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Abstract  34 

Title 35 

A data-driven approach to identify clusters of HbA1c longitudinal trajectories and associated 36 

outcomes in type 2 diabetes mellitus: a large population-based cohort study 37 

Background  38 

We aimed to identify and characterize common patterns of HbA1c progression among type 2 39 

diabetes mellitus patients who initiate a non-insulin antidiabetic drug (NIAD).   40 

Methods 41 

The IQVIA Medical Research Data incorporating data from THIN, a Cegedim database of 42 

anonymized electronic health records, was used to identify a cohort of patients with a first-ever 43 

prescription for a NIAD between 2006 and 2019. Trajectory clusters were identified using an 44 

Expectation-Maximization algorithm by iteratively fitting k thin-plate splines and reassigning 45 

each patient to the nearest cluster. Cox proportional hazards models calculated the hazard ratios 46 

(HR) and 95% confidence intervals (CI) for the estimated risk of microvascular (e.g., 47 

retinopathy, diabetic polyneuropathy [DPN]) and macrovascular events. 48 

Findings 49 

Among 116,251 new users of NIADs we found five distinct clusters of HbA1c progression, 50 

which were characterized as: optimally controlled (OC), adequately controlled (AC), sub-51 

optimally controlled (SOC), poorly controlled (PC), and uncontrolled (UC). The UC and AC 52 

clusters had similar index HbA1C (>9%) but the AC cluster achieved HbA1c control (HbA1C 53 

<7.5%), while the UC cluster HbA1c remained >9.0%. Compared to the OC cluster, there was 54 

a 21% (HR: 1.21, 95% CI: 1.14-1.28) and 30% (HR: 1.30, 95% CI: 1.21-1.40) elevated risk of 55 

retinopathy in the AC and UC clusters, respectively. While the PC and UC clusters had a 56 

significant 23% (HR 1.23, 95% CI 1.12 – 1.35) and 45% (HR 1.45, 95% CI: 1.27 – 1.64) 57 

increased risk of DPN, respectively.   58 

Interpretation 59 

The five identified HbA1c trajectory clusters had different risk profiles. Despite achieving 60 

diabetic control, patients categorized in the AC cluster had similar outcomes to the UC cluster, 61 

suggesting baseline HbA1c is an important indicator of health outcomes.  62 

Funding 63 

The Swiss Data Science Centre64 
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Introduction 65 

Type 2 diabetes mellitus (T2DM) is a chronic disease arising from the body’s inefficient use 66 

of insulin or progressive inability to secrete insulin, which results in abnormal blood levels of 67 

glucose.[1–3] T2DM is characterized by hyperglycemia, ultimately leading to microvascular 68 

(e.g., retinopathy) and macrovascular complications (e.g., cardiovascular disease). Disease 69 

management includes lifestyle modification and glucose control using pharmacotherapy (e.g., 70 

non-insulin antidiabetic drugs [NIADs]) to reduce diabetic complications and mortality risk.[4] 71 

Glycated hemoglobin (HbA1c) provides a long-term trend of glucose levels in the blood over 72 

the last two to three months, and it is often used as a clinical target for glycemic control. 73 

Guidelines for disease management frequently consider HbA1c <7% (53mmol/mol) a general 74 

target for glucose control.[5–7] However, T2DM has a high degree of heterogeneity in 75 

individual patient characteristics leading to different treatment strategies and distinct treatment 76 

responses. Therefore, guidelines for T2DM management, such as the National Institute for 77 

Health and Care Excellence (NICE) in the UK, recommend a more individualized treatment 78 

approach considering patient’s preferences and individual characteristics (e.g., age, 79 

comorbidities, and multiple medications).[5]  80 

Previous studies have shown that hyperglycemia, and therefore elevated HbA1c levels, is 81 

associated with the risk of diabetes complications and mortality.[8,9] The United Kingdom 82 

Prospective Diabetes Study (UKPDS) identified that intensive glycemic control had important 83 

long-term clinical implications on microvascular and macrovascular outcomes.[10] Using data 84 

from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, Wang et al. 85 

found worse cardiovascular outcomes among patients with persistent poor glycemic control, 86 

when compared to patients with HbA1c around 7%. [11] Similarly, using observational data, 87 

