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2 

Key Points 36 

Question: How do modern methods for causal inference compare to approaches common in the 37 

clinical literature when estimating the effect of corticosteroids on mortality for moderate-to-38 

severe coronavirus disease 2019 (COVID-19) patients? 39 

Findings: In an analysis using retrospective data for 3,298 hospitalized COVID-19 patients,  40 

target trial emulation using a doubly robust estimation procedure successfully recovers a 41 

randomized controlled trial (RCT) meta-analysis benchmark. In contrast, analytic approaches 42 

common in the clinical research literature generally cannot recover the benchmark.  43 

Meaning:  Clinical research based on observational data can unveil true causal relations. 44 

However, the correctness of these effect estimates requires designing and analyzing the data 45 

based on principles which are different from the current standard in clinical research. Widespread 46 

communication and adoption of these analytical techniques are of high importance for the 47 

improvement of clinical research. 48 

  49 
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 50 

Abstract 51 

Importance: Communication and adoption of modern study design and analytical techniques is 52 

of high importance for the improvement of clinical research from observational data. 53 

Objective: To compare (1) a modern method for causal inference including a target trial 54 

emulation framework and doubly robust estimation to (2) approaches common in the clinical 55 

literature such as Cox proportional hazards models. To do this, we estimate the effect of 56 

corticosteroids on mortality for moderate-to-severe coronavirus disease 2019 (COVID-19) 57 

patients. We use the World Health Organization’s (WHO) meta-analysis of corticosteroid 58 

randomized controlled trials (RCTs) as a benchmark. 59 

Design: Retrospective cohort study using longitudinal electronic health record data for 28 days 60 

from time of hospitalization. 61 

Settings: Multi-center New York City hospital system. 62 

Participants: Adult patients hospitalized between March 1-May 15, 2020 with COVID-19 and 63 

not on corticosteroids for chronic use. 64 

Intervention: Corticosteroid exposure defined as >0.5mg/kg methylprednisolone equivalent in a 65 

24-hour period. For target trial emulation, interventions are (1) corticosteroids for six days if and 66 

when patient meets criteria for severe hypoxia and (2) no corticosteroids. For approaches 67 

common in clinical literature, treatment definitions used for variables in Cox regression models 68 

vary by study design (no time frame, one-, and five-days from time of severe hypoxia).  69 

Main outcome: 28-day mortality from time of hospitalization. 70 
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Results: 3,298 patients (median age 65 (IQR 53-77), 60% male). 423 receive corticosteroids at 71 

any point during hospitalization, 699 die within 28 days of hospitalization. Target trial emulation 72 

estimates corticosteroids to reduce 28-day mortality from 32.2% (95% CI 30.9-33.5) to 25.7% 73 

(24.5-26.9). This estimate is qualitatively identical to the WHO’s RCT meta-analysis odds ratio 74 

of 0.66 (0.53-0.82)). Hazard ratios using methods comparable to current corticosteroid research 75 

range in size and direction from 0.50 (0.41-0.62) to 1.08 (0.80-1.47). 76 

Conclusion and Relevance: Clinical research based on observational data can unveil true causal 77 

relationships; however, the correctness of these effect estimates requires designing the study and 78 

analyzing the data based on principles which are different from the current standard in clinical 79 

research.  80 

 81 
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Introduction 86 

Observational databases are invaluable resources when randomized controlled trials (RCTs) are 87 

infeasible or unavailable. However, the correctness of the conclusions gleaned from analyses of 88 

observational data hinges on the careful consideration of study design principles and choice of 89 

estimation methodology.1-4 90 

In this paper we contrast the use of target trial emulation using contemporary causal inference 91 

methods with various traditional analytical approaches using Cox regression. While most 92 

epidemiologists and statisticians agree on the importance of a well-defined exposure, outcome, 93 

and population of interest, the two strategies we compare differ significantly in the subsequent 94 

steps to choose a research question and data analysis method.  95 

In the traditional approach to clinical research, the analysis proceeds by postulating a 96 

regression model according to the type of data available. For example, when faced with a time-97 

to-event outcome, researchers automatically fit a Cox regression model (often due to limitations 98 

in knowledge, time, or software capabilities). The coefficients of the regression model are then 99 

used to answer to the clinical question of interest. We refer to this approach as a “model-first” 100 

approach, due to the primacy of the regression model. 101 

A model-first approach induces multiple problems for the estimation of causal effects.5 First, 102 

regression coefficients often do not represent quantities of primary scientific interest or well-103 

defined causal effects.6 Second, assumptions such as the proportional hazards assumption used in 104 

