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Abstract  

Vancomycin is a commonly used antimicrobial in hospitals, and therapeutic drug 

monitoring (TDM) is required to optimize its efficacy and avoid toxicities. Bayesian models 

are currently recommended to predict the antibiotic levels. These models, however, 

although using carefully designed lab observations, were often developed in limited 

patient populations. The increasing availability of electronic health record (EHR) data 

offers an opportunity to develop TDM models for real-world patient populations. Here, we 

present a deep learning-based pharmacokinetic prediction model for vancomycin (PK-

RNN-V E) using a large EHR dataset of 5,483 patients with 55,336 vancomycin 

administrations. PK-RNN-V E takes the patient’s real-time sparse and irregular 

observations and offers dynamic predictions. Our results show that RNN-PK-V E offers a 

root mean squared error (RMSE) of 5.39 and outperforms the traditional Bayesian model 

(VTDM model) with an RMSE of 6.29. We believe that PK-RNN-V E can provide a 

pharmacokinetic model for vancomycin and other antimicrobials that require TDM. 
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Abbreviations: 

AI: Artificial intelligence, ACE: Angiotensin, ASHP: American Society of Health-System 

Pharmacists, AUC: Area Under the Curve, BMI: Body Mass Index, CKD: Chronic Kidney 

Disease, DHHS: U.S. Department of Health and Human Services, DM: Diabetes Mellitus, 

ECMO: Extracorporeal Membrane Oxygenation, EHR: Electronic Health Record, HTN: 

Hypertension,  ICU: Intensive Care Unit, IDSA: Infectious Diseases Society of America, 

IQR: Interquartile Range, IRB: Internal Review Boards, MAE: Mean Absolute Error, 

MAPE: Mean Absolute Percentage Error, MHHS: Memorial Hermann Health System, 

MIC: Minimal Inhibitory Concentration, MRSA: Methicillin resistant Staphylococcus 

aureus, SIDP: Society for Infectious Diseases Pharmacists, TDM: Therapeutic Drug 

Monitoring, PK: Pharmacokinetic, RMSE: Root Mean Square Error, RNN: Recurrent 

Neural Network, VAN: Vancomycin, VTDM: Vancomycin Therapeutic Drug Monitoring 

 

Statement of Significance 

Problem: Current traditional Bayesian models for vancomycin levels were tested in only 

a limited patient population and take limited patient-specific features. Hence, a more 

flexible and powerful model, such as deep-learning models, may provide significant 

advantages.   

What is Already Known: The Bayesian models do not predict the vancomycin levels 

well in patient populations with unstable hemodynamic status and fluctuating kidney 

functions.  

What this Paper Adds: Deep-learning based pharmacokinetic model for vancomycin 

(PK-RNN-V E) provided better prediction accuracy with integrating multiple patient-

specific features from time sequence electronic health record data. This study proved 

the concept of model.  
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Introduction 

 Vancomycin is a glycopeptide antibiotic that has been on the market for over 50 

years.[1] As the prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) has 

increased since the 1980s, this fundamental antibiotic has become one of the most 

frequently used in the hospital, especially for the management of severe gram-positive 

infections.[2] Despite the advent of newer alternative antimicrobials against this pathogen, 

vancomycin remains a clinically useful agent. Inappropriate vancomycin dosing, however, 

has been associated with severe side effects, especially nephrotoxicity, therapeutic 

failure, and the emergence of bacterial resistance. Hence, therapeutic drug monitoring 

(TDM) of vancomycin levels has been recommended for the use of vancomycin.[3]  

Currently, three major approaches to dose individualization are used to estimate 

pharmacokinetic (PK) parameters: (1) linear regression analysis, (2) population methods, 

and (3) Bayesian methods.[4] The most recent consensus guidelines from the American 

Society of Health-System Pharmacists (ASHP), Infectious Diseases Society of America 

(IDSA), and Society for Infectious Diseases Pharmacists (SIDP) recommend Bayesian-

guided dosing for TDM and estimation of area under the curve (AUC) of vancomycin level 

over a minimal inhibitory concentration (AUC/MIC) of MRSA.[3]  Traditional Bayesian 

models for vancomycin levels (referred to Bayesian Model in this manuscript) use basic 

patient demographic data with previous population PK data and patient serum creatinine 

levels to provide the dosing recommendation from the estimation of AUC and the PK 

parameters. The models provide a more accurate estimation of the AUC/MIC of 

vancomycin than does the estimation based on the trough concentrations.[4] In addition, 

Bayesian models estimate the distribution of an individual patient’s PK parameter values 

based on actual drug serum concentrations, such as vancomycin serum concentrations 

and subsequent creatinine levels, from the patient (“patient-specific parameters”). After 

being validated in various patient subpopulations, multiple Bayesian dose-optimizing 

software programs are available.[5,6] 

Despite advances in the models of vancomycin PKs, there are a number of 

limitations of current Bayesian models. First, each Bayesian model is designed for a 

specific subgroup of patients based on the population characteristics, which may not 

cover the diverse real-world patient population.[3,7] Some studies suggest that as many 
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as 58% of real-world patients may be excluded from clinical research.[8] This is further 

complicated by clinical practice settings, in which there is an interplay among patient-

related, disease-related, and system-related factors.[9] Second, these models are often 

evaluated in patients with stable PK parameters and may not cover critically ill conditions 

well, in which the volume of distribution and the elimination rates fluctuate 

acutely.[5,10,11] Finally, these Bayesian methods take only a limited number of patient-

specific variables as input, including simple demographics, creatinine levels, vancomycin 

doses, the infusion time, and vancomycin levels, while there are potentially other relevant 

patient characteristics, such as other concomitant medications and vital signs, that 

potentially improve the prediction.[5] Therefore, more powerful and flexible models, such 

as deep learning models, provide significant advantages, as the models can integrate a 

wide range of patient-specific features, use flexible time steps, update the model with a 

local patient population, and cover a wide variety of populations. 

Real-world data-driven precision dosing is of great interest to the medical 

community, as the availability of genetic data and electronic medical records (EHRs) is 

rapidly expanding.[9,12] In the United States, EHR adaptation has accelerated since the 

Meaningful Use program was introduced as part of the 2009 Health Information 

Technology for Economic and Clinical Health Act. EHRs contain both structured and 

unstructured data, which provide a complete medical history of the patient.[13] Data 

collection and utilization have been further enhanced with data exchange among different 

hospital systems or EHR vendors. Artificial intelligence (AI) methods, especially deep 

learning, have achieved great success in modeling complex EHR data.[14] In particular, 

sequential models, such as recurrent neural networks (RNNs), enable the modeling of 

sequential events, which is critical for PK models to provide dynamic changes in PK 

parameters. Further, RNNs with medical code embedding can take input directly from a 

real-time EHR data stream, automatically make the adjustments to reflect subtle changes, 

and provide real-time outputs. Despite the potentially high expressive power of deep 

learning models, however, no deep learning models for the monitoring of vancomycin 

levels are available.  