Liateerapong and colleagues found that 10-year glycemic control was associated with 88 

improved microvascular outcomes. [12]  89 

Thus, identifying groups of patients with specific HbA1c courses may help to develop more 90 

personalized strategies for T2DM management. However, the evaluation of HbA1c 91 

progression with time is challenging, particularly due to patients with an unequal length of 92 

observations, unevenly spaced in time, and heterogeneous observation windows. Large data 93 

and advanced statistical models are required to identify if patient trajectories can be grouped 94 

into similar clusters, and if these trajectories affect microvascular and macrovascular outcomes. 95 

Thus, in this study we applied an Expectation-Maximization (EM) algorithm using k-means 96 
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clustering and thin-plate splines to identify distinct HbA1c trajectories in new users of NIADs 97 

using a large population-based electronic health record database. Additionally, we evaluate the 98 

association between the trajectory clusters and subsequent microvascular and macrovascular 99 

events.  100 

 101 

Methods 102 

Data source 103 

We used the IQVIA Medical Research Data incorporating data from THIN, a Cegedim 104 

database of anonymized electronic health records from general practitioners (GPs). The 105 

database is comprised of over 18 million patients, from 800 general practices in the UK and 106 

about 6% of the population. THIN provides detailed longitudinal information regarding patient 107 

characteristics (e.g., sex, practice registration date, and ethnicity), medical conditions (e.g., 108 

diagnoses with dates, referrals to hospitals, and symptoms), medications (e.g., generic drug 109 

name, dose, and prescription date), and additional health data (e.g., laboratory results including 110 

HbA1c, creatinine and calcium blood levels, smoking status, height, weight, alcohol use, birth 111 

and death dates). 112 

The database contains information on drug prescriptions recorded by GPs. Medications are 113 

recorded in the database using the British National Formulary (BNF) classification, and then 114 

were mapped according to the international anatomical therapeutic codes (ATC) classification 115 

system. All diagnoses are recorded using READ codes [13], a comprehensive coding system 116 

with over 100,000 codes and comparable to the international classification of diseases (ICD) 117 

system. The study protocol was approved by the THIN scientific research council (study 118 

reference number: 20SR062). 119 

 120 

Study population 121 

We identified patients aged 18+ years between January 1st 2006 and December 31st 2019, with 122 

new onset T2DM defined as a first-time NIAD prescription. The index date was defined as the 123 

date of the first ever NIAD prescription after start of valid data collection. All patients were 124 

required to have more than 1-year of eligible data collection. Patients with a diagnosis of 125 

polycystic ovarian syndrome or gestational diabetes prior to index date were excluded, since 126 

these conditions are often treated with NIADs. Additionally, we excluded patients with insulin 127 
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prescription prior to, or at, index date and patients with less than four records of HbA1c after 128 

index date. For each the time-to-event analysis, we further excluded patients with a diagnosis 129 

of the outcome of interest previous to index.  130 

 131 

Study variables 132 

We assessed variables of interest i.e., age, body mass index (BMI), smoking status, and alcohol 133 

consumption at index date. Additionally, we included the following comorbidities, defined by 134 

the presence of corresponding diagnostic or test Read codes: angina pectoris, anxiety and other 135 

neurotic, stress related and somatoform disorders, arthropathy, atrial fibrillation, cancer, 136 

chronic depression, chronic liver disease, congestive heart failure, high blood pressure, 137 

hypercholesterolemia, hypothyroidism, irritable bowel syndrome, ischemic heart disease, 138 

neuropathy, osteoarthritis, primary open-angle glaucoma, and senile cataract. 139 

Moreover, we analyzed main laboratory results which are highly affected by T2DM, stratifying 140 

by cluster i.e., estimated glomerular filtration rate (eGFR), bilirubin, vitamin B12, serum iron, 141 

low-density lipoprotein (LDL), and triglycerides. 142 

 143 

Follow-up period 144 

For each patient, there were two exposure periods. The first one was defined as starting at the 145 

date of a first-ever NIAD prescription and ending at the end of follow up (December 31st, 146 

