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Population-weighted greenspace exposure tied to lower COVID-19 mortality rates: A 1 
nationwide dose-response study 2 
 3 
Abstract 4 
 5 
    The COVID-19 outbreak has caused enormous deaths and profound social and economic 6 
disruption globally. Accumulating evidence suggests exposure to greenspace may reduce the risk 7 
of COVID-19 mortality. Greenspace exposure enhances immune functioning, reduces 8 
inflammation, and replenishes gut microbiota may protect against the risk of mortality among 9 
those with COVID-19. However, previous studies often fail to distinguish the health effect of 10 
different types of greenspace, explore the dose-response association and optimal buffer distance, 11 
and consider the spatial dynamics of population distribution and geographic locations of 12 
greenspace. 13 
 14 
    This study examined the associations among ratio of different types of greenspaces, population-15 
weighted exposure to different types of greenspaces, and COVID-19 mortality rates using a 16 
negative binomial generalized linear mixed effects model across 3,025 counties, adjusted for 17 
socioeconomic, demographic, pre-existing chronic disease, policy and regulation, behavioral, and 18 
environmental factors. The population-weighted measure gave proportionally greater weight to 19 
greenspace near areas of higher population density.  20 
 21 
    Exposure to forest and pasture was negatively associated with COVID-19 mortality rates, while 22 
developed open space has insignificant or positive associations with mortality rates. Forest outside 23 
park has the largest effect size across all buffer distances, followed by forest inside park. The 24 
optimal exposure buffer distance is 1km for forest outside park, with 1 unit of increase in exposure 25 
associated with a 9.9% decrease in mortality rates (95% confidence interval: 6.9% -12.8%). The 26 
optimal exposure buffer distance of forest inside park is 400m, with 1 unit of increase in exposure, 27 
associated with a 4.7% decrease in mortality rates (95% confidence interval: 2.4% - 6.9%). 28 
 29 
    Greenspaces, especially nearby forest, may be effective at lowering the mortality risk of 30 
COVID-19 patients. Our findings suggest that policymakers and planners should prioritize forestry 31 
within walking distance of residential clusters to mitigate mortality rates during current and future 32 
respiratory pandemics. 33 
 34 
 35 
Keywords: COVID-19 mortality rate; Greenspace; Forest; Dose-response; Optimal buffer 36 
distance 37 
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1. Introduction 50 

    Since its outbreak in 2019, COVID-19 has spread rapidly throughout the world, leading to 51 

numerous infections and deaths. In the United States, COVID-19 is largely responsible for the 52 

substantial 17.7% increase in total deaths from 2019 to 2020 and became the third leading cause 53 

of death following heart disease and cancer (Ahmad, Cisewski, Miniño, & Anderson, 2021). By 54 

the end of 2020, COVID-19 deaths were estimated at 348,600; by February 2020, they had reached 55 

over 933,000 (Johns Hopkins University & Medicine, 2021; Viglione, 2020). In the US, COVID-56 

19 was estimated to reduce life expectancy by 1.13 years annually (Andrasfay & Goldman, 2021). 57 

    The COVID-19 pandemic also overwhelmed healthcare systems and caused substantial 58 

economic loss. COVID-19 infection and deaths cast escalating pressure on testing capacities and 59 

hospitalizations in the U.S. (Dyer, 2020; Miller, Becker, Grenfell, & Metcalf, 2020). Critically ill 60 

COVID-19 patients faced shortages in intensive care units (ICUs) compounded by other critical 61 

health conditions (Halpern & Tan, 2020). The cumulative economic costs of the COVID-19 62 

pandemic due to premature deaths, unemployment, and business revenue decline was estimated to 63 

be US$1.4 trillion GDP by 2030 (Cutler & Summers, 2020; Chen et al. 2021).  64 

Accumulating evidence suggests links between both nature and the built environment and 65 

COVID-19 mortality rates. Exposure to air pollution (Ali & Islam, 2020; Konstantinoudis et al., 66 

2021; Liang et al., 2020), crowded housing (Brandén et al., 2020; Hu, Roberts, Azevedo, & Milner, 67 

2021; van Ingen et al., 2021), and lower average temperature (Ma et al., 2020; Perone, 2021) were 68 

found to increase COVID-19 deaths. The relationship between greenspace and COVID-19 69 

mortality rates has received far less attention (Jiang, Yang, et al., 2021; Klompmaker et al., 2021; 70 

Lu, Chen, et al., 2021), despite the numerous salutary effects of nature exposure on human health. 71 

 72 
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1.1 How might exposure to greenspace alleviate COVID-19 mortality rates?  73 

    An overwhelming amount of research has shown that exposure to greenspace can improve both 74 

physical and mental health (Jiang, Chang, & Sullivan, 2014; Lu, Chen, et al., 2021). Particularly, 75 

studies have shown that contact with greenspace boosts our defense capacity against viruses by 76 

increasing Natural Killer (NK) and T cells and cytotoxic activities (Liisa Andersen, Sus Sola Sola 77 

Corazon, & Ulrika Karlsson Karlsson Stigsdotter, 2021; Li, 2010; Roviello, Gilhen-Baker, 78 