The aim of this study is to develop a novel PK approach with RNN-based methods 

for vancomycin (PK-RNN-V) with EHR data to achieve more accurate and individualized 
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predictions for vancomycin serum concentration in hospitalized patients. Unlike existing 

RNN models for EHR data for disease risk prediction that have simple output layers, we 

design a specific PK output layer. To the best of our knowledge, this PK-RNN-V model is 

the first deep learning-based vancomycin prediction method in the literature.  

Material and Methods 

Data extraction and cohort definition  

Our study cohort was extracted from the Memorial Hermann Health System 

(MHHS) EHR data warehouse. MHHS is one of the largest healthcare systems, consisting 

of 14 hospitals in the greater Houston area, Texas, United States. The MHHS EHR data 

warehouse is a rich source of information, as it includes longitudinal information about 

patients’ demographics, encounters (admission and discharge information), diagnostic 

codes, laboratory results, vital signs, medication administration, nurse documentation, 

and other encounter-level administrative data. Patients who were at least 18 years old 

and who received at least one dose of intravenous vancomycin were identified from the 

database during the study period of August 2019 to March 2020. For our model training 

and evaluation, we considered only encounters in which patients had at least one serum 

vancomycin level after their first vancomycin dose during their hospitalization. We 

excluded patients who had inappropriate timing of vancomycin levels (e.g., vancomycin 

level measured during the infusion of vancomycin, the level was measured more than 48 

hours after the last dose of vancomycin). We excluded patients who received renal 

replacement therapy, such as hemodialysis, and extracorporeal membrane oxygenation 

(ECMO), based on their diagnostic codes (the diagnostic codes are found in the 

Supplementary Materials) and nurse documentation. To ensure patient data privacy and 

security during later steps of data handling and modeling, we de-identified the extracted 

cohort using the methods recommended by U.S. Department of Health and Human 

Services (DHHS).[15] This study was approved by internal review boards (IRBs) of the 

University of Texas Health Science Center at Houston and the Memorial Hermann 

Hospital System. 

Problem setup  

Data included in the analysis from EHRs comprised 30 laboratory tests, five vital 

signs, and 324 types of medications with 911 different medication codes and formulary 
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(Table S7) in addition to encounter and demographic data, such as age at the time of the 

encounter, gender, ethnicity/race, height, and weight. All of these features were extracted 

at the encounter level. We used the time of the earliest records of the encounter and the 

timestamp of the last vancomycin level during the encounter to define the start and stop 

times for the encounter.  

The prediction of vancomycin levels is made at all time points via a PK model 

based on all of the observed data within the encounter right before the time point. The 

time step to update parameters of the PK model was defined by the time of vancomycin 

administration, vancomycin level obtained, or the end of the day; and the data between 

the time steps were aggregated by the next time step. Because some patients may not 

receive vancomycin for more than 24 hours, depending on the kidney function or previous 

vancomycin levels, we used the time step of “the end of the day” to update the model to 

avoid any information leakage. Figure 1A displays a simplified encounter in which patients 

have multiple vancomycin doses and levels and other lab tests (e.g., creatinine levels) 

taken during the windows previously defined. Using this time-step scheme, we can make 

the relationship between the dose and the levels more explicit in terms of the model while 

not losing information during days in which patients did not have vancomycin 

administrations or levels. We also can make the relationship more practical and provide 

real-time predictions in regard to the drug concentrations. In MHHS, the infusion time of 

vancomycin varies, depending on the dose of vancomycin; <1000 mg: infuse over 1 hour, 

1001–1500mg: infuse over 1.5 hours, 1501–2000mg: infuse over 2 hours, and >2000mg: 

infuse over 2.5 hours. To simplify the model, we used 1 gm/hour for the infusion time. We 

further assume that vancomycin measurement should not be taken during the infusion. 

Missing values are imputed with previous values, assuming that clinicians, due to patient 

stability, did not repeat the tests. When the values have never been measured for the 

patient, the values were imputed using the mean value. The continuous values are 

standardized to z-scores.  

Figure 1: Simplified Example Patient and PK-RNN-V Model Architecture and  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.24.22275271doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.24.22275271


8 
 

      

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 27, 2022. ; https://doi.org/10.1101/2022.05.24.22275271doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.24.22275271


9 
 

k: Elimination of Vancomycin Rate from The Compartment, Comp: Compartment, MAP: 

Maximum A Posteriori, PK: Pharmacokinetic, RNN: Recurrent Neural Network, v: volume 

distribution of vancomycin, VTDM: Vancomycin Therapeutic Drug Monitoring (Traditional 

Bayesian Model) 

 

Figure 1A. Simple schematic time sequence of an example patient from our cohort. 

Vancomycin serum concentration is demonstrated in the upper figure. The blue dash line 

represents the predicted vancomycin serum concentration in the patient. The blue stars 

indicate the actual vancomycin levels. In the middle graph, orange dots are vancomycin 

doses, and the green line in the lower figure is the creatinine level. The vancomycin levels 

or other key measurements can be irregular, depending on the dosing intervals or patient 

clinical status. Figure 1B. Schematic structure of the PK-RNN-V model. PK-RNN-V 

model is one compartment model. Vancomycin doses, basic demographics, laboratory, 

concomitant medications, and vitals were extracted from EHRs. All data were aggregated 

at the time step, and the data were fed into the models. RNN updates k (vancomycin 

elimination rate) and v (volume distribution of vancomycin). These two parameters and 

infusion data (dose and timing) were used to generate vancomycin pharmacokinetic (PK) 

curves with the PK formula. Feedback models use the first observed vancomycin level at 

the inference time to update the model parameters for predicting the vancomycin level 

after the first observation. Figure 1C. Schematic structure of VTDM model. VTDM model 

is a two compartment model, and only takes the aggregated data of vancomycin 

administration, age, gender, weight, height, and serum creatinine from EHR to update PK 

parameters. The initial parameters (𝜂1, 𝜂2, 𝜂3) are provided from previous studies as 

population based PK parameters. VTDM with feedback model uses the first vancomycin 

level to adjust those parameters as maximum a posteriori (patient-specific parameters). 

This provides v1, k10, k12, and k21 of the patient to predict vancomycin concentration.  