2019), death, or loss-to-follow up due to disenrollment from GP, whichever occurred first, and 147 

it was used classify the type of HbA1c trajectory.  148 

The second exposure time started at the date of a first-ever NIAD prescription until the 149 

occurrence of any outcome of interest, ad it was used in the time-to-event analysis and the Cox-150 

proportional hazards model. 151 

 152 

Outcomes of interest 153 

The primary outcomes of interest were classified as microvascular conditions (retinopathy, 154 

diabetic polyneuropathy [DPN], and erectile dysfunction [ED]), and macrovascular diseases 155 

(acute myocardial infarction [AMI], coronary heart disease [CHD], peripheral arterial disease 156 

[PAD]). All chronic disease conditions were identified based on read codes, while insulin use 157 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.06.14.22276398doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.14.22276398
http://creativecommons.org/licenses/by-nc-nd/4.0/


was identified based on ATC codes. All included codes can be found in 158 

https://github.com/adrianmartinez-ETH/hba1c_progression.   159 

 160 

Statistical analysis 161 

Analysis of longitudinal trajectories of HbA1c was conducted employing an Expectation-162 

Maximization (EM) algorithm using k-means clustering and thin-plate splines (TPSs).[14] TPS 163 

are functions defined piece-wise by polynomials which are used to model relationships 164 

between a predictor 𝑋 and a variable 𝑌. The functions are fitted using a generalized additive 165 

model (GAM), as shown in Equation 1 166 

𝑔(𝐸(𝑌)) = β0 + 𝑓(𝑋) +  λ                                              (1) 167 

where β0 is a constant, 𝑓(𝑋) a flexible function of 𝑋, and λ is the penalty term which 168 

constrains the function to a certain degree of smoothness. A TPS depends on the 𝑚 data points 169 

with known coordinates and target values, and it can be described by 2(𝑚 + 3) parameters. 170 

Therefore, the objective is to minimize the Residual Sum of Squares (RSS) where 𝐽 is the 171 

penalty function and λ controls the importance of this, as shown in Equation 2.   172 

𝑅𝑆𝑆 = min
𝑓

  ∑ {𝑦𝑖 − 𝑓(𝑥𝑖)}2 + λ𝐽[𝑓]N
i=1                                       (2) 173 

In the extreme scenario of 𝜆 = 0 we would fit a spline that perfectly overfits the data points, 174 

and with 𝜆 → ∞ we would fit the polynomial base model fitted by ordinary least squares.  175 

TPSs provide a very flexible framework for model fitting, since it does not require any prior 176 

knowledge about the functional form, and there is no need to specify the number of nodes and 177 

their location, which allows for optimal control of continuous confounders. 178 

We implemented an EM algorithm which allows to estimate the latent structure of the data by 179 

assuming that the observed data comes from a finite set of mixtures.  We first fitted 𝑘 different 180 

random splines and assigned each patient to the nearest cluster based on the smaller mean 181 

squared error (MSE). Then, we iteratively re-computed the 𝑘 splines based on the clusters 182 

formed (M-step) and re-assigned group membership (E-step) until convergence. In case 183 

clusters become too small (i.e., with more observations than degrees of freedom) they may 184 

merge, resulting in a small number of clusters. 185 

In order to select a robust number of clusters, we used three different approaches. The first 186 

approach consisted in computing a large model of 40 different clusters, followed by a 187 
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hierarchical clustering analysis. The latter was performed using complete linkage based on the 188 

Euclidean distance between the fitted values of each cluster in order to visualize a potentially 189 

optimal number of clusters.[15] The second approach consisted in performing a silhouette 190 

analysis, which measured the separation between clusters, and therefore allowed for different 191 

number of potential clusters.[16] The elbow method was used in the third approach. This 192 

method was performed by computing the deviance of models of different numbers of clusters 193 

in order to visually inspect the computed the deviance of models of different sizes. The location 194 

of a bend in the plot was considered an indicator of the appropriate number of clusters. 195 

For each cluster, we summarized the patient characteristics at index date. The history of 196 

comorbidities was identified if a valid read code was present any time prior to index. We 197 

compared patients’ characteristics at index date using t-test and chi-square tests for continuous 198 

and categorical variables, respectively, and computed the standardized mean differences 199 

(SMDs) between groups to assess the magnitude of the difference. We defined a SMD >0.2 to 200 

indicate significance.  201 

Time-to-event analysis was conducted for microvascular conditions (retinopathy, DPN, and 202 

