of order 4 (AR(4)), with coefficients (ar1 = 0.05, ar2 = 0.05, ar3 = −0.02, ar4 =

−0.02) and standard deviation 0.05. Coefficients are selected to loosely approximate

country-level empirical COVID-19 incidence data. The number of observations made

on time step t, with noise, Ot is computed from the generated observations Dt with:

Ot = Dt × eνt . (12)

When comparing estimateR to similar existing methods, we use a different type

of noise, as we did not manage to obtain meaningful estimates with epidemia and

EpiNow2 with the autocorrelated noise. In this case, the noise factor for each time

step t (νt) is an independent random draw from a normal distribution with mean 0

and standard deviation 0.1.

Appendix D: Default settings

In estimateR, by default, the most recent Re estimate produced corresponds to the

time step N −µ, with N being the most recent available time step and µ being the

median of the delay distribution. This truncation is done as posterior Re estimates

are too uncertain. When dealing with a combination of partially and fully delayed

data, the default setting is slightly more complex. In this case, the most recent Re

estimate corresponds to the time step (N −Y )−µ with Y being the 33rd percentile

of the delay distribution between partially-delayed and fully-delayed observation, N

and µ carry the same meaning as previously. In other words, we first exclude the Y

most recent time steps for which a partially-delayed observation has a probability

less than 0.33 to be fully observed before the most recent time step. The default

threshold of 0.33 was chosen as a trade-off between certainty in the result and

timeliness of the most recent Re estimate.

Availability and requirements
• Project name: estimateR

• Project home page: https://github.com/covid-19-Re/estimateR

• Operating systems: Platform independent

• Programming language: R

• Other requirements: R 2.1 or higher

• License: GNU GPL 3

• Any restrictions to use by non-academics: none
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• AR(n): autoregressive model of order n;

• COVID-19: coronavirus disease 2019;

• LOESS: locally estimated scatterplot smoothing;

• Re: effective reproductive number;
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• SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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Table 1: Parameter values used for method comparison.

R package Parameter Value Notes

estimateR Smoothing parameter σ 9 time steps

Incubation period Gamma(shape=3.2,scale = 2.1) As specified in simulations.

Observation delay Gamma(shape=2.7, scale=2.6) As specified in simulations.
(from symptoms to confirmation)

Generation time Gamma(mean = 4.8, sd = 2.3) As specified in simulations.

Other parameters Default settings

epidemia Generation time Gamma(mean = 4.8, sd = 2.3) As specified in simulations.

Observation model family Negative binomial Analyses failed with log-normal
(log-normal fits
simulated noise)

Delay distribution Discretized convolution of As specified in simulations.
(from infections to observations) Gamma(shape=3.2, scale = 2.1)

and
Gamma(shape=2.7, scale=2.6)

Hyperprior scale 0.2
on Rt random walk

Other parameters Default settings

EpiNow2 Incubation period Log-normal(µ = 1.68, σ = 0.63) Log-normal fit of
Gamma(shape=3.2, scale = 2.1)
(used in simulations)

Observation delay
(from symptoms to confirmation) Log-normal(µ = 1.68, σ = 0.67) Log-normal fit of

Gamma(shape=2.7, scale = 2.6)
(used in simulations)

Generation time Gamma(mean = 4.8, sd = 2.3) As specified in simulations.

Gaussian process Applied to global mean.

Observation model family Negative binomial

Other parameters Default settings
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Additional Files

Additional figure 1 — Summary of Re inference on simulated data, without

added observation noise and when including an initial smoothing step. Each row

corresponds to a different scenario of Re changes through time. The first column

shows the ground truth as a black line, and the median (over 100 replicates) estimate

as a blue line. The blue ribbon is bound by the median over 100 replicates of the

lower and upper bounds of the 95% confidence interval. The second column shows

corresponding coverage values (fraction of replicates for which the ground truth is

inside the confidence intervals) and the third column shows root mean squared error

(RMSE) values for each scenario. Conversely to estimates shown in blue in Fig. 1,

the Re estimation includes an initial smoothing step.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277095doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277095
http://creativecommons.org/licenses/by-nc/4.0/


Scire et al. Page 27 of 28

Additional figure 2 — Coverage and RMSE values on Re estimates on simulated

data with time-varying delay distributions. Each row corresponds to one of five Re

scenarios. Each column corresponds to a different delay distribution in the analysis.

In the first two columns, delay distributions are fixed and either short or long. In the

third column, delay distributions are allowed to vary when estimating(from short

to long or long to short). A and C: Coverage and RMSE values on Re estimates

on simulated data with observation delays gradually changing from a long (at time

0) to a short (at time 150) observation delay distribution. B and D: Coverage and

RMSE values on Re estimates on simulated data, with observation delays gradu-

ally changing from a short (at time 0) to a long (at time 150) observation delay

distribution.
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Additional figure 3 — Coverage and Root Mean Squared Error of Re estimates

using estimateR, epidemia and EpiNow2. The rows show five scenarios of Re varia-

tions through time. A: Coverage values (fraction of replicates for which the ground

truth is inside the confidence intervals). B: Root Mean Squared Error (RMSE)

values.
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