Vicidomini, & Roviello, 2021), reducing inflammation (Kuo, 2015; Ribeiro, Tavares, Guttentag, 79 

& Barros, 2019), and replenishing gut microbiota (Parajuli, 2019; Parajuli et al., 2020; Marja I. 80 

Roslund et al., 2020). Hospitalized COVID-19 patients with severe or fatal cases have consistently 81 

shown immune interference (e.g., lower NK and T cell count, exaggerated cytotoxic activities) 82 

(Castelli, Cimini, & Ferri, 2020; Girija, Shankar, & Larsson, 2020; Qin et al., 2020), hyper-83 

inflammation or ‘cytokine storm’(e.g., delayed but elevated of pro-inflammatory cytokines) 84 

(Paranjpe et al., 2020; Potempa, Rajab, Hart, Bordon, & Fernandez-Botran, 2020; Yang et al., 85 

2020), and decreased gut microbiota diversity (Dhar & Mohanty, 2020) compared to non-critically 86 

ill patients. Thus, contact with nature has the potential to mitigate severe COVID-19 prognosis 87 

and deaths.  88 

1.2 A critical gap: The relationship between different types of greenspace and COVID-19 89 

mortality rate. 90 

Several studies have shown a significant association between greenness and COVID-19 91 

mortality rates in the U.S. (Klompmaker et al., 2021; Lee et al., 2021; Russette et al., 2021; 92 

Spotswood et al., 2021). These studies define greenspace as the total area of vegetation within a 93 

boundary (e.g., Normalized Difference Vegetation Index and Leaf Area Index).They did not 94 

distinguish between open space, forest, grassland/herbaceous, and hay/pasture, nor did they 95 
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consider the impacts of greenspace proximity and recreational function provision on COVID-19 96 

health outcomes. While previous evidence suggests different types of greenspace does not have 97 

same impacts on health outcomes (Akpinar, Barbosa-Leiker, and Brooks 2016; Ekkel & de Vries 98 

2017; Kim & Miller 2019; Johnson et al. 2020; Ma et al. 2022). For instance, greenspace such as 99 

greenness and park had negative association with COVID-19 infection (Russette et al. 2021; 100 

Spotswood et al. 2021; Wang et al. 2021; Johnson et al. 2020), but park mobility and green space 101 

with better accessibility were positively associated with COVID-19 transmission (Pan, Bardhan, 102 

and Jin 2021; DePhillipo et al., 2021). We still do not know whether and to what extent different 103 

types of greenspace can influence the COVID-19 mortality rates.  104 

Second, existing studies estimate the amount of greenness in a county but ignore the spatial 105 

distribution of greenspace in relation to population (Klompmaker et al., 2021; Russette et al., 2021). 106 

Despite being widely used and effective, the accuracy of ‘greenness’ metric can be greatly 107 

improved by considering spatial relations between location of greenspace and population 108 

distribution (Ben et al., 2019). Further, one study used deciles of ‘greenness’ to assess the dose-109 

response association (Russette et al., 2021). Though, the dose-response associations for different 110 

types of greenspace within various buffer distances are unclear. Many previous studies suggested 111 

that distance matters for greenspace’s impact on health outcomes, and health effect might drop 112 

after a threshold distance (Coombes, Jones, and Hillsdon 2010; Grahn and Stigsdotter 2003; 113 

Nielsen and Hansen 2007). Still, we do not know whether the association of nearby greenspace on 114 

mortality risk is significantly stronger than distant ones. We do not know which distances are 115 

optimal. Without addressing these critical gaps, policymakers and urban planners are unable to 116 

develop evidence-based urban greening solutions and policy to promote public health for current 117 

and future pandemics. 118 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.24.22275549doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.24.22275549


 
 

1.3 Research questions 119 

In this study, we investigated the associations among the ratio of six types of greenspace, 120 

population-weighted exposure to six types of greenspace at different buffer distances, and full-121 

year COVID-19 mortality rates after controlling for potential confounding covariates. We seek to 122 

answer the following three questions: 1) What are the associations between the ratio of six types 123 

of greenspace and COVID-19 mortality rates after controlling for confounding variables? 2) What 124 

are the associations between population-weighted exposure to six types of greenspace and 125 

COVID-19 mortality rates within various buffer distances after controlling for confounding 126 

variables?  (3) Which exposure distances of the significant types of greenspace have the strongest 127 

association with COVID-19 mortality rates? 128 

2. Methods 129 

We combined COVID-19 mortality data, sociodemographic characteristics, healthcare and 130 

testing data, pre-existing chronic disease data, policy and regulation data, behavior data, and 131 

environmental factors from diverse sources for 3,025 counties.  The greenspace exposures were 132 

calculated in GEE. We first used a negative binomial generalized linear mixed effects model to 133 

evaluate the association between the ratio of six types of greenspace and COVID-19 mortality 134 

rates in the U.S. from January 22 to December 31, 2020, adjusted for socioeconomic, demographic, 135 

pre-existing chronic disease, policy and regulation, behavioral, and environmental factors. Then, 136 

we examined the associations between the population-weighted exposure to greenspace at varying 137 

distances within 4km and COVID-19 mortality rates, adjusted for confounders. 138 

2.1 Data  139 

2.1.1 COVID-19 mortality data 140 

COVID-19 mortality data are publicly available at the US Centers for Disease Control and 141 