ED), and for macrovascular diseases (AMI, CHD, and PAD], as well as the time to first insulin 203 

use. Kaplan-Meyer curves stratified by cluster were plotted for each outcome. Patients with a 204 

diagnosis of outcomes under investigation previous to index date were excluded from the time-205 

to event analysis. Additionally, we fitted a Cox-proportional hazards model for each outcome 206 

adjusted for sex, age, and BMI, smoking, and alcohol consumption, at index date. Moreover, 207 

we computed the Tukey’s range test to determine if there were statistically significant 208 

differences between clusters.[17] 209 

Finally, we explored annual changes in NIAD utilization within the first 5-years after index 210 

date. At each annual time point, we identified the proportion of patients receiving different 211 

classes of NIADs within the prior 3-month window to identify if relevant differences in NIAD 212 

utilization were present between the clusters.  213 

Results  214 

Study Population 215 

We identified 116,251 new users of NIADs who had at least four HbA1c measurements after 216 

index date (Figure 1). In order to inspect for potential selection bias, we compared patient 217 

characteristics of included and excluded patients in this study (Supplementary Table S1). No 218 

substantial differences between included and excluded patients were observed. 219 
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 220 

Longitudinal HbA1c trajectories 221 

The three different approaches (hierarchical clustering analysis, the silhouette analysis, and the 222 

elbow method) used to select a robust number of clusters identified an optimal number of 223 

clusters between four and six clusters. Given that four clusters were too general and did not 224 

manage to capture and represent all the patterns, and six clusters provided little benefit at the 225 

expense of overfitting, we opted for five clusters, Supplementary Figure S1.  226 

Figure 2 provides a visual depiction of the cluster trajectories. While all clusters showed an 227 

initial drop in HbA1c levels following NIAD start, HbA1c trajectories varied greatly between 228 

clusters.  When characterizing the five clusters we identified the following patterns:  229 

 230 

(1) Optimally controlled HbA1c (OC),  231 

(2) Adequately controlled HbA1C (AC),  232 

(3) Suboptimally controlled HbA1c (SOC) 233 

(4) Poorly controlled HbA1c (PC) 234 

(5) Uncontrolled HbA1c (UC) 235 

 236 

The first OC cluster (28.8%; n=33,531) had a modest decrease in HbA1c from baseline and 237 

HbA1c levels that remained mostly below 7.0%. The second AC cluster (14.6%; n=16,962) 238 

showed a significant initial reduction in HbA1c after index and HbA1c levels remained below 239 

the clinical target of 7.5% from year 4 onward. Although patients in the third SOC cluster 240 

(32.1%; n=37,325) had an initial drop in HbA1c levels a gradual increased over time was noted, 241 

and by year 10 was above 7.5% and on par with the baseline HbA1c. The fourth PC cluster 242 

(17.1%; n=19,832) had a moderate initial HbA1c reduction, followed by a rapid increase, with 243 

the 10-year HbA1c reaching 9.0% and above the baseline value. And finally, patients in the 244 

fifth UC cluster (7.4%; n=8,601) never achieved HbA1c control, with values remaining above 245 

9.0% and reaching above 10% by year 10. 246 

 247 

Patient characteristics at index date, stratified by cluster, are shown in Table 1. The AC and 248 

UC clusters started with the highest HbA1c values (>9%), yet the long-term trajectories were 249 

strikingly different, thus, we provide the significance test between the AC and UC clusters in 250 
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Table 1. Patients in the UC cluster were significantly younger when compared to the AC cluster 251 

(53.8 years vs. 60.5 years, SMD 0.53), had a higher mean BMI (34.1 vs. 32.6, SMD 0.21), and 252 

were more likely to be current smokers (26.6% vs. 18.2%, SMD 0.22). The UC group had a 253 

lower prevalence of high blood pressure (34.3% vs. 42.9%, SMD 0.18) compared to the AC 254 

cluster. Conversely, the UC cluster had the highest proportion of patients with chronic liver 255 

disease (3.1%) and anxiety and stress (21.3%). Nonetheless, although there were statistically 256 

significant differences between both groups, the SMDs were not significant for comorbidities.   257 

Among the other clusters, we note that patients in the OC cluster were more frequently older 258 