Cox models are rarely correct in medical research, since hazards cannot be proportional when a 105 

treatment effect changes over time.7 Third, regression models cannot correctly handle time-106 

dependent feedback between confounders, treatment, and the outcome.1 Fourth, the model-first 107 

approach yields a tendency to interpret all coefficients in the model; a problem known as the 108 
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Table 2 fallacy.8 Lastly, model-first approaches fail to account for the variance induced during 109 

model selection, thereby leading to incorrect statistical conclusions.9 110 

Recent developments in the causal inference literature provide researchers with a number of 111 

tools to alleviate the aforementioned biases. Frameworks such as the target trial emulation10 and 112 

roadmap for causal inference11 allow researchers to proceed with a question-first approach. 113 

Instead of defaulting to effect measures provided by regression models, a question-first approach 114 

begins by defining a hypothetical target trial and subsequent target of inference that answers the 115 

scientific question of interest. This is the so-called estimand, or quantity to be estimated. After 116 

the estimand is chosen, researchers have the freedom to select an estimation technique which 117 

mitigates model misspecification biases. Incorporating these principles can help clarify the 118 

research question, determine study eligibility requirements, identify enrollment and follow-up 119 

times, decide whether sufficient confounder data are available, increase the likelihood of 120 

obtaining a correct estimate, and more.12,13 121 

In this study, we compare a question-first approach against multiple model-first approaches 122 

for causal inference. Our case study is the effect of corticosteroids on mortality for moderate-to-123 

severe COVID-19 patients using a retrospective cohort of patients at NewYork-Presbyterian 124 

Hospital (NYPH) during Spring 2020. Lack of guidance for clinical practice at the beginning of 125 

the pandemic meant that high variability existed in the administration and timing of 126 

corticosteroids (eFigure 1). Provider practice variability aids in the estimation of causal effects by 127 

yielding datasets with adequate natural experimentation, but the resulting complex longitudinal 128 

treatment patterns complicate study design and analytical methods. This observational dataset 129 

together with results from numerous RCTs on corticosteroids provides a unique opportunity to 130 
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benchmark design and analysis methods. We benchmark our target trial emulation results against 131 

effect measures obtained in the World Health Organization (WHO)’s RCT meta-analysis.14 
132 

Methods 133 

This study was designed in April 2020, prior to the results of corticosteroid RCTs and resulting 134 

clinical guidance. It was approved by the Institutional Review Board at Weill Cornell Medicine 135 

with a waiver of informed consent (no. 20-04021909). This report follows the Strengthening the 136 

Reporting of Observational Studies in Epidemiology (STROBE) guidelines.15 
137 

 138 

Hypothetical target trial 139 

Question 140 

What is the effect of a treatment regime of corticosteroids administered under the clinical 141 

indication of severe hypoxia on mortality for COVID-19 hospitalized patients? 142 

Population 143 

Inclusion criteria is adult COVID-19 positive patients who were admitted to NYPH’s Cornell, 144 

Lower Manhattan, or Queens locations. Cases are confirmed through reverse-transcriptase–145 

polymerase chain-reaction assays performed on nasopharyngeal swab specimens. The tests are 146 

obtained upon hospital admission, i.e., at the same time of eligibility and time zero. Patients who 147 

have chronic use of corticosteroids prior to hospitalization or who are transferred into NYPH 148 

from an outside hospital are excluded. 149 
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Hypothetical treatment regime 150 