 

 

Model Design 

PK-RNN-V and PK-RNN-V E models  

We reason that drug-level predictions in real-world data need to meet the 

following four requirements: (i) use demographic and irregular historical EHR data as 
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input, (ii) take observations of the drug levels or relevant physiological biomarkers at 

irregular time intervals, (iii) use the drug levels that follow underlying PK models with 

varying parameters, and (iv) re-estimate PK parameters each time an observation is 

taken. Based on these requirements, we design an autoregressive RNN model with a 

PK prediction head whose predicted vancomycin can be evaluated at arbitrary time 

points (Figure 1B). Autoregressive architecture is commonly used in neural machine 

translation models and generative models, such as GPT-3 [16,17], to capture context 

and temporal correlation. In addition, we use RNN, as it is a natural choice for modeling 

longitudinal EHR data.[14,18–20] We have shown that RNN can successfully model 

heart failure risks.[21] For drug levels, we predict the underlying PK parameters directly 

from the RNN; then, vancomycin levels at any time point can be calculated 

automatically by the PK equation. (Figure 1A) For simplicity, we use a one-compartment 

model. Irregular time intervals between observations can be modeled by PK 

calculations.  

The overall architecture of the PK-RNN-V model has three components: (i) a 

code embedding layer to take inputs from each time step, (ii) an RNN layer to update 

the hidden representation and output the elimination rate of vancomycin (k) and the 

volume of distribution (v), and (iii) a one-compartment PK model to calculate the 

vancomycin concentration. The information for each patient is represented by a 

sequence of continuous and categorical variables. There are 40 continuous variables in 

our model, including selected laboratory tests, vancomycin dosing, and demographic 

information (a detailed description of the PK-RNN-V model is found in the 

Supplementary Materials).  

The categorical variable contains all medication codes. The medication codes 

are embedded into 8-dimensional vectors and then summed across each event. The 

embedding layer was initialized randomly, where the weights were drawn from a 

standard Gaussian distribution. No diagnosis codes are used in this model because we 

found, empirically, that adding diagnosis codes to the model does not improve the 

performance. The input to the RNN layer is a 48-dimensional vector (40+8) at each time 

step, consisting of the medication embedding (8) and the normalized continuous 

variables (40). The RNN layer is a single layer GRU with a hidden size of 32. The output 
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layer is a linear layer of size (32, 2), which maps the hidden layer of GRU to the volume 

of distribution V and the elimination k. Since k and V should be nonnegative, the exp 

nonlinearity was added on top of the linear layer to get the desired output. For the PK 

model, the total amount of vancomycin in the patient system is calculated based on the 

following differential equation:  

 

              

𝐷 is the mass of vancomycin in the body, 𝑟 is the infusion rate, 𝑘 is the 

elimination rate).[22,23] Solving this equation, we have: 

          

We use a mean squared error as the loss function to train our model. In addition, we 

add two regularizations. We have a baseline elimination rate k and a baseline volume of 

distribution v. The baseline elimination rate k is calculated from the Matzke equation k = 

8.3e-4 * CrCl (creatinine clearance in mL/min) + 4.4e-3, in which the creatinine 

clearance is calculated from the Cockcroft-Gault equation (the formulas are found in the  

Supplementary Materials).[24] The baseline volume of distribution v is calculated from 

the weight as 0.7L/kg * weight (kg). One regularization term penalizes the deviation 

from the predicted k and v values from the baseline values. The other regularization 

term penalizes the sudden change in the predicted k and v values, using the L2 norm of 

the first-order difference. To train the model, we use adadelta as the optimizer, with a 

learning rate of 5e-2, epsilon of 1e-4, and weight decay of 0.2. The training minibatch 

size is set at 50, and we use early stopping with patience of 2 to avoid overfitting. 

Several variants of the PK-RNN-V were considered. First, we make the model 

autoregressive by feeding the predicted vancomycin concentration level back to the 

input when there is no measurement available and take the true measurement as input 

otherwise. The intention is to make the model learn to adjust the prediction based on 

the measurement. To have a fair comparison with VTDM, one variant of PK-RNN-V 

uses only the first measurement to adjust its hidden state; this variant is termed PK-

RNN-V feedback. We also named the variant that takes all measurements available as 
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PK-RNN-V full feedback. We then did an ablation study by excluding the kidney 

function-related features, such as serum creatinine concentration and glomerular 

filtration rates, during the training. The trained model is called PK-RNN-V without Kidney 

Function. 

In addition, we use model ensembling to obtain a posterior estimate of the 

vancomycin concentration. Ten models were randomly initialized and trained using the 

same dataset and procedure as described above. The prior distribution of the models is 

uniform. The posterior distribution is adjusted according to the first measurement in 

each encounter: 𝑃(𝑚𝑜𝑑𝑒𝑙|𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)  ∝ 𝑃(𝑚𝑜𝑑𝑒𝑙)𝑃(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡|𝑚𝑜𝑑𝑒𝑙), where 

P(model) equals 1/10 and P(measurement|model) is set to be a Gaussian around the 

predicted value with unit variance. The final prediction result is then the weighted 

average of all 10 models, using the posterior. The ensemble model is named PK-RNN-

V E. All of the ensembles of PK-RNN-V variants are named similarly by having the suffix 

E after the PK-RNN-V. The source code of our models is publicly available to enable its 

application and further evaluation by other researchers. 

(https://github.com/ZhiGroup/PK-RNN) 

Bayesian model (Vancomycin therapeutic drug monitoring, VTDM) 

To evaluate the performance of our proposed model, a Bayesian vancomycin 

therapeutic drug monitoring (VTDM) model is applied as the baseline.[25] The VTDM 

model is a population-level Bayesian model built on a two-compartment PK model while 

adjusting for basic patient information, such as age, gender, weight, and creatinine 

levels (a detailed description of the VTDM model is found in the Supplementary 

Materials). The equations and parameter settings are provided in Lim,[25] and the 

corresponding R code is available on GitHub at https://github.com/asancpt/shiny-

vtdm.[26] In addition to the baseline VTDM model, we tested a VTDM feedback model 

that can adjust the PK parameters according to the first measurements of the 

vancomycin level. This is based on the consideration that the original VTDM model 

primarily set the values of volume distribution (v) and vancomycin elimination (k) based 

on the population mean of a group of Korean patients,[25] When directly utilizing such a 

model to predict temporal changes among certain patients, the overlooked individual-

level information, the v and k of such patients, for example, may lead to large prediction 
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bias. VTDM feedback uses a gradient descent to adjust the parameters and to find the 

maximum a posteriori estimation. By doing so, the original VTDM model is transferred 

from the population level to the individual level, which is more consistent with the 

current Bayesian models available in the community.  