(average age of 63.8 years old) and less likely to be smokers (14.5%) when compared to other 259 

clusters, Table 1. On the other hand, this group had the highest proportion of patients with a 260 

history of high blood pressure (50.2%), hypercholesterolemia (21.6%), and osteoarthritis 261 

(25.4%). The SOC and PC clusters both showed increasing HbA1c trajectories over time, and 262 

were relatively similar at baseline. The SOC cluster was slightly older (62.7 years vs. 58.2 263 

years) than the PC cluster, and slightly less likely to be current smokers (15.0% vs. 19.8%). 264 

The SOC cluster had the lowest average BMI (32.2 kg/m2) compared to other groups.  265 

 266 

We observed that patients in the UC and PC clusters had overall good kidney (normal values: 267 

eGFR ≥ 60 mL/min/1.73 m2) and liver function (normal values: bilirubin < 21 μmol/L), as 268 

well as good vitamin B12 levels (normal values: > 200 and < 950 pg/mL). On the other hand, 269 

these patients presented with the highest levels of LDL (normal values: > 2.6 and < 4.1) and 270 

triglycerides (normal values: > 1.69 and < 2.25 mmol/mol), Supplementary Figure S2.  271 

 272 

Risk for microvascular and macrovascular outcomes 273 

The adjusted Cox-proportional hazards models for the microvascular and macrovascular 274 

outcomes of interest are provided in Table 3, and the unadjusted survival curves and number 275 

of events are provided in Supplementary Figure S3 and Supplementary Table S2, 276 

respectively. For retinopathy, only the AC and UC clusters presented statistically significant 277 

hazard ratios (HRs) with a 21% (HR 1.21, 95% CI: 1.14 – 1.28) and 30% (HR 1.30, 95% CI: 278 

1.21 – 1.40) increased risk with respect to the OC cluster, respectively. When assessing DPN, 279 

the PC and UC clusters had a significant 23% (HR 1.23, 95% CI 1.12 – 1.35) and 45% (HR 280 

1.45, 95% CI: 1.27 – 1.64) increased risk, respectively, when compared to the OC group. All 281 

clusters showed an approximate 20% significant increased risk of ED, when compared to the 282 
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OC cluster. Between cluster differences are presented in Supplementary Table S3. There were 283 

no statistically significant differences between the AC and UC clusters for retinopathy risk 284 

(p=0.312), nor between the PC and UC clusters for DPN risk (p=0.100). Similarly, no between 285 

group differences were noted for ED. 286 

 287 

For macrovascular events, all clusters showed an increased risk of AMI, compared to the OC 288 

group, with the highest risk observed among the UC cluster (HR 2.15, 95% CI: 1.84–2.52), 289 

Table 3. When comparing the AC vs. the UC cluster with the Tukey’s range test we found 290 

statistically significant differences between each other (p<0.001), Supplementary Table S3. 291 

For CHD, all the clusters showed an elevated risk when compared to the OC cluster, with the 292 

highest risk again being among the UC cluster (HR 1.64, 95% CI: 1.45–1.86). While for PAD, 293 

the AC and UC clusters showed a 27% (HR 1.27, 95% CI: 1.11–1.45) and 62% (HR 1.62, 95% 294 

CI: 1.36–1.93) increased risk, respectively, compared to the OC cluster, but no statistically 295 

significant differences between each other. 296 

Prescription patterns 297 

Over 90% of the patients started treatment at index date with biguanides e.g., metformin, 298 

followed by sulfonylureas, Supplementary Figure S4. Nonetheless, patients in the UC cluster 299 

were the first ones to stop biguanides treatment the earliest and have them replaced the earliest 300 

by other medications. This cluster was the one with the highest proportion of patients with 301 

insulins, SGLT2 inhibitors, and GLP-1 at the five-years mark. The AC cluster, who had a 302 

similar initial trajectory but a dramatic improvement with respect to the UC cluster, was the 303 

group with the greatest number of users of thiazolidinediones (TZDs).   304 

 305 

Discussion 306 

In this population-based cohort study, we identified five distinct patterns of HbA1c progression 307 

with different patient and clinical risk profiles. We found two clusters (UC and AC) with 308 

similar high HbA1c values at the start of NIAD therapy, but with very different trajectories. 309 