Prevention (CDC) and State government websites (Kolak et al., 2021). We define the COVID-19 142 
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mortality rates as the cumulative number of COVID-19 deaths per 100,000 people for each of 143 

3,025 counties from January 22, 2020 to December 31, 2020 (Fig. 1). We limit our research period 144 

at the end of 2020 to avoid the possible confounding effect from large-scale vaccination, which 145 

will have significantly impact on mortality rates (see Supplementary Table 1 for descriptive 146 

COVID-19 mortality data).  147 

 148 

Fig. 1 | County-level COVID-19 deaths per 100,000 population in the United States (from 149 
Jan 18 to Dec 30, 2020). 150 
 151 
2.1.2 Greenspace exposure data 152 

 We assessed greenspace exposure using two metrics. First, we quantified the ratios of six types 153 

of greenspaces within a county, which measures the area of each greenspace over the county area. 154 

The ratio of forest inside park, forest outside park, grassland/herbaceous, hay/pasture, open space  155 

inside park, and open space outside park were calculated use the National Land Cover Database 156 

2016 (NLCD, 2016) (Fig. 2). We distinguished open space and forest within park from open 157 
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space and forest outside park use the boundary derived from the USA parks from Esri (Esri, 158 

2021).  159 

 160 

Fig. 2 | Ratio of greenspace at the county level in the United States. (A) forest inside park (B) forest outside park;  161 
(C) hay/pasture; (D) grassland/herbaceous; (E) developed open space inside park; (F) developed open space outside 162 
park. 163 

Second, we quantified the population-weighted exposure to greenspaces within different 164 

distances from human settlements using two datasets: the National Land Cover Datasets in 2016 165 

(Yang et al., 2018) and the 2020 WorldPop Global Project Population Data (Sorichetta et al., 166 

2015). The 30-meter resolution NLCD 2016 Landsat imagery was re-projected to match the 100-167 
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meter spatial resolution of WorldPop Dataset. We estimated population-weighted greenspace 168 

exposures within 4km in GEE (Gorelick et al., 2017), because past studies suggest few walking 169 

activities occur beyond 4km (Yang & Diez-Roux, 2012). These measures considered population 170 

spatial distributions and gave proportionally greater weight to greenspace near areas of higher 171 

population density, which previous studies fail to address (Chen et al., 2018). Considering 172 

population distribution in greenspace exposure measurement can reduce bias caused by a 173 

mismatch between population and greenspaces within an area. The buffer interval is set as 200m 174 

within 2km and 500m between 2km to 4m. The population-weighted exposure to greenspaces 175 

with varying buffer sizes in each county is defined by Equation 1 (Chen et al., 2018), 176 

𝐹𝐸 = ∑ "!×$!
"#

!$%
∑ "!#
!$%

 (Equation 1) 177 

where Pi represents the population of the ith grid,  𝐹%&represents the land cover of the ith grid at a 178 

buffer size of b meters, N denotes the total number of grids for a given county, and FE is the 179 

estimated greenspace exposure level for the given county (see Supplementary Table 2 for 180 

descriptive greenspace exposure data).  181 

2.1.3. Predictors of COVID-19 mortality 182 

 We considered a number of predictors of COVID-19 mortality as potential covariates in analyses. 183 

Many studies have found sociodemographic, chronic disease, behavioral, healthcare, and 184 

environmental factors linked to COVID-19 mortality. The county-level sociodemographic, 185 

healthcare, and testing data from the US Census Bureau (US Census Bureau, 2019) and US 186 

COVID Atlas of the Center for Spatial Data Science (Kolak et al., 2021). These variables included 187 

population density, the ratio of female household, non-Hispanic black, white, and Hispanic, the 188 

proportion of residents older than 65, median household income, Gini index, poverty rate, median 189 

housing value, unemployment rate, Gini index, the ratio of residents without a high school diploma 190 
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and without a college degree, percent without health insurance coverage, and COVID-19 testing 191 

rates.  192 

The pre-existing chronic diseases were shown to affect COVID-19 mortality risk, included rates 193 

of hypertension, heart failure, stroke mortality, diabetes, and obesity (CDC, 2021; Prevention., 194 

2022). The policy and regulation factors included stay-at-home order intensity, public mask 195 

mandates, and bar and restaurant closing and reopening orders (Chernozhukov et al., 2021; 196 

