1 Communication

2	Strong correlations between the binding antibodies against wild type and
3	neutralizing antibodies against omicron BA.1 and BA.2 variants of SARS-
4	CoV-2 in individuals following booster (third dose) vaccination
5	Nungruthai Suntronwong ^{1#} , Suvichada Assawakosri ^{1#} , Sitthichai Kanokudom ¹ , Ritthideach
6	Yorsaeng ¹ , Chompoonut Auphimai ¹ , Thanunrat Thongmee ¹ , Preeyaporn Vichaiwattana ¹ ,
7	Thaneeya Duangchinda ² , Warangkana Chantima ^{3,4} , Pattarakul Pakchotanon ² , Jira Chansaenroj ¹ ,
8	Pornjarim Nilyanimit ¹ , Donchida Srimuan ¹ , Thaksaporn Thatsanatorn ¹ , Natthinee Sudhinaraset ¹ ,
9	Nasamon Wanlapakorn ¹ , Juthathip Mongkolsapaya ^{5,6} , Yong Poovorawan ^{1,7} *
10	¹ Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok
11	10330, Thailand
12	² Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic
13	Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA,
14	Pathum Thani 12120, Thailand
15	³ Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol
16	University, Bangkok 10700, Thailand
17	⁴ Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj
18	Hospital, Mahidol University, Bangkok 10700, Thailand
19	⁵ Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford,
20	Oxford, OX3 7BN, UK
21	⁶ Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford,
22	UK
23	⁷ The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok 10330, Thailand
24	# Equally contributed
25	*Correspondence: email: yong.p@chula.ac.th; Tel.: +662-256-4929
26	

27	Abstract: This study examined the neutralizing activity and receptor binding domain (RBD)
28	antibody levels against wild-type and omicron BA.1 and BA.2 variants in individuals who
29	received three doses of COVID-19 vaccination. The relationship between the SARS-CoV-2 RBD
30	antibody against wild-type and live virus neutralizing antibody titers against omicron BA.1 and
31	BA.2 variants was examined. In total, 310 sera samples from individuals after booster
32	vaccination (third dose) vaccination were tested for specific IgG wild-type SARS-CoV-2 RBD
33	and the omicron BA.1 surrogate virus neutralization test (sVNT). The live virus neutralization
34	assay against omicron BA.1 and BA.2 was performed using the foci-reduction neutralization test
35	(FRNT50). The anti-RBD IgG strongly correlated with FRNT50 titers against BA.1 and BA.2.
36	Non-linear regression showed that anti-RBD IgG with \geq 148 BAU/mL and \geq 138 BAU/mL were
37	related to detectable FRNT50 titers (≥1:20) against BA.1 and BA.2, respectively. A moderate
38	correlation was observed between the sVNT and FRNT50 titers. At detectable FRNT50 titers
39	(\geq 1:20), the predicted sVNT for BA.1 and BA.2 were \geq 10.57% and \geq 11.52%, respectively. The
40	study identified anti-RBD IgG and sVNT levels that predict detectable neutralizing antibodies
41	against omicron variants. Assessment and monitoring of protective immunity support vaccine
42	policies and will help identify optimal timing for booster vaccination.

43 Keywords: COVID-19; SARS-CoV-2; neutralization; omicron; antibody; correlation
44

45 **1. Introduction**

46 Detection of neutralizing antibodies helps to predict humoral immunity protection and 47 monitor waning immunity and vaccine immunogenicity. Numerous studies have shown that a 48 high level of neutralizing antibodies is correlated with SARS-CoV-2 protection and reduces the 49 severity of the disease [1-3]. However, the current gold standard neutralization assay (live virus