Nevertheless, similar microvascular and macrovascular risks were observed among both 310 

groups, when compared to the OC cluster suggesting high baseline HbA1c may be an important 311 

risk factor. Additionally, we found that the clusters with the highest risk of AMI and CHD were 312 

observed among the clusters with elevated HbA1c during follow-up, the PC and UC clusters. 313 
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In addition to this, the UC cluster presented the highest use of insulin in the first five years after 314 

NIAD start. Further work should aim to assess if patient-level predictors of cluster assignment 315 

can be identified to aide in optimizing treatment and management strategies.  316 

In the last twenty years there has been an increase in the prevalence of T2DM worldwide, 317 

linked to a more sedentary lifestyle, diet, and an increasing aging population.[18] Moreover, 318 

T2DM and its complications have contributed substantially to the global burden of mortality 319 

and disability, as diabetes is one of the major causes of reduced life expectancy.[19] Thus, 320 

improving our understanding the evolution patterns of HbA1c levels at T2DM diagnosis is 321 

paramount to advancing tailored therapeutic management in order to achieve glycemic control.  322 

While most of the studies that have aimed at modelling HbA1c progression have used latent 323 

class growth modelling (LCGM) with smaller cohorts and shorter follow-up periods,[11,12,20]  324 

we identified similar trajectory patterns. For example, we found that deteriorating HbA1c (i.e.,, 325 

PC) and extremely high baseline HbA1c (i.e., AC and UC) were associated with worse clinical 326 

outcomes, when compared to the cluster with  stable values (i.e., OC).  327 

To date, only the work of Laiteerapong et al. used a LCGM in combination of a larger real-328 

world cohort of 28,016 individuals.[21] This study identified five distinct HbA1c trajectories, 329 

and found an association between non-stable trajectories and greater risk of microvascular 330 

events and mortality. While we looked at individual outcomes, rather than composite 331 

endpoints, our results are comparable for microvascular events. The AC cluster was similar to 332 

the “high decreasing early” cluster in the Laiteerapong study, which was associated with a 28% 333 

increased risk of microvascular events.[12]  In our analyses we could see differences between 334 

the different microvascular events, which could not be observed in the Laiteerapong study. For 335 

example, while the UC cluster had elevated risks for all outcomes, the AC cluster was only 336 

significantly associated with diabetic retinopathy and ED, while the PC cluster was associated 337 

with a significant increased risk of DPN and ED. As DPN typically develops 10-20 years after 338 

the initial diabetes diagnosis, it is plausible that long-term diabetes control is an important 339 

predictor. Conversely, retinopathy typical emerges within the first 5-years, and therefore, early 340 

glycemic control is likely a key predictor.  341 

While we did not cluster based on patient characteristics, we could identify distinct patient 342 

profiles across the five clusters. For example, the OC cluster was older and included patients 343 

with a history of age-related comorbidities at index, while patients in the worst performing 344 

group (UC) were overall younger and more frequently obese. Additionally, some differences 345 
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between the AC and UC cluster were identified, namely that the AC cluster was older, had a 346 

lower mean BMI, and were less frequently smokers. As we identified differences in the 347 

likelihood of clinical outcomes, particularly for the AC and UC clusters, and two previous 348 

studies found that data-driven clusters based on baseline characteristics (including HbA1c) 349 

may be predictive of clinical outcomes.[22,23] Future work should further investigate the 350 

patient-level factors that are predictive of the cluster orientation. 351 

Finally, many guidelines for diabetes management are moving towards individualized 352 

treatment to improve long-term glucose control and clinical outcomes. We could identify some 353 

differences between the clusters regarding the treatment course.  For example, the UC cluster 354 

moved to second-line therapies earliest, especially insulins. Interestingly, the AC cluster 355 

appeared to have the highest proportion of users switching to TZDs early in therapy. These 356 

results are preliminary, but provide insight into the potential for tailored therapy in T2DM. 357 

When interpreting our results, we have to acknowledge several limitations. First of all, we only 358 

looked at patients after the start of their first NIAD prescription, thus we might have missed 359 

patterns of patients that were first instructed to change their diet and physical activity levels in 360 

order to attain glycemic control. Additionally, we were restricted to data from the UK where 361 

intrinsic social factors such as lifestyle, diet, or physical exercise might have a relevant impact 362 

in glycemic control. In addition, treatment guidelines have changed several times during our 363 

follow-up period i.e., 2009 and 2015. Therefore, the relevant thresholds considered to attain a 364 

controlled glycemic status have been revised and updated, as well as the medications used. 365 