VoPham et al., 2020). The behavior risk factors included the proportion of current smokers and 197 

the proportion of essential workers, the proportion of workers who commuted to work by public 198 

transportation, walking, and private cars, and the proportion of leisure-time physical inactivity, 199 

median max-distance traveled, and foot traffic to different out-of-home activities. The 200 

environmental risk factors included particulate matter (e.g., PM2.5 and PM10), temperature, relative 201 

humidity, precipitation, wind speed, and transportation density. All descriptive statistics of 202 

covariates and data sources are available in Supplementary Table 1. 203 

2.2 Statistical analysis  204 

We used a negative binomial generalized linear mixed effects model to evaluate the associations 205 

between the ratios of six types of greenspace and COVID-19 mortality rates, and state was used 206 

in analyses as a random effect to account for state-level variability and non-independence in our 207 

data. The analyses were adjusted for a range of covariates. We applied restricted maximum 208 

likelihood (REML) with a negative binomial link function. The negative binomial mixed effect 209 

model and state as random effect accounts for our over-dispersed count data and partially 210 

accounts for the presence of spatial autocorrelation. The variance inflation factor (VIF) test was 211 

used to identify multi-collinearity between the independent variables. Variables with a VIF ≥ 4 212 

were excluded from our models (O'Brien, 2007). 213 
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To identify the optimal exposure distance for significant greenspaces, we used a negative 214 

binomial generalized linear mixed effects model to evaluate associations between population-215 

weighted exposures to six types of greenspace with COVID-19 mortality rates. The analyses use 216 

the same sets of covariates as previous analysis and state was used as random effect. All 217 

explanatory variables were centered and scaled.  218 

    We used Moran's I test to assess spatial autocorrelation of COVID-19 mortality residuals. We 219 

confirmed the presence of spatial autocorrelation with Moran’s I=0.21, p < 0.0001. The Moran's 220 

I value equal to 0 indicates a lack of spatial autocorrelation, and positive values indicate 221 

clustering of similar values. The analyses were performed in R v.4.1.2 (Team, 2015), and Moran’ 222 

I test was performed using the package ‘spdep’ (Bivand & Wong, 2018). The negative binomial 223 

mixed effects models were performed using the package lme4 (Bates, Mächler, Bolker, & 224 

Walker, 2014). 225 

2.3 Model validation  226 

The negative binomial generalized linear mixed effects model provides an appropriate error 227 

structure for the overdispersed COVID-19 mortality count data. Due to the presence of spatial 228 

autocorrelation (Moran’s I=0.21, p < 0.0001), we built additional spatial autoregressive models 229 

(SAR) to validate the results of the negative binomial mixed effects model. The queen’s criteria 230 

were used to build the neighbors matrix. We used the Akaike information criterion (AIC) value 231 

to compare the spatial error model, spatial lag model, and spatial Durbin model. The spatial error 232 

model has the lowest AIC values, which suggests that spatial dependence occurs in the error 233 

term. The model validation confirms the negative associations between forest inside park, forest 234 

outside park, pasture, and COVID-19 mortality rates (See results of SAR models in 235 

Supplementary Table 5). Given the structure of our data, model coefficients and the magnitude 236 
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of effects, we chose to interpret our result using the negative binomial generalized linear mixed 237 

effects model. 238 

3. Results 239 

3.1 Associations among ratio of six types of greenspaces and COVID-19 mortality rates.  240 

We found forest inside park and forest outside park are significantly negatively associated with 241 

COVID-19 mortality rates (p < 0.0001); open space outside park is significantly positively 242 

associated with COVID-19 mortality rates (p < 0.01); grassland/herbaceous, hay/pasture and open 243 

space inside park are not significantly associated with COVID-19 mortality rates, after controlling 244 

for all covariates (Fig. 3). Among the six types of greenspace, forest outside park has the greatest 245 

effect size (β = -0.097), which is slightly larger than that of forest inside park (β = -0.082). We 246 

found 1 unit of increase in forest outside park is associated with a 9.2% decrease in COVID-19 247 

mortality rates (MRR 95% CI: 6.3 - 12.1%), whereas 1 unit of increase in forest inside park is 248 

associated with a 7.8% decrease (MRR 95% CI: 4.3 - 11.2%). In contrast, 1 unit of increase in 249 

developed open space outside park is associated with a 5.8% increase in COVID-19 mortality rates 250 

(MRR 95% CI: 2.3 - 9.5%) (Table 1). 251 
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 252 
Fig. 3 | Exposure to forest is associated with lower COVID-19 mortality rates adjusted for covariates. Coefficient 253 
values represent effect sizes for the associations between mortality rates of COVID-19 (cases per 100,000 people) and 254 
ratio of grassland/herbaceous, hay/pasture, open space in park, open space outside park, forest inside park, forest 255 
outside park, and all covariates. Coefficient values are represented as dots, bars represent 95% CI, and significant 256 
variables are shown in color: grey = p ≥ 0.01; yellow = p < 0.01; red = p < 0.0001. 257 
 258 

 259 

 260 
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Table 1| Mortality rate ratios (MRR), 95% confidence intervals (CI) of all variables in the model 261 
for COVID-19 mortality rates. 262 
Variables                     MRR (95% CI) 
Socioeconomic 
and 
demographic 
factors 

Population density 1.073 (1.041, 1.105) 
Black non-Hispanic 1.057 (1.021, 1.095) 
Population aged 65+  1.162 (1.129, 1.196) 
Gini Index 1.019 (0.993, 1.045) 
Median home value 0.878 (0.842, 0.915) 
Unemployment rate 0.970 (0.941, 1.000) 
Population without high 
school diploma 1.139 (1.095, 1.185) 