50 neutralization assay) has been limited to widespread use due to the need for specially trained 51 personnel to handle the live SARS-CoV-2 virus and the need to work in a biosafety level 3 52 laboratory (BSL3) containment facility. 53 Although several commercial kits were available to detect the SARS-CoV-2 antibody and 54 are currently used in hospital and clinical laboratories, the antigens tested derived from the 55 ancestral strain because tests were developed before the SARS-CoV-2 variants emerged [4]. 56 Furthermore, surrogate virus neutralization (sVNT) is widely performed to determine the ability 57 to neutralize antibodies to block the interaction between the receptor binding domain (RBD) and 58 human ACE2 receptors [5]. Several studies have shown that the commercial binding antibody 59 assay and sVNT are well correlated with the gold standard results of the neutralization method 60 against the ancestral strain [6-8]. Due to the spread of SARS-CoV-2 omicron variants, concerns 61 have been raised as to whether preexisting immunity is sufficient to protect the omicron 62 infection. However, the relationship between the anti-RBD IgG against wild-type and live virus 63 neutralization assay against the omicron has been limited. 64 In this study, we applied non-linear regression analysis to predict the level of anti-RBD 65 IgG and sVNT related to the detectable level of FRNT₅₀ titers against omicron variants, 66 including the BA.1 and BA.2 subvariants, in serum collected from individuals after receiving the 67 COVID-19 booster (third dose) vaccination.

- 68 2. Materials and Methods
- 69 2.1 Participants and ethical considerations

Our study recruited 310 sera samples from individuals after receiving the booster (third dose) COVID-19 vaccination from previous studies [9, 10]. There were two primed cohorts for analysis. The first cohort was primed with two doses of AZD1222 and boosted with AZD1222,

73	BNT162b2, 50 μ g of mRNA-1273 or 100 μ g of mRNA-1273 6 months after the first
74	vaccination. The second cohort was primed with heterologous CoronaVac/ASD1222 and boosted
75	with AZD1222, BNT162b2, and 100 μ g mRNA-1273 approximately 4–5 months after the initial
76	vaccination. The enrollment period was between November 2021 and January 2022. Blood
77	samples were collected at day 0 and at days 28 and 90 post-booster. This study was performed
78	following the Declaration of Helsinki and Good Clinical Practice principles. The study protocol
79	was reviewed and approved by the Institutional Review Board of the Faculty of Medicine of
80	Chulalongkorn University (IRB numbers 871/64 and 690/64). All participants signed a written
81	consent before being enrolled.
82	2.2 Measurement anti-RBD IgG and sVNT
83	All sera samples were quantitatively measured for wild-type SARS-CoV-2 receptor
84	binding domain (RBD) specific IgG (anti-RBD IgG) using the commercial assay, Abbott SARS-
85	CoV-2 IgG II Quant assay (Abbott Diagnostics, Abbott Park, IL). Anti-RBD IgG was reported as
86	a binding antibody unit (BAU/mL). The surrogate virus neutralization assay (sVNT) against
87	variants of BA.1 was performed using a cPassTM SAR-CoV-2 neutralizing antibody detection
88	kit (GenScript Biotech, Piscataway, NJ) as previously described [9, 10].
89	2.3 Foci reduction neutralization test (FRNT50)
90	For the live virus neutralization test, the foci reduction neutralization test (FRNT50) was
91	performed using the live SARS-CoV-2 virus, which included the omicron BA.1 (GISAID
92	accession number: EPI_ISL_8547017), BA.2 (accession number: EPI_ISL_11698090)
93	subvariants as previously described [9, 10]. The FRNT50 titer \geq 20 was considered a detectable

level of neutralizing antibody if the neutralizing antibody titer was undetected (FRNT50 titer <
20), the FRNT50 was set as 10.

96 2.4 Statistical analysis

97For statistical analysis, the predicted values of anti-RBD IgG and sVNT at FRNT50 titers98 ≥ 20 and ≥ 40 were determined using non-linear regression analysis and performed on the log1099transformed data. The Spearman's rank correlation between anti-RBD IgG, sVNT, and FRNT50100titers was determined using SPSS v23.0 (IBM Corp, Armonk, NY). The r-square was calculated101according to the non-linear equation using STATA v.17.0 software. A P-value <0.05 was</td>102considered statistically significant.