Although metformin still remains the first-line therapy, several types of drugs have been 366 

developed, approved, and marketed during our study window. For instance, SGLT2 inhibitors 367 

such as dapaglifozin or canaglifozin were approved in 2012 and 2013 respectively. The fact 368 

that we excluded patients with less than four HbA1c measurements after index date might could 369 

have introduced a selection bias in favor of either healthier or more careless patients. 370 

Nonetheless, we did not find relevant differences between included and excluded patients 371 

overall, as shown in Supplementary Table S1. A potential limitation in the methodological 372 

approach we used of splines in combination with k-means clustering is the fact that we had to 373 

empirically select the number of trajectories. Although we minimized the potential source of 374 

bias by performing three different methods i.e., elbow method, hierarchical clustering, and 375 

silhouette analysis, we did not find clear cutoff points for the number of clusters. Finally, since 376 

we included patients with a first NIAD prescription between January 2003 to December 2019, 377 
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not many patients have a follow-up period of more than ten years. This led to a higher variance 378 

and volatility in the last years of the time-to-event analyses.  379 

In conclusion, we found that clusters with worse baseline and long-term glycemic control were 380 

associated with higher degree long term microvascular and macrovascular complications. 381 

Moreover, as we identified that high baseline HbA1c, as seen in the UC and AC clusters, maybe 382 

a strong indicator of retinopathy risk, while long-term HbA1c control is associated with DPN.  383 

Further studies should aim at understanding the differences between clusters of similar profile 384 

but diverging trajectories, and investigate if more tailored therapy can help improve long-term 385 

glycemic trajectories in patients with T2DM.  386 

 387 

 388 

 389 
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Figure 1. Flowchart of included patients.  
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Figure 2. Evolution of cluster centroids of HbA1c level in percentage.  

 

Abbreviations: UC, uncontrolled HbA1; PC, poor HbA1c control; SOC, suboptimal HbA1c control; AC, 

adequate HbA1c response; OC, optimal HbA1c control. The gray area indicates the start of NIAD therapy (index 

date), the green, orange, and red horizontal dashed lines indicate an optimal control (≤7%), adequate HbA1c level 

after treatment intensification (< 7.5%), and level where insulin should be considered (> 9%), respectively. 
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Table 1. Patient characteristics at index date, stratified by cluster. 

 

OC 

(N=33531) 

AC                

(N=16962) 

SOC           

(N=37325) 

PC               

(N=19832) 

UC             

(N=8601) 

AC vs UC 

P value 

AC vs UC 

SMD 

Gender = Male (%) 18091 (54.0) 10376 (61.2) 21463 (57.5) 11756 (59.3) 5091 (59.2) 0.002 0.04 

Age (mean (standard deviation)) 63.8 (12.4) 60.5 (12.0) 62.7 (12.0) 58.2 (12.8) 53.8 (13.0) <0.001 0.53 

BMI (mean (standard deviation)) 32.5 (6.8) 32.6 (6.9) 32.2 (6.4) 33.4 (6.9) 34.1 (7.6) <0.001 0.21 

Alcohol - Current use (%) 23061 (72.9) 11502 (73.7) 25742 (73.4) 13467 (72.9) 5465 (70.0) <0.001 0.08 

Smoking - Current use (%) 4845 (14.5) 3076 (18.2) 5597 (15.0) 3904 (19.8) 2269 (26.6) <0.001 0.22 

Conditions             

   Angina pectoris 2802 (8.8) 1048 (6.8) 2920 (8.3) 1188 (6.4) 339 (4.4) <0.001 0.10 

   Anxiety & other* 5828 (18.4) 2596 (16.7) 6126 (17.4) 3574 (19.3) 1644 (21.3) <0.001 0.12 

   Arthropathy 2385 (7.5) 903 (5.8) 2338 (6.6) 1094 (5.9) 365 (4.7) <0.001 0.05 

   Atrial fibrillation 2685 (8.5) 1183 (7.6) 2715 (7.7) 1374 (7.4) 468 (6.1) <0.001 0.06 