Healthcare and 
testing factors 

Population without 
insurance 0.973 (0.920, 1.029) 
Testing rate 1.092 (1.060, 1.126) 

Pre-existing 
chronic disease 
factors 

Diabetes rate 1.018 (0.993, 1.045) 
Obesity rate 0.988 (0.961, 1.015) 
Stroke mortality 1.033 (1.004, 1.062) 
Hypertension mortality 1.013 (0.986, 1.040) 
Heart disease mortality 1.024 (0.996, 1.052) 

Behavioral 
factors 

Smoker 0.993 (0.951, 1.037) 
Essential worker 1.031 (0.996, 1.067) 
POI visits 1.022 (0.997, 1.047) 
Commute to work by 
walking or bicycle 0.987 (0.962, 1.014) 
Leisure time physical 
inactivity 1.042 (1.011, 1.074) 
Mobility 0.981 (0.962,1.000) 
Mobility 50index 0.988 (0.966, 1.011) 

Policy and 
regulation 
factors 

Stay-at-home orders 1.027 (0.987, 1.068) 
Public mask mandates 0.950 (0.831, 1.085) 
Bar 1.097 (0.956, 1.258)  
Restaurant 0.95 (0.808, 1.118) 

Environmental 
factors 

Crowded Housing 1.073 (1.042, 1.105) 
Proximity to highway 1.013 (0.990, 1.038) 
Airport density 0.968 (0.947, 0.989) 
Railway density  0.964 (0.938, 0.990) 
Highway and secondary 
road density 1.001 (0.964, 1.038) 
PM 2.5  1.015 (0.978, 1.052) 
PM 10 0.968 (0.924, 1.014) 
NO2 1.012 (0.976, 1.050) 
Maximum temperature 0.975 (0.915, 1.038) 
Humidity 0.886 (0.842, 0.933) 
Wind speed 1.010 (0.980, 1.042) 
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Green space 
factors 

Grassland / Herbaceous 1.016 (0.986, 1.046) 
Hay / Pasture  0.970(0.945, 0.995) 
Open space in park 1.024 (0.988, 1.060) 
Open space outside park 1.058 (1.023, 1.095) 
Forest in park  0.922 (0.888, 0.957) 
Forest outside park 0.908 (0.879, 0.937) 

 263 

3.2 Associations of population-weighted exposures to greenspace with COVID-19 mortality 264 

rates at various buffer distances.  265 

We also found population-weighted exposure to forest inside park, forest outside park and 266 

pasture are significantly and negatively associated with COVID-19 mortality rates.  Population-267 

weighted exposure to forest inside park is significantly and negatively associated with mortality 268 

rates between 100 to 400m and 1,800m to 4km, and the distance for largest effect size is 4km (β = 269 

-0.050). The effect size increases as buffer distance gets larger, though the increase remains limited 270 

(400m β= -0.048 vs 4km β = -0.050, 4% of increase) (Fig. 4). With 1 unit of increase in forest 271 

exposure in park at 4km, there is a 4.9% decrease in COVID-19 mortality rates (MRR 95% CI: 272 

2.7-7.0%) (Table 2).  273 

The population-weighted to forest outside park is consistently and significantly negatively 274 

associated with COVID-19 mortality rates across all buffer distances, and the greatest reduction 275 

occurs at 1km (β = -0.104).  The effect size increases as the buffer increases from 100m to 1km 276 

and decrease beyond 1km (Fig. 5). We found a 9.9% decrease in COVID-19 mortality rates per 277 

unit increase in forest exposure outside park at 1km (MRR 95% CI: 6.9–12.8%) (Table 2).  278 

The population-weighted exposure to pasture is significantly negatively associated with 279 

mortality rates from 2,500m to 4km with increasing effect size, and reaches optimal effect at 4km 280 

(β = -0.036). With 1 unit of increase in pasture exposure at 4km, the associated mortality rates 281 

decrease by 3.5% (MRR 95% CI: 5.9 - 10.0%) (Table 2).    282 
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 283 

Fig. 4 | The effect size of population-weighted exposure to forest inside park within 4km on COVID-19 mortality 284 
rates. Coefficient values represent effect sizes from a negative binomial mixed effects model for the relationship 285 
between mortality of COVID-19 mortality rates (death count per 100,000 people) and population-weighted exposure 286 
to forest inside park. Coefficient values are represented as dots, grey = p > 0.05; red = p < 0.0001. 287 
 288 

 289 

Fig. 5 | The effect size of population weighted exposure to forest outside park within 4km on COVID-19 mortality 290 
rates. Coefficient values represent effect sizes from a negative binomial mixed effects model for the relationship 291 
between mortality of COVID-19 mortality rates (death count per 100,000 people) and population-weighted exposure 292 
to forest outside park. Coefficient values are represented as dots, red = p < 0.0001. 293 
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Table 2 | Mortality Rate Ratio in models of population-weighted exposure to greenspaces with 294 
COVID-19 mortality rates at optimal distances.  295 
 296 
Variables COVID-19 MRR (95% CI) 

Forest inside park 400m 0.953 (0.931, 0.976) 

Forest inside park 4km 0.951 (0.930, 0.973) 

Forest outside park 1km 0.901 (0.872, 0.931) 