103

104 **3. Results**

105 3.1 Correlations between anti-RBD IgG to wild-type and FRNT50 titers against omicron

106 A total of 310 sera samples from individuals receiving different booster vaccination were 107 tested for wild-type anti-RBD IgG and FRNT50 of BA.1 and BA.2 (Table 1). The FRNT50 titer 108 ranged from undetectable (<1:20) to 3552 for BA.1 and undetectable to 3249 for BA.2 as 109 examined on day 0 and on days 28 and 90. The correlation analysis indicated that anti-RBD IgG 110 was strongly correlated with FRNT50 titers against BA.1 (Spearman R: 0.89, p<0.001) and BA.2 111 (Spearman R: 0.86, p<0.001) (S1 Table). Non-linear regression analysis showed the predicted 112 anti-RBD IgG was 148 BAU/mL and 335 BAU/mL when the FRNT50 titers against omicron 113 BA.1 were 20 (1.3 of log10 FRNT50 titers) and 40 (1.6 of log10 F FRNT50 titers), respectively 114 (r2=0.79, P<0.001) (Fig 1a). In addition, the predicted anti-RBD IgG was approximately 138 115 BAU/mL and 298 BAU/mL when the FRNT50 titer to omicron BA.2 was 20 and 40,

116	respectively (r2=0.73, P<0.001) (Fig 1b). When the cut-off value of 1:20 for the neutralization
117	test was used for BA.1, the anti-RBD IgG cut-off of 148 BAU/mL showed 89.7% sensitivity and
118	81.4% specificity; whereas, for BA.2, the anti-RBD IgG cut-off of 138 BAU/mL showed 86.8%
119	sensitivity and 82.9% specificity.
120	
121	2.2 Correlations between sUNT to omigron and EPNT50 titers against omigron
121	5.2 Correlations between sv 1v1 to omicron and F KIV150 titers against omicron
122	The relationship between sVNT and FRNT ₅₀ titers was determined and a moderate
123	correlation between the sVNT and FRNT ₅₀ titers was observed (Spearman's R= 0.77 and 0.78 for
124	BA.1 and BA.2, p<0.001) (S1 Table). Non-linear regression showed that the predicted sVNT
125	was 10.57% and 18.22% and were related to 20 and 40 FRNT ₅₀ titers for BA.1 (r^2 =0.59,
126	P<0.001). Although sVNT was 11.52% and 16.21% related to the 20 and 40 $FRNT_{50}0$ titers for
127	BA.2 ($r^2=0.64$, P<0.001). When the cut-off level of 1:20 for the neutralization test was used for
128	BA.1, the sVNT of \geq 10.57% showed 86.4% sensitivity and 73.1% specificity, whereas for BA.2,
129	the sVNT of \geq 11.52% showed 82.3% sensitivity and 63.2% specificity. The ROC analysis

130 indicated that anti-RBD IgG and sVNT provided good performance in detecting neutralizing

131 antibodies against omicron variants (Supplementary Fig. 1a-d).

132 **4. Discussion**

Numerous studies have shown a strong correlation between the levels of antibody binding
response, including anti-spike, anti-RBD antibodies, and neutralizing antibody titers against
ancestral strain in individuals with previous COVID-19 infection or vaccination [6, 11-14].
However, there is evidence that the binding antibody was poorly correlated with neutralizing
antibody titers against variants derived from B.1.1.7 and B.1.351 compared to the ancestral strain

138[7, 15]. In this study, we found that the anti-RBD IgG and sVNT tested by commercial kits139correlated well with neutralizing antibody titers against the SARS-CoV-2 omicron variants. In140addition, our data predicted anti-RBD IgG and sVNT at a detectable level of neutralizing141antibodies against omicron BA.1 and BA.2 (FRNT50 titers \geq 20). These findings suggest that142boosting immunity against vaccine strain (ancestral strain) could induce cross-reactivity against143omicron variants.