Model Evaluation 

Data were split into training, validation, and test sets with a ratio of 70:15:15 based 

on patient identification. We avoided using an encounter ID to assign the patients, as it 

would potentially assign the same patients to different datasets with different encounter 

identifications. We used root mean square error (RMSE), mean absolute error (MAE), 

and mean absolute percentage error (MAPE) to compare the model performance 

between PK-RNN-V and VTDM models (the formulas are found in the Supplementary 

Materials). Because the PK-RNN-V E with feedback and VTDM with feedback models 

used the first vancomycin level to adjust the model parameters, the first measurement 

was excluded when comparing these models. PK-RNN-V E with the full feedback model 

used subsequent vancomycin levels to adjust the model. For subgroups analysis, 

demographic data, ICD-10, ICD-9, and norepinephrine in the medication table were used 

to identify the subgroups with underlying comorbidities. Our dataset did not have the 

patient hospital bed information where the patient existed, including whether the patient 

was in an intensive care unit (ICU). Administration of norepinephrine was used to 

surrogate ICU status of patients as this medication often only used in ICU. The PK-RNN-

V E with feedback model was statistically compared to the VTDM with feedback model 

by a paired t-test. The area under the curve of vancomycin levels over minimal inhibitory 

concentration (AUC/MIC) was calculated only for PK-RNN-V models due to the absence 

of a gold standard measurement in our dataset. Finally, the estimated vancomycin levels 

in the selected patients were depicted based on the predicted v and k. Python version 3.6 

(Python Software Foundation) and PyTorch-1.0.0 were used.  

Results 

A total of 12,258 patients with 195,140 encounters were identified from the 

database during the study period. After the exclusion of 6,775 patients, 5,483 patients 

with 9,504 encounters in which the patient received at least a dose of vancomycin 

followed by vancomycin levels were included in our study. Table 1 provides the 
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characteristics of patients included in the study. The median age of the population was 

61 years, with a slight majority of males (55%). Race/ethnicity included White (36.4%), 

African American (19.5%), Hispanic (15%), and Asian (1.5%). Median weight and height 

were 82.9 kg and 172 cm, respectively. Hypertension (20.1%) and diabetes (11.7%) were 

common diagnoses among the cohort. A total of 55,336 doses of vancomycin (5.8 doses 

per encounter) were administered, with a median dosage of 1.0 gm (IQR: 1.0–1.5 gm). 

Vancomycin levels were measured 18,588 times (1.9 measurements per encounter) at 

various times after vancomycin initiation. The median level was 14.7 mcg/mL (Figure S1, 

histogram of vancomycin levels).  

 

 

Table 1. Baseline Characteristics of Patients Included in This Study* 

  

N (%)a 

Total, Pt N = 5483 

Enc N = 8689 

Total N of encounter 8689 

Gender, male 3069 (55) 

Age, median yr. (IQR) 61 (48-73) 

Ethics/Race   

   Hispanic 783 (14.2) 

   Non-Hispanic 3905 (71.2) 

   Other 77 (1.4) 

   Unknown 718 (13.1) 

 Race  

      White 2003 (36.4) 

      African American 1069 (19.5) 

      Asian 83 (1.5) 

      Others 1829 (33.4) 

  

Weight, median kg, (IQR)b 82.9 (65.5 - 101.6) 

Height, median cm, (IQR)b 172 (165.1 - 181.1) 
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Comorbidities b  

   Cerebral vascular diseases 293 (5.2) 

   Coronary artery diseases 570 (5.0) 

   Chronic pulmonary diseases 911 (8.0) 

   Heart failure 924 (8.2) 

   Hypertension 2296 (20.1) 

   Diabetes 1330 (11.7) 

   CKD 779 (6.9) 

   HIV/AIDS 93 (0.8) 

   Cancer (solid and hematologic) 513 (4.5) 

   Solid Organ Transplantation 77 (0.7) 

Pt N, Patient number, Enc N, Encounter number, IQR, Interquartile range, N, number, 

Sc, Screening, HIV, Human Immunodeficiency Syndrome, yr, year   

a. Otherwise indicated, the numbers in the table shows number and %.  

b. Characteristics at the time of first encounter  

c. All available data in the study cohort were summarized. 

 

 

Vital signs and laboratory results throughout the encounters are presented in Table 

2. Median temperature was 36.8℃, and median systolic, diastolic, and mean blood 

pressure were 125 mmHg (interquartile range [IQR]: 112–140), 66 mmHg (IQR: 57–75), 

and 88 mmHg (IQR: 79–97), respectively. Of note, systolic and diastolic blood pressure 

measurements had a significant proportion of missing values (62.6% and 87.5%, 

respectively). Median creatinine level was 0.99 mEq/L (IQR: 0.71–1.44). Total protein and 

albumin levels were 6.8 g/dL and 2.6 g/dL, respectively. Median white blood cell count 

was 10.2 k/cm2, with an absolute neutrophil count of 7.1 k/cm2.  

 

Table 2. Characteristics of Repeated Measurement Included into the Models 
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Total, Pt N = 5483 

Enc N = 8689 

N of 

Measurement 

Per enc 

Missing rate 

( %) 

Weight, median kg, (IQR)  82.9 (67.9-101.8) 2.1 8.3% 

Height, median cm, (IQR) 167.6 (162.5 - 177.7) 1.7 13.2% 

    

Laboratory, median (IQR)    

   Creatinine, mEq/L 0.99 (0.71-1.44) 4.5 0.3% 

   BUN, mg/dL 17 (11-27) 4.5 0.3% 

   Sodium, mEq/L 139 (136-141) 4.5 0.3% 

   Potassium, mEq/L 3.9 (3.6-4.3) 4.5 0.3% 

   Bicarbonate, mEq/L 26 (23-28) 4.5 0.3% 

   Chloride, mEq/L  105 (101-108) 4.5 0.3% 

   eGFR, mL/min/1.73m2 77.2 (46.9-102.9) 4.5 0.6% 

   Glucose, mg/dL 132.5 (103-182) 7.2 0.2% 

   Calcium, mg/dL 8.5 (8.1-8.9) 4.5 0.3% 

   Phosphorus, mg/dL 3.1 (2.6-3.8) 1.2 55.9% 

   Magnesium, mg/dL 2.0 (1.8-2.2) 1.5 44.8% 

   Protein, total, g/dL 6.8 (6.2-7.6) 1.9 14.0% 

   Albumin, g/dL 2.6 (2.2 - 3.1) 2.0 13.6% 

   AST, unit/L 24.0 (15 - 40) 1.9 14.0% 

   ALT, unit/L 24.0 (16 - 40) 1.9 14.0% 

   Bilirubin, total, mg/dL 0.5 (0.3 - 0.8) 1.9 14.0% 

   ALP, unit/L 98 (75 - 137) 1.9 14.0% 

   White blood cells, k/cm2 9.5 (6.8-13.3) 4.2 0.5% 

   Hemoglobin, g/dL 10.4 (8.8-12.1) 4.3 0.4% 

   Hematocrit, % 31.1 (26.6-36.1) 4.3 0.4% 

   Platelets, k/cm2 251 (182-339) 4.3 0.5% 

   Neutrophils, k/cm2 7.0 (4.5-10.6) 4.0 0.8% 

   Lymphocytes, k/cm2 1.3 (0.8-1.8) 4.0 0.7% 

   Basophils, k/cm2 0.1 (0-0.1) 2.0 27.8% 
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   Eosinophils, k/cm2 0.2 (0.1 -0.3) 2.9 13.6% 