   Cancer 9330 (29.5) 3977 (25.6) 9968 (28.3) 4731 (25.6) 1730 (22.4) <0.001 0.02 

   Chronic depression 199 (0.6) 92 (0.6) 210 (0.6) 132 (0.7) 67 (0.9) <0.001 0.03 

   Chronic liver disease 852 (2.7) 407 (2.6) 915 (2.6) 551 (3.0) 243 (3.1) <0.001 0.03 

   Congestive heart failure 1016 (3.2) 524 (3.4) 1076 (3.1) 543 (2.9) 228 (2.9) <0.001 0.02 

   High blood pressure 15889 (50.2) 6651 (42.9) 16414 (46.6) 7662 (41.4) 2652 (34.3) <0.001 0.18 

   Hypercholesterolaemia 6831 (21.6) 2726 (17.6) 7187 (20.4) 3125 (16.9) 1061 (13.7) <0.001 0.11 

   Hypothyroidism 3215 (10.2) 1303 (8.4) 3163 (9.0) 1556 (8.4) 670 (8.7) <0.001 0.01 

   Intermittent claudication 1262 (4.0) 526 (3.4) 1293 (3.7) 581 (3.1) 184 (2.4) <0.001 0.06 

   Irritable bowel syndrome 3541 (11.2) 1403 (9.0) 3735 (10.6) 1951 (10.5) 713 (9.2) <0.001 0.01 

   Ischaemic heart disease 560 (1.8) 244 (1.6) 634 (1.8) 310 (1.7) 105 (1.4) <0.001 0.02 

   Neuropathy 321 (1.0) 115 (0.7) 303 (0.9) 135 (0.7) 47 (0.6) <0.001 0.02 

   Osteoarthritis 8035 (25.4) 3247 (20.9) 8287 (23.5) 3646 (19.7) 1204 (15.6) <0.001 0.00 

   Primary open-angle glaucoma 1479 (4.7) 513 (3.3) 1422 (4.0) 568 (3.1) 165 (2.1) <0.001 0.07 

   Senile cataract 1998 (6.3) 696 (4.5) 1888 (5.4) 786 (4.2) 217 (2.8) <0.001 0.03 

Abbreviations: UC, uncontrolled HbA1; PC, poor HbA1c control; SOC, suboptimal HbA1c control; AC, adequate HbA1c response; OC, optimal 

HbA1c control; BMI, body mass index; Anxiety & other*, anxiety and other neurotic, stress related, and somatoform disorders. 
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 Table 2. Adjusted hazard ratio of the different outcomes.  

Abbreviations: aHR, adjusted Hazard Ratio; CI, Confidence Interval; OC, optimal HbA1c control; AC, adequate HbA1c control; SOC, suboptimal HbA1c 

control; PC, poor HbA1c control; UC, uncontrolled HbA1c. aHR in bold are statistically significant. 

 

 

  OC AC SOC PC UC 

  aHR* 95% CI aHR* 95% CI aHR* 95% CI aHR* 95% CI aHR* 95% CI 

Micro-vascular Outcomes                   

Retinopathy Reference 1.21 1.14, 1.28 1.02 0.97, 1.07 1.05 0.99, 1.11 1.30 1.21, 1.40 

Diabetic Polyneuropathy Reference 1.11 1.00, 1.22 0.99 0.91, 1.08 1.23 1.12, 1.35 1.45 1.27, 1.64 

Erectile Dysfunction** Reference 1.22 1.13, 1.32 1.17 1.09, 1.25 1.20 1.11, 1.30 1.24 1.12, 1.36 

Macro-vascular Outcomes                   

Acute Myocardial Infarction Reference 1.30 1.13, 1.48 1.18 1.06, 1.32 1.65 1.46, 1.87 2.15 1.84, 2.52 

Coronary Heart Disease Reference 1.11 1.01, 1.23 1.14 1.05, 1.23 1.38 1.25, 1.51 1.64 1.45, 1.86 

Peripheral arterial disease Reference 1.27 1.11, 1.45 1.11 0.99, 1.23 1.17 1.02, 1.33 1.62 1.36, 1.93 

* The models were adjusted for the following variables at baseline: gender, age, body mass index, alcohol consumption, and smoking status. 

**Erectile dysfunction outcome assessed along among males 
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