144 Anti-RBD IgG measured all antibodies targeting receptor binding sites, neutralizing 145 antibodies, and non-neutralizing antibodies. The antigen for anti-RBD IgG detection was 146 designed on the basis of the ancestral strain. Although more than 30 amino acid mutations were 147 detected in the omicron variant spike protein [16], our results showed that the anti-RBD IgG and 148 neutralizing antibody tested by FRNT50 titers against the omicron variant provided a strong 149 correlation, which is consistent with a previous report [17]. In addition, correlations between 150 neutralizing activity against variants of SARS-CoV-2 and RBD-specific binding antibody have 151 been reported in samples with high binding antibody titers [7]. However, our result was 152 inconsistent with a previous study [18], which showed that anti-RBD IgG was not correlated 153 with the surrogate virus neutralization test against omicron variants. 154 In the comparison of omicron subvariants, although omicron BA.1 and BA.2 shared 12 155 amino acid alterations in RBD compared to wild type D614G [19], the predicted anti-RBD IgG 156 showed higher sensitivity and specificity to detect the neutralizing antibody for omicron BA.1 157 than for BA.2. For sVNT, the RBD recombinant protein was designed based on BA.1 omicron 158 variants. As expected, the sensitivity and specificity between sVNT and BA.1 were higher than 159 BA.2.

160	There are several advantages to using anti-RBD IgG and sVNT to determine the antibody
161	response against SARS-CoV-2. First, these methods do not require the live SARS-CoV-2 virus
162	and a biosafety level 3 facility. Second, they do not require specially trained technicians and are
163	suitable for use in hospitals and clinical laboratories. Additionally, these methods are conducted
164	with high-throughput testing that is less time-consuming and takes 1–2 hours to complete.
165	There are some limitations to this study. First, the sample size was relatively small.
166	However, we addressed the performance analysis by using samples with a wide range of
167	antibody concentrations. Second, we did not perform the sVNT against BA.2 due to the
168	commercial recombinant RBD protein in the production process. Furthermore, the exact level of
169	neutralizing antibodies that protect against SARS-CoV-2 infection has not yet been established.
170	In conclusion, the predicted anti-RBD IgG and sVNT levels corresponding to FRNT50 titers
171	\geq 20 against the omicron variant showed high sensitivity and specificity. This finding
172	underscores that anti-RBD IgG and sVNT for the omicron variants can be used to predict the
173	presence of neutralizing antibodies against omicron BA.1 and BA.2 subvariants.
174	
175	Funding: This research was funded by the National Research Council of Thailand (NRCT), the
176	Health Systems Research Institute (HSRI), the Center of Excellence in Clinical Virology of
177	Chulalongkorn University, King Chulalongkorn Memorial Hospital, MK Restaurant Group, and
178	the Second Century Fund Fellowship of Chulalongkorn University. Thaneeya Duangchinda was
179	funded by the National Center for Genetic Engineering and Biotechnology, BIOTEC Platform
180	No. P2051613.

181

182	Institutional Review Board Statement: This study was performed following the Declaration of						
183	Helsinki and Good Clinical Practice principles. The study protocol was reviewed and approved						
184	by the Institutional Review Board of the Faculty of Medicine of Chulalongkorn University (IRB						
185	numbers 871/64 and 690/64).						
186							
187	Informed Consent Statement: All participants signed a written consent before being enrolled.						
188	The study was conducted according to the Declaration of Helsinki and the principles of the Good						
189	Clinical Practice Guidelines (ICH-GCP).						
190							
191	Data Availability Statement: All data are provided in the manuscript and supplementary files.						
192	Additional information can be requested from the corresponding author.						
193	Acknowledgments: We would like to thank Prof. Stephen Kerr from the Research Affairs,						
194	Faculty of Medicine, Chulalongkorn University, for the statistical analysis. We would like to						
195	thank the staff of the Center of Excellence in Clinical Virology for helping and supporting this						
196	project. Written informed consent has been obtained from the patient(s) to publish this paper.						
197	Conflicts of Interest: "The authors declare no conflict of interest."						
198							
199	References						
200	1. Feng, S.; Phillips, D. J.; White, T.; Sayal, H.; Aley, P. K.; Bibi, S.; Dold, C.; Fuskova,						
201	M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and						
202	asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032-2040.						
203	https://doi.org/10.1038/s41591-021-01540-1.						