   Monocytes, k/cm2 0.7 (0.5 - 1.0) 3.9 0.8% 

   Lymphocyte, % 14.1 (8.4 - 21.7) 4.0 0.7% 

   Basophils, % 0.5 (0.3 - 0.7) 3.9 0.9% 

   Eosinophils, % 1.5 (0.5 - 3.2) 3.6 2.9% 

   Monocytes, % 7.9 (5.9 - 10.2) 4.0 0.7% 

Vital signs, median (IQR)    

   Temperature, ℃ 36.8 (36.6 - 37.1) 4.8 41.1% 

   Systolic blood pressure, 

mmHg 
125 (112-140) 3.5 62.6% 

   Diastolic blood pressure, 

mmHg 
66 (57 - 75) 0.6 87.5% 

   Heart rates, /min  84 (74-96) 8.8 12.0% 

   Respiratory rates, /min 18 (17-20) 8.6 12.2% 

   SpO2, % 97.4 (96.0 - 98.7) 0.4 92.2% 

   O2 flow, L/min 3 (2 - 5) 2.1 47.8% 

Vancomycin (VAN) admin    

 VAN dose, median (IQR) 

gm 
1.0 (1.0 - 1.5) 5.8 0% 

 VAN levels, median (IQR) 

mcg/mL 
14.7 (10.3-19.6) 1.9 0% 

    

Pt N, Patient number, Enc N, Encounter number, IQR, Interquartile range, N, number, 

Sc, Screening, HIV, Human Immunodeficiency Syndrome, yr, year   

 

 Table 3 presents the performance of variations of the PK-RNN-V and VTDM 

models. Notably, all PK-RNN-V models exhibited better RMSE, MAE, and MAPE 

compared to any of the VTDM models. The baseline PK-RNN-V shows good 

performance. For the PK-RNN-V model, RMSE = 5.86, MAE = 4.09, and MAPE = 37.57; 

for the VTDM model: RMSE = 8.58, MAE = 6.54, and MAPE = 41.81. In addition, we 

showed that the performance of the model was improved by ensembling and letting the 
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model adjust its state based on the first measurement. Statistical comparison (paired t-

tests) between PK-RNN-V E with feedback and VTDM with feedback revealed RMSE = 

5.39 vs. 62.9 (p-value = 2.51x 10-8), MAE =3.64 vs. 4.26 (p-value = 2.51 x 10-8), and 

MAPE = 25.41 vs. 29.15 (p-value = 0.00026), respectively.  Finally, PK-RNN-V E with full 

feedback used all of the available measurements to adjust its state and achieved the best 

result: RMSE = 5.37, MAE = 3.62, and MAPE = 25.05. Interestingly, PK-RNN-V E models 

performed well even when some of the critical features, such as serum creatinine levels 

and glomerular filtration rates (GFRs), were masked to the models. We did this ablation 

study to show that the trained model is able to take other available lab tests or medications 

to infer the kidney function. The RMSE of the PK-RNN-V E model without creatinine/GFR 

is 5.91 compared to 6.29 in the VTDM feedback model (Table S1).  

 

 

Table 3. Model Performance Comparing Different Types of PK-RNN and Bayesian 

Models 

  RMSE MAE MAPE 

Bayesian Models    

    VTDM 8.58 6.54 41.81 

    VTDM with Feedback 6.29 4.26 29.15 

PK-RNN-V models     

    PK-RNN-V 5.86 4.09 37.57 

    PK-RNN-V E with 

Feedback 
5.39* 3.64* 25.41* 

    PK-RNN-V E with Full 

Feedback 
5.37 3.62 25.05 

RMSE: Root mean square error, MAE: Mean absolute error, MAPE: Mean absolute percentage 

error, VTDM: Vancomycin Therapeutic Drug Model, RNN: Recurrent Neural Network, PK: 

Pharmacokinetics,  

2477 encounters were included in the test dataset. The results for train and validation datasets 

are summarized in Supplementary Table 1.  
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* PK-RNN-V E with feedback model had significantly better performance compared to VTDM 

with feedback model (paired T-test: p-value < 0.05) 

VTDM: Basic patient demographics, such as age, gender, weight, and height, and levels of 

creatinine are processed.  

VTDM feedback: The first vancomycin level is used to update the model in addition to VTDM 

model 

PK-RNN: Variables listed in table 1, but vancomycin level, are included in the model. 

PK-RNN-V E with feedback: The first vancomycin level is used as input in addition to those of 

PK-RNN.  

PK-RNN-V E with full feedback: All vancomycin levels are used to update the models.   

 

The performance of the models in relation to the timing of vancomycin level 

measurements during the encounters also was evaluated (Table S2). PK-RNN-V 

performed better at predicting the first measurement of vancomycin levels, compared to 

VTDM (RMSE = 5.22 vs. 7.09, MAE = 3.87 vs. 4.85, MAPE = 32.95 vs. 65.18, 

respectively). Further, in regard to the second measurement of vancomycin levels, the 

PK-RNN-V E with feedback model outperformed the VTDM with feedback model with 

RMSE = 4.89 vs. 5.70 (p-value = 0.0022), MAE = 3.34 vs. 3.88 (p-value = 0.0022), and 

MAPE = 24.53 vs. 35.97 (p-value = 0.034). Finally, similar results were observed in the 

third measurement of vancomycin levels, except for MAPE, which did not reach statistical 

significance (RMSE = 5.94 vs. 6.94 [p-value = 0.00067], MAE = 4.00 vs. 4.72 [p-value = 

0.00067], and MAPE = 28.59 vs. 44.64 [p-value = 0.12]). The lack of statistical 

significance is likely due to the number of patients who had three or more vancomycin 

measurements, which were limited; 435 patients vs. 222 patients were included in the 

second measurement groups and the three or more group, respectively. 