Hay/pasture 4km 0.965 (0.941, 0.990) 

297 
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4. Discussion 298 

    We found exposure to forest and pasture to be negatively associated with COVID-19 mortality 299 

rates, while exposure to developed open space has mixed association with mortality rates. 300 

Exposure to forest outside park has the largest effect size on reduced COVID-19 mortality rates 301 

across all buffer distances, followed by forest inside park. Further, the effect size of exposure to 302 

forest outside park increases until the distance reaches 1km, then declines beyond 1km. The effect 303 

size of population-weighted exposure to forest inside park increase with larger buffer size and is 304 

greatest at 4km, though similar to that at 400m.  305 

While this cross-sectional study cannot infer any causal relationships, previous findings suggest 306 

multiple mechanisms that might explain the observed associations. We proposed a framework of 307 

potential mechanisms that may contribute to the observed associations.  We consider why exposure 308 

to forest outside park may have a larger effect size than forest inside park.  We provide 309 

explanations for optimal exposure buffer size for significant greenspace types. Last, we discuss 310 

the contributions of our findings and identify questions for future research.  311 

4.1. Potential mechanisms for observed associations. 312 

4.1.1 How might forest and pasture alleviate COVID-19 mortality risk?  313 

     We found that forest and pasture exposure were significantly and negatively associated with 314 

COVID-19 mortality rates in the US, after control for all covariates. This finding aligns with 315 

previous studies (Klompmaker et al., 2021; Lee et al., 2021; Russette et al., 2021; Spotswood et 316 

al., 2021).  Greenspace may lower COVID-19 mortality risk if it boosts biological processes that 317 

fight against the prognosis of COVID-19 (Andersen et al., 2021; Roslund et al., 2020; Roviello et 318 

al., 2021), making affected patients less vulnerable to death (Roviello & Roviello, 2021). We 319 

suggest that contact with greenspace may reduce mortality rates through increased biogenic 320 
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volatile organic compound (VOC) exposure, increased environmental microbiota exposure, 321 

reduced psychological stress and air pollution, and increased physical activity (Fig. 6). 322 

 323 

Fig. 6 | The proposed theoretical model for negative associations between greenspace exposure and COVID-19 324 
mortality rates.  325 

    Exposure to the forest environment increases exposure to biogenic volatile organic 326 

compounds (VOCs). Forests are abundant with phytoncides (e.g., terpenes, limonene and pinene), 327 

a group of biogenic VOCs given off by forest trees that have been found to enhance immune 328 

capacity and reduce inflammation (Andersen, Corazon, & Stigsdotter, 2021; Cho et al., 2017; 329 

Huang et al., 2020; Kim, Song, Cho, & Lee, 2020). Studies suggest forest bathing increases natural 330 

killer (NK) cell counts and activity, and the effect can last for more than a month (Li, 2010; Li et 331 

al., 2008;  Li et al., 2007; Tsao et al., 2018). NK cells activate receptors to recognize virus-infected 332 

cells and trigger cytotoxicity (phagocytosis or apoptosis) (Market et al., 2020; Yokoyama, 2005). 333 

A recent study found COVID-19 mortality rates are lower in areas with high ratios of hectares of 334 

Mediterranean forest per capita, where biogenic VOCs are abundant (Roviello & Roviello, 2021). 335 

In addition, studies have shown that nearby greenspaces are associated with a lower level of a 336 

biomarker of inflammation - high sensitivity C-reactive protein (Del Valle et al., 2020; Mandel, 337 
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Harari, Gurevich, & Achiron, 2020; Ribeiro et al., 2019). Forests can increase exposure to VOCs 338 

that might boost the NK defenses, compensate for reduced NK cell counts, and modulate excess 339 

inflammatory responses in severely affected patients (Market et al., 2020; Osman et al., 2020);  340 

    Exposure to forest and pasture can diversify gut microbiota profile. Though our gut 341 

microbial composition is shaped by the interplay of multiple factors, such as diet and genetics 342 

(Dhar & Mohanty, 2020), many studies have found microbiome from surrounding green 343 

environments can transfer to humans (Grönroos et al., 2019; Parajuli et al., 2018; Parajuli et al., 344 

2020). A 28-day intervention study in Finland found that daily contact with backyard forest and 345 

grass areas within 500m can diversify children’s gut microbiota profile and enhance immune 346 

capacity (e.g., increases in plasma TGF-β1 levels and the proportion of regulatory T cells) 347 

(Roslund et al., 2020). If exposed to greenspaces, the disturbed gut microbe condition and immune 348 

function may improve for COVID-19 patients (Claesson et al., 2012; Donati Zeppa, Agostini, 349 

Piccoli, Stocchi, & Sestili, 2020; Roslund et al., 2020; Yeoh et al., 2021; Zuo et al., 2020). 350 

    Greenspaces can decrease patients’ exposure to air pollutants. Many studies have noted an 351 

inverse association between air pollution and COVID-19 mortality rates (Jaafari, Shabani, 352 

Moeinaddini, Danehkar, & Sakieh, 2020; Martelletti & Martelletti, 2020; Shen & Lung, 2017). 353 