Patients would be randomized on their first day of hospitalization to receive either (1)standard of 151 

care therapy (without corticosteroids) or (2)standard of care plus a corticosteroid regimen to be 152 

administered if and when criteria for severe hypoxia are met. The corticosteroid dosage is a 153 

minimum of 0.5 mg/kg body weight of methylprednisolone equivalent per 24-hour period and 154 

the duration of therapy is six days.16 Corticosteroids include prednisone, prednisolone, 155 

methylprednisolone, hydrocortisone, and dexamethasone and choice of drug is at the attending 156 

physician’s discretion. Severe hypoxia is defined as the initiation of high-flow nasal cannula, 157 

venti-mask, noninvasive or invasive mechanical ventilation, or an oxygen saturation of <93% 158 

after the patient is on 6 Liters of supplemental oxygen via nasal cannula. 159 

Outcome and estimand 160 

The primary outcome would be 28-day mortality from time of randomization. The contrast of 161 

interest is the 28-day mortality rate difference comparing actual receipt of the two treatment 162 

regimes (i.e., the per-protocol effect). 163 

Data analysis plan 164 

A hypothetical trial can assume no loss-to-follow-up. Under perfect compliance we would 165 

analyze the difference in proportion of patients who experienced the outcome between the two 166 

treatment regimes. 167 
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Emulation using observational data 168 

Data source and cohort 169 

The target trial emulation uses retrospective data from patients who meet the hypothetical trial’s 170 

eligibility criteria March 1-May 15, 2020. Demographic, comorbidity, and outcome data were 171 

manually abstracted by trained medical professionals into a secure REDCap database.17 These 172 

were supplemented with an internal COVID data repository housing laboratory, procedure, 173 

medication, and flowsheet data documented during standard care.18 Patients are followed for 28 174 

days from hospitalization and lost to follow-up by discharge or transfer to an external hospital 175 

system. 176 

Treatment regimes and measurement 177 

To emulate the target trial corticosteroid treatment regime, we estimate the effect of a 178 

hypothetical dynamic treatment regime,19 whereby each patient is administered six days of 179 

corticosteroids if and when they meet severe hypoxia criteria. This dynamic regime is contrasted 180 

with a static regime where patients never receive corticosteroids. 181 

We measure severe hypoxia using vital signs and flowsheet data and define it in the same 182 

way as our target trial. We measure corticosteroid exposure using the medication administration 183 

record. We compute cumulative mg/kg dosing of corticosteroids over rolling 24-hour windows, 184 

and if a patient received >0.5 mg/kg methylprednisolone equivalent, they are denoted as having 185 

corticosteroids exposure that day. 186 

Since patients in the observed data are subject to loss-to-follow-up, emulating the trial with 187 

observational data requires conceptualizing a hypothetical world where all patients are observed 188 

through 28 days. Effects in this hypothetical world can be estimated using observed patient data 189 
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under assumptions articulated in the Data Analysis section. An illustration of the treatment 190 

regimes as they relate to the observed data are shown in Figure 1.  191 

Confounding 192 

In contrast to the hypothetical trial, treatment assignment in the observational study is not 193 

randomized and depends on physiological characteristics of each patient. We address 194 

confounding in our emulation by adjustment for confounders during data analysis. A set of 195 

confounders deemed sufficient for adjustment was determined through the expertise of a team of 196 

pulmonologists, intensivists, and microbiologists. 197 

Baseline confounders include socio-demographics, Body Mass Index (BMI), comorbidities, 198 

and hospital admission location. Time-dependent confounders include vital signs, laboratory 199 

results, co-treatments, and mode of respiratory support. The measurement process (i.e., whether a 200 

clinician decided to measure these variables) is also an important confounder included in the 201 

analysis. Details of confounders are provided in eMethods. Figure 2 summarizes the relationship 202 

between confounders, treatment, and outcomes in the form of a Directed Acyclic Graph. 203 

Outcome and estimand 204 

Our estimand of interest is the difference in 28-day mortality rates in a hypothetical world 205 

where we had implemented the two different corticosteroid treatment regimes, as well as an 206 

intervention to prevent loss-to-follow-up. Under the assumption that treatment and loss-to-207 

follow-up each day are randomized conditional on the baseline and time-dependent confounders, 208 

this estimand is identifiable by a longitudinal g-computation formula.20 It is important to 209 

emphasize that conditional randomization is a key assumption without which the target 210 
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emulation may fail. This g-formula will be our estimand of interest, but we note that it is not the 211 

only possible identification strategy (see eMethods).  212 

Data analysis plan 213 

When using the g-formula to identify causal effects, correct emulation of a target trial 214 

requires proper adjustment for measured confounding. It is important to use estimation methods 215 

capable of fitting the data using flexible mathematical relationships so that confounding is 216 