Overall, PK-RNN-V models exhibited better performance across the subgroups, 

as shown in Table 4. PK-RNN-V models maintained their accuracy, even in patients with 

BMI > 35 (5.46 vs. 6.90, p-value = 0.0017, PK-RNN-V E with feedback and VTDM with 

feedback, respectively), age > 65 (4.53 vs. 5.47, p-value = 0.00063, PK-RNN-V E with 

feedback and VTDM with feedback, respectively), and patients on norepinephrine (5.47 

vs. 5.84, p-value = 0.63, PK-RNN-V E with feedback and VTDM with feedback, 
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respectively). All subgroups, except Hispanic patients and those on norepinephrine, had 

statistically significant results.  

 

Table 4. Model Performance (RMSE) of Each Model in Different Patient Subgroups  

  
Hispanic 

N:389 

White 

N:880 

AA 

N:560 

Age  

>65 

N:925 

BMI 

>30 

N:982 

BMI 

>35 

N:551 

DM 

N:671 

HTN 

N:997 

CKD 

N:297 

Norepii 

N:123 

VTDM 8.21 7.65 9.66 7.72 8.92 9.64 7.75 8.04 8.3 11.93 

VTDM with 

Feedback 

6.04 5.25 7.62 5.47 6.3 6.9 5.47 5.21 5.44 5.84 

PK-RNN-V 7.01 5.54 5.98 5.22 5.46 5.69 5.41 5.32 5.14 7.23 

PK-RNN-V E 

with 

feedback 

6.03 4.68* 5.79* 4.53* 4.99* 5.46* 4.87* 4.45* 4.72* 5.47 

PK-RNN-V E 

with Full 

Feedback 

5.92 4.66 5.88 4.48 4.95 5.41 4.81 4.42 4.7 5.44 

PK-RNN-V E 

without 

Kidney 

Function 

6.47 5.00 6.91 4.98 5.4 5.99 5.14 4.98 5.46 5.03 

AA: African American, BMI: Body Mass Index, DM: Diabetes Mellitus, HTN: Hypertension, CKD: 

Chronic Kidney Diseases 

i Patients who were on norepinephrine.  

* PK-RNN-V E with feedback model had significantly better performance compared to VTDM 

with feedback model (paired T-test: p-value < 0.05) 

In this table, only test dataset results per measurements are summarized. Overall, PK-RNN-V 

models performed better than VTDM models, except for Hispanic patients and patients on 

norepinephrine partially due to small sample size.  

 

 Figure 2 presents a sample of patients in our dataset who had better accuracy in 

each model (PK-RNN-V E and VTDM). Figure 2A presents the patient in whom the PK-

RNN-V E with feedback model predicted the vancomycin levels better, whereas Figure 

2B presents the opposite case. Each line in the upper figure is the predicted vancomycin 
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level from each model and the patient's demographics. The lower figure shows the 

changes in vancomycin dosage and creatinine levels over time. As shown in the figure, 

VTDM models have more steep PK curves as compared to PK-RNN-V E models. This is 

likely the difference between the one-compartment (PK-RNN-V E) and two-compartment 

(VTDM) models. In Figure 2A, PK-RNN-V E model predicted the first four vancomycin 

levels well. Despite actual vancomycin levels increased in the fourth and fifth 

measurements, the model accurately adjusted their curves to gain close predictions. The 

sixth label value was higher than the predicted values, whereas VTDM model already 

revealed bigger errors after the third prediction without adjustment of the curve. In Figure 

2B, overall, both models predicted higher levels than actual values. Interestingly, both 

models slowly adjusted their curves, and the fourth and fifth curves are close to the actual 

values. Although our models need to be improved and validated before clinical use, those 

small errors in those patients are promising. Although we do not have gold standard AUC 

levels in our dataset, the RNN-PK-V E with a feedback model provided the AUC of 

vancomycin level based on the curves in Figure 2: mean AUC = 367.8, 372.8, and 364.5 

in training, validation, and test datasets, respectively. 

  

Figure 2: Predicted Vancomycin Serum Concentration Curves and Other Basic 

Characteristics in Sample Patients 
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Each figure shows predicted vancomycin concentration curves, with actual vancomycin 

levels (black dots) in the upper figure, and the serum creatinine (solid purple line) and 

vancomycin administration and dose (purple bar) in the lower figure. The legend provides 

basic patient demographics (upper right corner) and RMSE of each model (upper left 

corner). The feedback models adjust the prediction based on the first vancomycin. Figure 

2A. A sample patient in whom the PK-RNN-V E with feedback model predicted 

vancomycin levels better than did the VTDM model (Bayesian model). Figure 2B. A 

sample patient in whom the VTDM with feedback model (Bayesian model) predicted the 

vancomycin level better than did the PK-RNN-V E with feedback model. 

 

Discussion 

 The PK-RNN-V E model is a deep learning model used to forecast vancomycin 

serum concentrations in real time based on predicted personalized volume distribution 
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(v) and elimination (k) of vancomycin from EHR data, including not only basic 

demographics and serum creatinine levels but also other patient-specific features, such 

as vital signs, laboratory results, and concomitant medications. The model demonstrated 

superior prediction of vancomycin levels, including trough and random levels, compared 

to the Bayesian model generated based on the publicly available models (VTDM model). 

Our model tolerated missing values in real-world data and offered accurate prediction 

across heterogeneous patient populations. The PK-RNN-V E model performed better 

predictions than did the VTDM model in the first vancomycin levels based on the data 

prior to the level (the first measurement of VTDM vs. PK-RNN-V E models, as seen in  

Table S2). This could provide an empirical vancomycin dosing recommendation as per 

the PK-RNN-V E model. Based on the predicted PK parameters, our model also 

conveniently generated the AUC/MIC (Figure 2) of vancomycin levels, which is currently 

part of the standard of care for vancomycin dosing.  

Compared to Bayesian models, deep learning models, such as ours, are more 

expressive PK models, enabling the incorporation of dynamic, multimodal, and 

longitudinal data into the predictions. The model can disentangle the complex relationship 

among the large number of heterogeneous clinical inputs at irregular time steps. At each 

input time step in which some clinical measures or events take place, the RNN can update 

its internal state and predict PK parameters. Although our current model limited the time 

steps with vancomycin dosing, vancomycin levels, or the end of the day, a different time 

step schedule could be considered. This could be changed to a shorter time frame, for 

example, at the time of any lab work or any clinical events, such as vital sign 

measurement, with a minimal additional computational burden. Compared to the limited 

set of a patient’s characteristics that existing Bayesian models take to adjust the PK 

parameters, our PK-RNN-V E model can take into consideration broader and more 

complex patient-specific characteristics, as recorded in the real-world EHRs. 