204	2.	Gallais, F.; Gantner, P.; Bruel, T.; Velay, A.; Planas, D.; Wendling, M. J.; Bayer, S.;
205		Solis, M.; Laugel, E.; Reix, N.; et al. Evolution of antibody responses up to 13 months
206		after SARS-CoV-2 infection and risk of reinfection. EBioMedicine. 2021, 71, 103561.
207		https://doi.org/10.1016/j.ebiom.2021.103561.
208	3.	Khoury, D. S.; Cromer, D.; Reynaldi, A.; Schlub, T. E.; Wheatley, A. K.; Juno, J. A.;
209		Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are
210		highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat.
211		Med. 2021, 27, 1205-11. https://doi.org/10.1038/s41591-021-01377-8.
212	4.	Kobayashi, R.; Suzuki, E.; Murai, R.; Tanaka, M.; Fujiya, Y.; Takahashi, S. Performance
213		analysis among multiple fully automated anti-SARS-CoV-2 antibody measurement
214		reagents: a potential indicator for the correlation of protection in the antibody titer. J
215		Infection Chemother. 2022, S1341-321X(22)00165-9.
216		https://doi.org/10.1016/j.jiac.2022.05.016.
217	5.	Tan, C. W.; Chia, W. N.; Qin, X.; Liu, P.; Chen, M. I.; Tiu, C.; Hu, Z.; Chen, V.C.;
218		Young, B.E.; Sia, W.R.; et al. A SARS-CoV-2 surrogate virus neutralization test based
219		on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat.
220		Biotechnol. 2020, 38, 1073-8. https://doi.org/10.1038/s41587-020-0631-z.
221	6.	Lee, B.; Ko, J. H.; Park, J.; Moon, H. W.; Baek, J. Y.; Jung, S.; Lim, H.Y.; Kim, K.C.;
222		Huh, K.; Cho, S.Y.; et al. Estimating the neutralizing effect and titer correlation of semi-
223		quantitative anti-SARS-CoV-2 Antibody Immunoassays. Front. Cell. Infect. Microbiol.
224		2022, 12, 822599. https://doi.org/10.3389/fcimb.2022.822599.
225	7.	Morinaga, Y.; Tani, H.; Terasaki, Y.; Nomura, S.; Kawasuji, H.; Shimada, T.; Igarashi,
226		E.; Saga, Y.; Yoshida, Y.; Yasukochi, R.; et al. Correlation of the commercial anti-

227		SARS-CoV-2 receptor binding domain antibody test with the chemiluminescent
228		reduction neutralizing test and possible detection of antibodies to emerging variants.
229		Microbiol Spectr. 2021, 9, e00560-21. https://doi.org/10.1128/Spectrum.00560-21.
230	8.	Ramos, A.; Cardoso, M. J.; Ribeiro, L.; Guimarães, J. T. Assessing SARS-CoV-2
231		neutralizing antibodies after BNT162b2 vaccination and their correlation with SARS-
232		CoV-2 IgG anti-S1, anti-RBD and anti-S2 serological titers. <i>Diagnostics</i> . 2022, 12, 205.
233		https://doi.org/10.3390/diagnostics12010205.
234	9.	Assawakosri, S.; Kanokudom, S.; Chansaenroj, J.; Suntronwong, N.; Auphimai, C.;
235		Nilyanimit, P.; Vichaiwattana, P.; Thongmee, T.; Duangchinda, T.; Chantima, W.; et al.
236		Persistence of immunity against omicron BA.1 and BA.2 following homologous and
237		heterologous COVID-19 booster vaccines in healthy adults after a two-doses AZD1222
238		vaccination. <i>medRxiv</i> . 2022 , <u>https://doi.org/10.1101/2022.06.05.22276016</u> .
239	10.	Suntronwong, N.; Kanokudom, S.; Auphimai, C.; Assawakosri, S.; Thongmee, T.;
240		Vichaiwattana, P.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; Chansaenroj, J.; et
241		al. Effects of boosted mRNA and adenoviral-vectored vaccines on immune responses to
242		omicron BA.1 and BA.2 following the heterologous CoronaVac/AZD1222 vaccination.
243		medRxiv. 2022, https://doi.org/10.1101/2022.04.25.22274294.
244	11.	Dolscheid-Pommerich, R.; Bartok, E.; Renn, M.; Kümmerer, B. M.; Schulte, B.;
245		Schmithausen, R. M.; Stoffel-Wagner, B.; Streeck, H.; Saschenbrecker, S.; Steinhagen,
246		K.; et al. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and
247		neutralization activity. J. Med. Virol. 2022, 94, 388-92.
248		https://doi.org/10.1002/jmv.27287.