Chronic exposure to air pollutants was associated with delays in recovery of COVID-19 patients 354 

and led to more fatal conditions (Domingo & Rovira, 2020). This may be attributed to modified 355 

host respiratory immune responses, perturbed anti-microbial responses, and triggered 356 

inflammatory cytokine release from air pollution exposure (Bauer, Diaz-Sanchez, & Jaspers, 2012; 357 

Ciencewicki & Jaspers, 2007; Glencross, Ho, Camiña, Hawrylowicz, & Pfeffer, 2020). Forests can 358 

reduce air pollutants by intercepting particulate matter on plant surfaces and absorbing gaseous 359 

pollutants (Nowak, Hirabayashi, Bodine, & Greenfield, 2014; Nowak, Hirabayashi, Doyle, 360 
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McGovern, & Pasher, 2018). Trees and forests in the U.S. remove an estimated 17.4 million tonnes 361 

(t) of air pollution annually (Nowak et al., 2014). It is thus reasonable to speculate that forests can 362 

reduce COVID-19 mortality rates by removing air pollutants.  363 

    Forests can reduce patients’ psychological stress. Patients infected with COVID-19 show a 364 

high prevalence of mental problems (Kong et al., 2020; Wang et al., 2021). Mental stress has been 365 

linked to dysregulation of the immune system and increased pro-inflammatory cytokines (Gouin 366 

et al., 2012; Morey, Boggero et al., 2015; Steptoe et al, 2007). Patients with increased contact with 367 

nature or nature views from home during the pandemic were found to have decreased depression 368 

and anxiety (Soga et al., 2021). Previous theoretical and empirical studies support nature’s stress-369 

reducing effect (Gidlow et al., 2016; Jiang et al., 2014; Lee et al., 2011; Mancus et al., 2020; Ulrich 370 

et al., 1991). It is possible that patients can have strengthened immune function and healthier 371 

inflammation level benefit from the stress-reduction effect of contact with forest. 372 

    Green space can promote physical activities (PA) during the pandemic. Since the COVID-373 

19 outbreak, people have escaped to nature. Recreational activities, such as walking or cycling in 374 

parks and trails, have spiked globally during the pandemic (Geng et al., 2021; Lu et al., 2021; 375 

Venter et al., 2020; Venter et al, 2021). Physical activity can boost COVID-19 patients’ immune 376 

response, modulate inflammation levels, and lower the risk of obesity. Exercise increases NK & T 377 

cells, enhances recirculation, and increases lymphocyte concentration and cytotoxic activity 378 

(Amatriain-Fernández et al., 2020; Fernandez et al., 2018; Nieman & Wentz, 2019). People who 379 

exercise in forested areas can benefit from the synergistic effect from physical activity and 380 

exposure to forest (Pretty et al, 2005). Moreover, physical activity has a direct anti-inflammatory 381 

effect and can dampen systemic inflammation (Biddle et al., 2019; DeSantis et al., 2012; Nieman 382 

& Wentz, 2019). Exercise lowers the risk of obesity, a risk factor for COVID-19. Obesity is the 383 
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precursor of a range of chronic diseases that have been found to increase COVID-19 mortality 384 

(Bastien et al., 2014; Calle & Thun, 2004; Chan et al., 1994; Hussain et al., 2020; Klang et al., 385 

2020; Krauss et al., 1998). Thus, the benefits of greenspace on reduced obesity through physical 386 

activity may contribute to the negative association between greenspace and COVID-19 mortality 387 

rates (Coombes et al., 2010; De la Fuente et al., 2021; Ghimire et al., 2017; Jia et al., 2020).  388 

4.1.2 How might open space exacerbates COVID-19 mortality risk?  389 

 We found the ratio of open space outside park is significantly and positively associated with 390 

COVID-19 mortality rates. This finding contradicts previous studies that have reported health 391 

benefits from exposure to open spaces. Our results suggest that exposure to open space may not 392 

be effective or may even be detrimental to COVID-19 mortality rate. Open space in our study is 393 

defined as “large-lot single-family housing units or vegetation planted in developed settings” 394 

(NLCD, 2016). On one hand, open space can provide health benefits by promoting physical 395 

activity, social interaction, and reduced air pollutants (Lu, Chen, et al., 2021), though the effect 396 

may not be as strong as it is for forests (Reid, Clougherty, Shmool, & Kubzansky, 2017). On the 397 

other hand, the lower supply of open space per capita in urban areas makes it hard to comply with 398 

safe social distancing in non-park open spaces (e.g., streets and backyards), and may exacerbate 399 

mortality risk. Though outdoor transmission of COVID-19 is rare (Bulfone et al. 2021), people 400 

who participate in outdoor social activities such as talking or partying were at higher risk of 401 

spreading the disease (Domènech-Montoliu et al. 2021; Peng et al. 2022). Presumably, the higher 402 

infection risk might lead to higher COVID-19 mortality rates. More evidence is needed to 403 

understand the mechanisms of the mixed effects of open space on COVID-19 mortality rates. 404 