In some sense, both Bayesian models and PK-RNN models are models with 

sequential hidden variables and a passive PK model that generates outputs. The 

Bayesian models are limited in the capacity of their hidden variables, typically only those 

that are sufficient to specify the distribution of PK models. The PK-RNN models, however, 

can have a larger capacity (32-dimensional vector in our case), which not only encode 
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the information needed to specify the PK models, but also with some “memory” that can 

carry through from timepoint to timepoint. In addition, PK-RNN models use arbitrary 

parameterized neural networks to specify the functional dependency from input variables 

to the hidden variables, and the hidden variables to the outputs, while Bayesian models 

are limited in certain families of the function as specified by the probability rules. This 

limitation of functional form of Bayesian models makes it difficult to incorporate complex 

real-world variables. However, the limit (“strong prior” on the functional form) of Bayesian 

models may make it more data-efficient when the training sample is small and the 

dependencies are relatively simple. For EHR data, we are in the large data regime with 

complex dependencies among variables, and thus PK-RNN models are more suited. In 

fact, Bayesian models can be seen as a special case of the PK-RNN models, if RNNs 

with a more complex functional form beyond simple one-layer gated linear layers in GRUs 

are used.  

Our PK-RNN-V model can be expanded in several ways. Currently, our PK-RNN-

V E model takes only limited structured data as proof of concept. Our previous work, 

however, finds that the deep learning models can be further advanced by adding more 

features or even unstructured data with minimal data processing.[27] Vancomycin does 

not have significant drug-drug interactions with other medications. Some medications, 

however, such as angiotensin (ACE) inhibitors, could affect patient creatinine levels, 

which is a key predictor of vancomycin eliminations in Bayesian models.[28] Deep 

learning models may be able to learn those interactions based on the data and predict 

the levels, taking these effects into consideration. We believe that this is particularly useful 

when the PK of medications is affected significantly by multiple drug-drug interactions. In 

current practice, although one-to-one drug-drug interaction can be evaluated based on 

the available PK data, the drug-drug interactions can be complicated when multiple 

concomitant medications possess interactions with each other.  

By design, the PK-RNN-V E model can leverage the specific characteristics of the 

data from the local patient population and even the characteristics of the individual 

patient. We believe that the PK-RNN-V E model can provide more accurate and 

personalized levels. In fact, our model remained accurate in multiple patient subgroups. 

Further, our model maintained its accuracy even without creatinine levels or estimated 
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GFRs in the dataset (masked models are found in the Supplementary Materials), which 

are aspects of the critical features to estimate vancomycin elimination in the Bayesian 

models. This highlights the power of deep learning models to predict vancomycin 

elimination with other features integrated into the model as “surrogate markers.” We also 

conducted multiple subgroups analyses. Overall, the PK-RNN-V E model exhibited better 

performance than did the Bayesian model, except for some subgroups, such as patients 

on norepinephrine (S Table 3). The limited number of patients on norepinephrine in our 

cohort hampered the training of the models and insufficiently powered the statistical 

analyses in the test dataset. The results warrant further studies in these specific 

populations. 

For application of our models in clinical practice, there are several aspects that 

should be addressed. Recent studies have shown that maintaining the AUC/MIC of 

vancomycin in a certain range (between 400 and 600) predicts a better clinical response 

and could avoid nephrotoxicity from vancomycin as compared to trough-based targeted 

therapy.3 Because the actual AUC was not measured in our study, we did not compare 

the AUC of PK-RNN-V E and VTDM models and provided only the predicted AUC of PK-

RNN-V E with feedback models. Future studies are warranted to address the accuracy of 

the AUC of PK-RNN-V E models. In addition, the recommended empirical dosage of 

vancomycin at initiation of the therapy was not calculated in our study. The dosage can 

be provided, however, using feedback from the first predicted vancomycin levels. Of note, 

our model provided a more accurate first vancomycin level than did the Bayesian model 

(Table S2), which provides evidence that the PK-RNN-V model could provide more 

individualized dosing recommendations even without using the first measurement of the 

vancomycin level. This potentially provides an advantage of being able to target 

vancomycin concentration/AUC faster in critically ill patients. In addition, our model could 

provide personalized vancomycin dosing at each administration based on the real-time 

data from EHRs, as clinical decision support systems in EHRs.  

There are several limitations in our study. First, our study used retrospective data 

from a single healthcare system in Houston, Texas. Potential biases due to the study 

design could not be avoided. Although our healthcare system contains 14 inpatient 

hospitals, further studies are warranted to confirm our findings and the generalizability of 
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the results. Second, we did not have access to commercially available Bayesian models 

for the comparison. VTDM models were created based on publicly available models and 

fine-tuned as the individualized model, as similar to commercially available models. There 

is a possibility, however, that those commercially available models may have better 

performance compared to VTDM models. Further, our model used a one-compartment 

model for vancomycin level prediction. Vancomycin PK can be characterized by a two- or 

multi-compartment model.[13] Although it is surprising that the one-compartment PK-

RNN-V E model outperformed the two-compartment Bayesian model, PK-RNN-V E with 

multi-compartment models should be evaluated. Third, our study excluded patients who 

were receiving renal replacement therapy, such as hemodialysis or ECMO. Those 

patients, especially with those undergoing renal replacement therapy, have a different 

PK, requiring further model development and evaluation. Finally, as our PK-RNN-V E 

model integrates multiple features/variables from EHRs, compared to Bayesian models, 

the transferability and implementability of our model should be established for future 

applications in clinical use.  

Conclusion  

 Our deep learning-based model (PK-RNN-V E with feedback) provided better 

performance in predicting vancomycin levels against actual vancomycin levels as 

compared to the traditional Bayesian-based prediction model for vancomycin (VTDM with 

feedback) in a large retrospective real-world data set. These findings remained in 

subgroup analyses, which support the concepts and advantages of deep learning models. 