249	12.	Guiomar, R.; Santos,	A.J.; Melo, A	A.; Costa, I.	.; Matos, R.	; Rodrigues,	A.P.; Kislay	/a, I.:
		, , ,	, , ,	, , ,	, ,	, , ,	/ 1	

- 250 Silva, A.S.; Roque, C.; Silva, C.; et al. High correlation between binding IgG (anti-
- 251 RBD/S) and neutralizing antibodies against SARS-CoV-2 six months after vaccination.
- 252 *medRxiv*. **2021**, <u>https://doi.org/10.1101/2021.12.10.21267607</u>.
- 253 13. Rockstroh, A.; Wolf, J.; Fertey, J.; Kalbitz, S.; Schroth, S.; Lübbert, C.; Ulbert, S.; Borte,
- 254 S. Correlation of humoral immune responses to different SARS-CoV-2 antigens with
- virus neutralizing antibodies and symptomatic severity in a German COVID-19 cohort.
- 256 *Emerg. Microbes Infect.* **2021**, *10*, 774-81.
- 257 https://doi.org/10.1080/22221751.2021.1913973.
- 258 14. Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D. R.; Bailey, M. J.; Mansour, M.;
- 259 McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust neutralizing
- antibodies to SARS-CoV-2 infection persist for months. *Science*. **2020**, *370*, 1227-30.
- 261 https://doi.org/10.1126/science.abd7728.
- 262 15. Poon, R. W.; Lu, L.; Fong, C. H.; Ip, T. C.; Chen, L. L.; Zhang, R. R.; Yip, C.C.; Cheng,
- 263 V.C.; Chan, K.H.; Yuen, K.Y.; et al. Correlation between commercial anti-RBD IgG titer
- and neutralization titer against SARS-CoV-2 beta variant. *Diagnostics*. **2021**, 11(12),
- 265 2216. https://doi.org/10.3390/diagnostics11122216.
- 266 16. Ou, J.; Lan, W.; Wu, X.; Zhao, T.; Duan, B.; Yang, P.; Ren, Y.; Quan, L.; Zhao, W.;
- 267 Seto, D.; et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies
- 268 multiple inter-variant recombination events. *Signal Transduct. Target Ther.* 2022, 7, 1-9.
 269 https://doi.org/10.1038/s41392-022-00992-2.
- 270 17. Medigeshi, G. R.; Batra, G.; Murugesan, D. R.; Thiruvengadam, R.; Chattopadhyay, S.;
- 271 Das, B.; Gosain, M.; Ayushi; Singh, J.; Anbalagan, A.; et al. Sub-optimal neutralisation

272		of omicron (B. 1.1. 529) variant by antibodies induced by vaccine alone or SARS-CoV-2
273		Infection plus vaccine (hybrid immunity) post 6-months. EBioMedicine. 2022, 78,
274		103938. https://doi.org/10.1016/j.ebiom.2022.103938.
275	18.	Takheaw, N.; Liwsrisakun, C.; Chaiwong, W.; Laopajon, W.; Pata, S.; Inchai, J.;
276		Duangjit, P.; Pothirat, C.; Bumroongkit, C.; Deesomchok, A.; et al. Correlation analysis
277		of anti-SARS-CoV-2 RBD IgG and neutralizing antibody against SARS-CoV-2 Omicron
278		variants after vaccination. Diagnostics. 2022 12, 1315.
279		https://doi.org/10.3390/diagnostics12061315.
280	19.	Iketani, S.; Liu, L.; Guo, Y.; Liu, L.; Chan, J. F.; Huang, Y.; Wang, M.; Luo, Y.; Yu, J.;
281		Chu, H.; et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages.
282		Nature. 2022, 604, 553-6. https://doi.org/10.1038/s41586-022-04594-4.
283		
284		
285		
286		
287		
288		
289		
290		
291		
292		
293		

294 Figure and Table

295 Table 1. Anti-RBD IgG against wild type, sVNT against omicron, FRNT₅₀ titers against BA.1

and BA.2 among the booster vaccination groups.