appropriately removed, especially when the number of baseline and time-dependent confounders 217 

is large. 218 

Methods to estimate the g-computation formula (e.g., inverse probability weighting (IPW), 219 

parametric g-formula, targeted minimum loss-based estimators (TMLE), sequentially doubly 220 

robust estimators (SDR), etc.)21,22 rely on two kinds of mathematical models: (i) the outcome as a 221 

function of the time-dependent confounders, and (ii) treatment as a function of time-dependent 222 

confounders. Methods that use only one of these models are often called singly robust, because 223 

their correctness relies on the ability to correctly specify one of the models (e.g., IPW relies on 224 

estimating treatment models correctly). Methods that use both of these models are often called 225 

doubly robust, because they remain correct under misspecification of one of the two models. 226 

Furthermore, doubly robust estimators such as TMLE and SDR allow the use of machine 227 

learning to flexibly fit relevant treatment and outcome regressions.23,24 This is desirable because 228 

these regression functions might include complex relationships, and capturing those relationships 229 

is not possible using simpler regression such as the Cox model.25  230 

The primary analysis is conducted using SDR estimation with a dynamic intervention, time-231 

varying confounders, and a time-to-event outcome. An ensemble of machine learning models 232 

using the super learner algorithm is used to estimate the regressions for treatment and 233 
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outcome.26,27 Additional details, including sensitivity analyses, an illustrated analytical file 234 

(eFigure 2), and code tutorial, are available in eMethods. 235 

Model-first approaches 236 

For contrast with the target trial emulation strategy, we review methodology of papers cited in 237 

Chaharom et al.’s28 COVID-19 corticosteroids meta-analysis, and then analyze the data using 238 

study designs common in those papers. The data source and outcome are the same as the above 239 

target trial. Modifications to the cohort, confounders, and treatment definitions to accommodate 240 

the model-first approaches are outlined below. 241 

Point-treatment Cox models 242 

The first approach we explore is a regression for mortality with a point-treatment variable. The 243 

inclusion criteria and time zero are defined as the time of meeting hypoxia criteria, which is the 244 

intended indication for corticosteroids. A study design using this approach entails several 245 

choices, including defining a range of time relative to inclusion criteria for a patient to be 246 

considered “treated”. Once this range is determined, researchers must decide how to handle 247 

patients treated before the inclusion time begins or after the treatment interval ends, as well as 248 

those who experience the outcome within the treatment interval.  249 

We fit Cox models using data sets obtained from various design choices, summarized in 250 

Table 1. Baseline confounders and time-dependent confounders from day zero are included as 251 

adjustment variables. The exponentiated coefficient for corticosteroids is interpreted as the 252 

hazard ratio for corticosteroid exposure within the defined treatment window for moderate-to-253 

severe COVID-19 patients. 254 
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These point-treatment estimates apply only to the hypoxic population. They are different 255 

from the effects in the target trial emulation, which apply to the population of hospitalized 256 

patients. These effects are the closest possible analog we can obtain within a model-first 257 

framework using a point-treatment. 258 

Time-varying Cox models 259 

In the second model-first approach, we fit a time-varying Cox model for time to mortality up to 260 

28 days from the day of hospitalization. This model uses the entire cohort and contains baseline 261 

and time-dependent confounders, as well as daily corticosteroid administration. The coefficient 262 

for corticosteroids is exponentiated and used as an estimate of the hazard ratio for corticosteroids 263 

on mortality in hospitalized COVID-19 patients. 264 

RCT benchmark 265 

Several RCTs have established the effectiveness of corticosteroids in the treatment of moderate-266 

to-severe COVID-19 patients.29-31 The WHO performed a meta-analysis of seven such RCTs and 267 

estimated the OR of mortality to be 0.66 (95% CI 0.53-0.82).14 We use this estimate, as well as 268 

supporting evidence from other RCT meta-analyses28,32 to benchmark our results. A discussion of 269 

assumptions for benchmarking, along with comparisons of our target trial study design, 270 

population, and treatment arms to the benchmark RCTs (eTables 1-3), is provided in the 271 