4.1.3 Why might forest outside park have a stronger effect than forest inside park?  405 
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We found forest outside park to have a larger effect size than forest inside park on COVID-19 406 

mortality rates after accounting for other covariates. This finding aligns with previous studies of 407 

stronger health-promoting effect outside park areas (Reid et al., 2017; Allard-Poesi et al., 2022). 408 

The difference in forest exposure inside and outside park may explain the stronger effect of forest 409 

outside park.  The US population has a ten times greater opportunity to be exposed to forest inside 410 

park than forest outside park within walking distance (Fig. 7). Second, social activities in parks 411 

might increase risk of close contact and inhale droplets from infected people (DePhillipo et al., 412 

2021; Praharaj & Han, 2021), thus increase infection risk. Thus, it is reasonable to argue that the 413 

increased infection risk caused by the social interactions in parks may offset the other health 414 

benefits of forests inside park on mortality. Further, the health effect of forest inside park may be 415 

weakened in part due to shutdown policies in some states, which closed parks due to COVID-19 416 

spread risk (Volenec et al., 2021; Smith et al., 2021).  417 

4.1.4 Optimal exposure buffer distance: what and why?   418 

    We found the effect of population-weighted exposure to forest outside park increases with a 419 

larger buffer distance and reaches an optimal effect at 1km. This suggests that exposure to nearby 420 

forest outside park within 1km is more effective than exposure to forests that are at a greater 421 

walking distance. This may be because nearby forests are visited more often than forests located 422 

further away. Studies suggest that the frequency of visits to greenspaces declines as distance 423 

increases (Coombes et al., 2010).  A distance of 1,120 m (0.7 miles) is the mean walking distance 424 

in the U.S. (Yang & Diez-Roux, 2012).  425 

    We also found the effect size of forest inside park is optimal at 4km, though the effect size is 426 

close to that at 400m (2% increase). This suggests the effect of forest inside park is less sensitive 427 

to buffer size within walking distance. Studies suggest people walk much longer for recreation 428 
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purposes as opposed to other purposes (Yang & Diez-Roux, 2012). Considering the effect size and 429 

previous literature on walking behaviors, we suggest the optimal exposure buffer distance for 430 

forest outside park to be 1km and the optimal exposure buffer distance for forest inside park to be 431 

400m.  432 

 433 
 434 
Fig. 7 | Mean population-weighted exposure to forest inside park and forest outside park within 4km. The bar 435 
represents the average population-weighted forest exposure at county level within each buffer distance. 436 
 437 
4.2 Contributions and implications 438 

To our knowledge, this is the first nationwide study distinguish the impact of different types of 439 

greenspace on COVID-19 mortality rates in the U.S. In this study, the greenspace exposure 440 

measure integrated the dynamics of population distribution and geographic location of greenspaces 441 

into exposure assessment, providing a more precise and reasonable exposure estimates. The dose-442 

response associations between different types of green spaces at various buffer distances and 443 
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COVID-19 mortality rates were examined, allowing us to identify an optimal effect distance, 444 

which was previously lacking in the literature. 445 

Evidence from this study suggests that planners and policymakers should prioritize the supply 446 

of nearby forests. Specifically, we recommend ensuring that forests outside parks be located within 447 

1000m from residents, and forests inside parks be located within 400m from residents. These 448 

forested areas will be especially beneficial in highly urbanized, low-SES, and minority-dominated 449 

areas where COVID-19 mortality rates are disproportionally high (Lu et al., 2021). Many 450 

greenspaces were temporarily closed during the pandemic to reduce the spread of disease (Ugolini 451 

et al., 2020). The findings in this study advocate for keeping nearby greenspace open, especially 452 

forested areas. Cities with accessible forested areas can promote health and resilience during the 453 

current and future pandemics. 454 

4.3 Limitations and future research opportunities 455 

    This study has several limitations, which pose opportunities for future research. This is an 456 

ecological study using aggregated data at the county level. It is subjected to ecological fallacy. 457 

Future studies can use individual level data or experimental studies to confirm the causal relations 458 

and the potential underlying mechanisms (Jiang et al., 2021).    459 

    Second, the unit of analysis is the county due to the availability of COVID-19 mortality data 460 

and other confounding variable. Though county data are widely used in nationwide studies, future 461 

studies should use finer-grained data (i.e., census tract level data). Different scales of analyses may 462 

reveal different associations between neighborhood greenspace and health outcomes (Richardson 463 

et al., 2012).  464 
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Third, our research investigated associations using data from 2020, but the situation has 465 

continued to evolve with the emergence of vaccines and COVID-19 variants (e.g., Delta and 466 

Omicron). Future studies should consider the new situations accordingly. 467 

5. Conclusion  468 

Our findings suggest that during 2020, exposure to more green spaces, especially forests, was 469 

significantly associated with a lower level of COVID-19 mortality rates, while exposure to more 470 

developed open space has insignificant or positive associations with the COVID-19 mortality rates. 471 

Forest outside park is more beneficial than forest inside park, with the optimal buffer distance 472 

being 1km for forest outside park, and within 400m for forest inside park. These findings imply 473 

that policymakers and planners should prioritize urban greening within optimal distances of 474 

residential clusters and keep beneficial greenspaces accessible for COVID-19 and future 475 

pandemics. 476 

 477 
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