Booster		anti-RBD IgG	sVNT	FRNT50 titers	FRNT50 titers
groups				BA.1	BA.2
	n	GMT (95%CI)	median (IQR)	GMT (95%CI)	GMT (95%CI)
AZ+AZ+AZ					
Pre-boost	20	67.4 (47.1-96.4)	NA	13 (10.4-16.2)	12.5 (10-15.6)
28 d post-	20	298.5 (204.2-	15 (4.8-21.7)	32.2 (20.1-51.6)	45.6 (28.8-72.3)
boost		436.2)			
AZ+AZ+HM					
Pre-boost	20	46.8 (37.1-59)	NA	14.6 (11.6-18.5)	13 (10.4-16.1)
28 d post-	20	2160 (1649-2829)	65.7 (32-77)	396.5 (275.4-	224.5 (156.4-
boost				570.7)	322.2)
90 d post-	20	901.2 (657-1236)	38 (22.5 -52.1)	119.1 (78.5-180.8)	110.5 (75-163)
boost					
AZ+AZ+Mo					
Pre-boost	20	43.6 (31.1-61.3)	NA	16.6 (13.2-21)	11 (9.6-12.6)
28 d post-	20	3034 (2418-3806)	67.7 (50.5-	547.8 (415.2-723)	324.2 (213.6-
boost			80.4)		492.2)
90 d post-	20	916 (675 - 1243)	54.4 (35.5-	141 (89.6-221.6)	122 (71.4-208)
boost			88.9)		

AZ+AZ+PF					
Pre-boost	20	43.3 (31.4-56.7)	NA	10 (10)	15 (11.8-19.1)
28 d post-	20	1876 (1581-2227)	70.3 (56.9 -78)	166.3 (114-243.3)	247.7 (179.2-
boost					342.4)
90 d post-	20	556 (460-673)	32.5 (17.9-	78.1(47.5-128.2)	73.8 (56.1-97.2)
boost			53.8)		
SV+AZ+AZ					
Pre-boost	10	146.5 (77.6-	11.48 (0.3-	12.8 (8.8-18.5)	24.4 (16.8-35.4)
		276.3)	18.9)		
28 d post-	20	315.8 (233.5-427)	11.4 (2.6-23.8)	40.3 (27.3-59.6)	59.3 (39.7-88.5)
boost					
SV+AZ+Mo					
Pre-boost	10	98 (66.2-145)	3.58 (1.0-6.6)	11 (8.9-13.5)	12 (9.1-15.7)
28 d post-	20	2930 (2156-3983)	79.7 (61.1-	271.6 (173-427)	235 (144-385.4)
boost			82.4)		
SV+AZ+PF					
Pre-boost	10	135.4 (67.7-	8.1 (4.4-17.3)	17.3 (8.7-34.1)	28.3 (14.8-53.8)
		270.8)			
28 d post-	20	3049 (2322-4005)	58.4 (33.1-	171 (120-243.3)	130.7 (78.9-216.8)
boost			78.5)		

297 SV=CoronaVac (Sinovac, China), AZ=AZD1222 (AstraZeneca, Oxford, UK), PF=BNT162b2

298 (Pfizer-BioNTech), Mo=full dose mRNA-1273 (100 µg) (Moderna), HM=half dose mRNA-1273

299 *(50 µg)*.

- 310 represents the log_{10} of FRNT₅₀ titers. Dotted lines indicate 1.3 (FRNT₅₀ titer =20) and 1.6
- 311 (FRNT₅₀ titer =40). The arrows indicate the predicted level of anti-RBD IgG and percentage of
- 312 inhibition from sVNT. Colored circles indicate the vaccine regimens for primary vaccine series+
- 313 booster vaccine. The r-square was calculated according to the non-linear equation using STATA
- 314 v.17.0 software. SV=CoronaVac (Sinovac, China), AZ=AZD1222 (AstraZeneca, Oxford, UK),
- 315 PF=BNT162b2 (Pfizer-BioNTech), Mo=full dose mRNA-1273 (100 μg) (Moderna), HM=half
- 316 dose mRNA-1273 (50 μg).
- 317