Appendix. 272 
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Results 273 

Target trial emulation 274 

In the target trial emulation analysis, all 3,298 patients who were admitted to the hospital are 275 

analyzed. Table 2 and eTable 4 display characteristics of the cohort, and eTable 5 describes the 276 

informative measurement process. There were 1,690 patients who reached severe hypoxia and 277 

423 patients who received corticosteroids at any point during follow-up. 699 patients died before 278 

28 days. 279 

The estimated mortality rate under our no corticosteroids regime is 32.2% (95% CI 30.9-280 

33.5). The estimated mortality rate under our corticosteroids regime is 25.7% (24.5-26.9). This 281 

yields an estimated mortality reduction of 6.5% (5.7-7.4) if this policy had been implemented. 282 

Sensitivity analyses (see Appendix) yield near-identical results. 283 

Model-first approaches 284 

In the subset of patients who met severe hypoxia, 72 patients received corticosteroids within one 285 

day of hypoxia and 191 patients received corticosteroids within 5 days of hypoxia. There were 18 286 

and 451 patients who died within one and five days of hypoxia without receiving corticosteroids, 287 

respectively. 288 

Model A, which defined corticosteroid exposure as anytime during hospitalization, yielded an 289 

HR of 0.50 (0.41-0.62). Models B-I, which placed either a one- or five-day limit on 290 

corticosteroids treatment from the time of hypoxia, yielded mostly non-significant HRs in both 291 

directions (B: 0.95 (0.66-1.37), C: 0.92 (0.63-1.33), D: 0.89 (0.56-1.41), E: 0.66 (0.41-1.04), G: 292 

1.05 (0.77-1.45), H: 1.04 (0.75-1.45)). The exception to this was Model I, which excluded 293 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2022. ; https://doi.org/10.1101/2022.05.27.22275037doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275037
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

patients who died before five days and estimated the HR to be 0.63 (0.48-0.83). Model F also 294 

reached statistical significance, 0.77 (0.60-0.99), and was the result of a 5-day treatment window 295 

with no exclusion or censoring variations. The time-varying Cox model yielded an HR of 1.08 296 

(0.80-1.47). Figure 3 summarizes the model-first results. 297 

Discussion 298 

Our research illustrates how a question-first approach can aid in devising an optimal design and 299 

choice of estimation procedure for an analysis of observational data. We show that using the 300 

target trial framework succeeds in recovering the benchmark causal effect obtained in RCTs. Our 301 

estimate that corticosteroids would reduce overall 28-day mortality in a hospitalized cohort is 302 

equivalent to an OR of 0.73 (0.68-.74), which is qualitatively identical to the WHO’s estimate of 303 

0.66 (0.53-0.82). Our study design allowed us to conceptualize a meaningful intervention, i.e., 304 

randomize patients at hospitalization but do not give corticosteroids unless the patient becomes 305 

severely hypoxic. Our analysis plan enabled us to flexibly adjust for a large number of potential 306 

time-dependent confounders. 307 

In contrast, the majority of the model-first approaches could not recover the RCT benchmark 308 

using the same data source. This finding aligns with other corticosteroids research; a recent meta-309 

analysis containing observational analyses on over 18,000 patients found no overall effect for 310 

corticosteroids on mortality (OR 1.12, (0.83–1.50)).28 The task of creating reliable evidence from 311 

complex longitudinal data is not an easy one, and many of these studies suffer from flawed 312 

designs. 313 

We found most studies in the current observational corticosteroids literature allowed the 314 

“treated” group to receive corticosteroids anytime during hospitalization.33-35 This is problematic 315 
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because it introduces immortal time and biases results towards a protective effect of 316 

corticosteroids.35 A few studies did limit the treatment time frame in an effort to diminish 317 

immortal time bias. The “grace period” for treatment was handled in various ways, e.g. excluding 318 

patients who die prior to a time window after inclusion criteria,37 or excluding patients who 319 

receive treatment after the treatment window ends.38,39 Both exclusions may lead to bias and 320 

spurious associations.1 An alternative to exclusion is censoring patients at their time of receiving 321 

treatment if that time is after the treatment window passes, however, Cox regression cannot 322 

handle time-dependent censoring.1 
323 

In addition to these issues, it is often unclear in the current literature how patients who 324 

receive corticosteroids prior to meeting inclusion criteria are handled in the analysis.33-35,40 A 325 

related issue is that corticosteroids can affect severity of illness. All of the point-treatment studies 326 

are thus subject to collider bias by subsetting to severely ill patients.41 While the time-varying 327 

Cox approach does not suffer from the same time-alignment biases as the point-treatment design, 328 

it cannot properly account for time-dependent confounders.1 These biases appear in our model-329 

first results; the study designs which result in a statistically significant protective effect of 330 

corticosteroids suffer from extreme immortal time bias through undefined or extended treatment 331 

time windows (A,F,I). 332 

 333 

Limitations 334 

First, while the pre-RCT study time frame is ideal for natural experimentation and the estimation 335 

of causal effects, it includes surge conditions and rapidly changing clinical practice, challenging 336 

the assumptions needed for transportability and benchmarking. Second, we cannot rule out 337 

unmeasured confounding in the treatment, censoring, or outcome mechanisms. Specifically, the 338 

different discharge pathways (home, nursing home, etc.) may be associated to unmeasured 339 
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patient characteristics and lead to very different outcomes. Third, we did not have the data to 340 

look at individual corticosteroid types, making comparisons to a specific RCT impossible. 341 

Fourth, the binning of our data into 24-hour intervals may induce issues related to the correct 342 

time-ordering of events (see Appendix). 343 

 344 

Conclusions 345 

This study serves as an example in which the current standard for clinical research methods 346 

fails to recover the correct treatment effect where a modern causal inference method succeeds. 347 

Using observational data to guide clinical practice is possible but relies on the use of 348 

contemporary statistical and epidemiological principles. We hope this study and accompanying 349 

technical guide encourages adoption of similar innovative techniques into study designs and 350 

statistical analyses for observational medical research. 351 

 352 

 353 

 354 

  355 
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Figure Captions 513 

 514 

Figure 1. Illustrated example of two patients under the two hypothetical treatment regimes of our 515 

target trial emulation. Patient A reaches severe hypoxia criteria at study day 2 and is followed the 516 

entire study duration. Patient B never reaches severe hypoxia criteria and is lost to follow up 517 

after five study days. Under the dynamic corticosteroids regime (Intervention #1), Patient A 518 

receives 6 days of corticosteroids, and under Intervention #2 they receive no corticosteroids. 519 

Patient B does not receive corticosteroids under either treatment regime, however, in both 520 

hypothetical worlds they are observed for the entire study duration. 521 

 522 

Figure 2. Illustrative Directed Acyclic Graph (DAG) showing the relationship between 523 

confounders Lt, corticosteroid exposure At, and mortality Yt. Baseline confounders are included in 524 

L0. For simplicity, loss-to-follow-up nodes are not shown. Abbreviations: BMI = Body Mass 525 

Index, BUN = Blood Urea Nitrogen, ACE/ARBs = Angiotensin-converting enzyme and 526 

Angiotensin receptor blockers. 527 

 528 

Figure 3. Forest plot of model-first results. Study designs A-J correspond to Table 1’s 529 

specifications. 530 
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Tables 532 

Table 1: Study design specifications for the model-first approaches. 533 

Model Study Design 

A Corticosteroid exposure defined as anytime during the course of hospitalization. 
All patients satisfying inclusion criteria are included in the analysis and time to 
event is defined as time from hypoxia to death. 

B Corticosteroid exposure defined as any administration up to one day after meeting 
hypoxia criteria. All patients satisfying inclusion criteria are included in the 
analysis and time to event is defined as time from hypoxia to death. 

C Corticosteroid exposure defined as any administration up to one day after meeting 
hypoxia criteria. Patients who died during this time window are excluded. 
Patients who receive corticosteroids after the time window are included in the 
control group. 

D Corticosteroid exposure defined as any administration up to one day after meeting 
hypoxia criteria. Patients who died during this time window are excluded. 
Patients who receive corticosteroids before hypoxia are excluded. Patients who 
receive corticosteroids after the time window are included in the control group. 

E Corticosteroid exposure defined as any administration up to one day after meeting 
hypoxia criteria. Patients who receive corticosteroids before hypoxia are 
excluded. Patients who receive corticosteroids after the one-day time window 
passes are censored at the time of corticosteroids receipt. 

F Corticosteroid exposure defined as any administration up to five days after 
meeting hypoxia criteria. All patients satisfying inclusion criteria are included in 
the analysis and time to event is defined as time from hypoxia to death. 

G Corticosteroid exposure defined as any administration up to five days after 
meeting hypoxia criteria. Patients who died during this time window are 
excluded. Patients who receive corticosteroids after the time window are included 
in the control group. 

H Corticosteroid exposure defined as any administration up to five days after 
meeting hypoxia criteria. Patients who died during this time window are 
excluded. Patients who receive corticosteroids before hypoxia are excluded. 
Patients who receive corticosteroids after the time window are included in the 
control group. 

I Corticosteroid exposure defined as any administration up to five days after 
meeting hypoxia criteria. Patients who receive corticosteroids before hypoxia are 
excluded. Patients who receive corticosteroids after the one-day time window 
passes are censored at the time of corticosteroids receipt. 

J Corticosteroid exposure is allowed to be a time-varying covariate beginning at the 
time of hospitalization. 

 534 
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 536 

 537 

Table 2. Demographics and outcome for study cohort, overall and stratified by any corticosteroid 538 

exposure. 539 

Characteristica Overall 
[N=3,298] 

Corticosteroid 
Never [N=2,875] 

Corticosteroids 
Ever [N=423] 

Age 65 (53, 77) 65 (52, 77) 67 (58, 75) 

Sex    

    Female 1,328 (40%) 1,178 (41%) 150 (35%) 

    Male 1,970 (60%) 1,697 (59%) 273 (65%) 

Raceb    

    Asian 602 (18%) 517 (18%) 85 (20%) 

    Black 399 (12%) 352 (12%) 47 (11%) 

    White 938 (28%) 818 (28%) 120 (28%) 

    Other 1,141 (35%) 1,009 (35%) 132 (31%) 

    Unknown or declined 218 (6.6%) 179 (6.2%) 39 (9.2%) 

Ethnicity    

    Hispanic or Latinx 1,117 (34%) 994 (35%) 123 (29%) 

    Non-Hispanic or Latinx 1,585 (48%) 1,388 (48%) 197 (47%) 

    Unknown or declined 596 (18%) 493 (17%) 103 (24%) 

BMIc 27 (23, 31) 27 (23, 31) 28 (24, 32) 

Home supplemental oxygen 312 (9.5%) 286 (9.9%) 26 (6.1%) 

Coronary Artery Disease 460 (14%) 402 (14%) 58 (14%) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2022. ; https://doi.org/10.1101/2022.05.27.22275037doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.27.22275037
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

Diabetes Mellitus 1,033 (31%) 891 (31%) 142 (34%) 

Hypertension 1,780 (54%) 1,544 (54%) 236 (56%) 

Cerebral Vascular Event 225 (6.8%) 193 (6.7%) 32 (7.6%) 

Cirrhosis 35 (1.1%) 30 (1.0%) 5 (1.2%) 

CKD/ESRD 159 (4.8%) 146 (5.1%) 13 (3.1%) 

Asthma 180 (5.5%) 145 (5.0%) 35 (8.3%) 

COPD 134 (4.1%) 100 (3.5%) 34 (8.0%) 

Active cancer 136 (4.1%) 118 (4.1%) 18 (4.3%) 

Immunosuppressed 51 (1.5%) 44 (1.5%) 7 (1.7%) 

ILD 5 (0.2%) 3 (0.1%) 2 (0.5%) 

HIV 35 (1.1%) 33 (1.1%) 2 (0.5%) 

Active smoker 104 (3.2%) 93 (3.2%) 11 (2.6%) 

Former smoker 543 (16%) 442 (15%) 101 (24%) 

Outcome: 28-day mortality 699 (21%) 574 (20%) 125 (30%) 

aAll continuous variables are reported as median (interquartile range) and categorical variables 
are n (%). Abbreviations: BMI=Body Mass Index, CKD=Chronic Kidney Disease, ESRD=End 
Stage Renal Disease, COPD=Chronic Obstructive Pulmonary Disease, ILD=Interstitial Lung 
Disease, HIV=Human Immunodeficiency Virus. bOther race category includes American Indian 
or Alaskan Native, Pacific Islander, multiracial, or a patient response of “some other race”. c190 
(5.8 %) patients did not have BMI data available. 
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