The PK-RNN-V E model can integrate real-time patient-specific data from an EHR, which 

allows real-time TDM and likely leads to precision dosing of vancomycin based on the 

TDM. Prospective and external validations of models are warranted in future studies.  
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1. Detailed description of PK-RNN-V model 

The 40 continuous variables in the input of PK-RNN-V model are following: 

S Table 1: Variables Included in PK-RNN-V Model 

Type of Features Features 

Time Time (measured in days from the start of the 

encounter), Time elapsed since last event 

Demographic data Age at the time of visit, Gender, 

Ethnicity/Race, Height, Weight 

Vital signs Heart rate, Body temperature, Systolic blood 

pressure, Diastolic blood pressure, 

Respiratory rate,  SpO2, O2 flow 

Vancomycin dose Vancomycin dose 

Laboratory results White blood cell count, Hematocrit, 

Hemoglobin, Red blood cell counts, Platelet 

counts, Neutrophils #, Lymphocytes (%), 

Lymphocytes counts, Monocytes (%), 

Monocytes counts, Eosinophils (%), 

Eosinophils counts, Basophils (%), Basophils 

counts, Nucleated red blood cell (%), Sodium 

level, Potassium level, Creatinine level, Blood 

urea nitrogen level, Estimated glomerular 

filtration rate, Bicarbonate level, Chloride 

level, Glucose level, Total calcium level, 

Phosphorus level, Magnesium level, Albumin 

level, Total bilirubin level, Total protein level  

Additional features included in feedback 

models 

Vancomycin concentration 

 

 

All of the lab measurements are normalized by subtracting the mean and dividing by the 

standard deviation. The features are updated when the values are updated.  

 

The equation that we use to calculate the vancomycin concentration (Vc) is: 

Vc = M/Vd, where M is the total mass of the vancomycin, and Vd is the volume of the 

distribution. 

M is calculated as follows: 𝑀𝑡 = 𝐴 ∗ 𝑀𝑡−1 + 𝐵, where 𝐴 = 𝑒−𝑘∗𝑡𝑑   and 𝐵 =
1

𝑘
∗ (1 −

𝑒−𝑘∗𝑑) ∗ 𝑒−𝑘(𝑡𝑑 − 𝑑). Here, td is the time difference between the current and previous 

events (in hours), and d is the duration of the infusion (in hours). We assume a constant 

vancomycin infusion rate of 1 gm/hr; thus, the value of d also is equal to the dose of 

vancomycin in grams. The variables k and Vd are generated from the recurrent neural 
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network (RNN) model’s 32 dimensional hidden states by first applying a linear transform 

to reduce the dimensions to two, followed by an exponential transformation to make 

them non-negative. 

 

The loss function of this model consists of four terms: the mean square error term and 

three regularizing terms, as described in the main text. The weight of the regularizing 

terms is 1e3. This weight is found through a grid search in the log scale, using the 

validation dataset. 

 

2. Detailed description of the VTDM model 

The traditional Bayesian VTDM model uses two compartments and has free 

parameters, 𝜂1, 𝜂2, 𝜂3, that follow a Gaussian distribution: 𝜂1 ∼ 𝑁(0, 0.120), 𝜂2 ∼

𝑁(0, 0.149), 𝜂3 ∼ 𝑁(0, 0.416), where the variances are estimated from another study. 

The vancomycin concentrations in the two compartments (blood and peripheral) are 

denoted by A and B, and the ordinary differential equations that describe the dynamics 

of A and B are 
𝑑𝐴

𝑑𝑡
= −(𝑘10 + 𝑘12)𝐴 + 𝑘21𝐵 +

𝑟

𝑉1
  

𝑑𝐵

𝑑𝑡
= 𝑘12𝐴 − 𝑘21𝐵 

, where 𝑘10 indicates the elimination rate of serum vancomycin, 𝑘12 and 𝑘21 represent 

the exchange rate between two compartments, and r represents the infusion rate. The 

𝜂s are related to the elimination and exchange rates k as per the following equations:  

1) 𝑉1 = 33.1𝑒𝜂1 , 𝑉2 = 48.3, 𝐶𝐿 = 3.96
𝐶𝐶𝑅

100
𝑒𝜂2 , 𝑄 = 6.99𝑒𝜂3 , 𝑘10 =

𝐶𝐿

𝑉1
, 𝑘12 =

𝑄

𝑉1
, 𝑘21 =

𝑄

𝑉2
, 

where the CCR is the clearance of creatinine calculated from the Cockcroft-Gault 

equation. Solving these ordinary differential equations, we get the serum vancomycin 

concentration as  

𝐴(𝑡) =
𝑟(𝜆1+𝑘21)

𝜆1(𝜆2−𝜆1)
(1 − 𝑒𝜆2𝑡) −

𝑟(𝜆2+𝑘21)

𝜆2(𝜆2−𝜆1)
(1 − 𝑒𝜆2𝑡), 

where 𝜆1 =
−𝑘10−𝑘12−𝑘21−√(𝑘10+𝑘12+𝑘21)2−4𝑘10𝑘21

2
 and 𝜆2 =

−𝑘10−𝑘12−𝑘21+√(𝑘10+𝑘12+𝑘21)2−4𝑘10𝑘21

2
. We first set all 𝜂s to be 0 and measure the prediction 

errors. We find that the mean difference between the first prediction and the 

measurement error is 4.85. Then we adjusted the 𝜂s based on the first measurement 

and used a gradient ascent to maximize the log-posterior −
(�̂�−𝐴)2

4.852 −
𝜂1

0.12
−

𝜂2

0.149
−

𝜂3

0.416
 for 

each encounter separately, where �̂� is the first estimated concentration from the VTDM 

model, and A is the first measurement of concentration. 

 

STable 2 Variables Included in VTDM model 
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Type of Features Features 

Time Time (measured in days from the start of the 

encounter), Time elapsed since the last event 

Demographic data Age at the time of visit, Gender, Weight 

Vancomycin dose Vancomycin dose 

Laboratory results Creatinine level  

Additional features included in feedback 

models 

Vancomycin concentration 

 

 

3. Formulas of Cockcroft CrCl equation, RMSE, MAE, and MAPE 

Cockcroft CrCl equation =  
140 − 𝑎𝑔𝑒 (yr) + 𝑤𝑒𝑖𝑔ℎ𝑡 (kg)

72 × 𝑠𝑒𝑟𝑢𝑚 𝐶𝑟 (mg/dL)
 

(× 0.85 for women) 

Metrics for “overall measurements”  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑗 − 𝑦�̂�)

2
𝑛

𝑗=1

 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑗 − 𝑦�̂�|

𝑛

𝑗=1

 

 

 𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑗−𝑦�̂�

𝑦�̂�
|𝑛

𝑗=1 x 100 

 

Metrics for “per encounter” 

 𝑅𝑀𝑆𝐸 =
1

𝐸𝑁
∑ √

1

𝑛
∑ (𝑦𝑗 − 𝑦�̂�)

2𝑛
𝑗=1

𝐸𝑁
𝑖=1  

 

𝑀𝐴𝐸 =
1

𝐸𝑁
∑ ( 

1

𝑛
∑|𝑦𝑗 − 𝑦�̂�|

𝑛

𝑗=1

)

𝐸𝑁

𝑖=1

 

 

𝑀𝐴𝑃𝐸 =
1

𝐸𝑁
∑ ( 

1

𝑛
∑ |

𝑦𝑗 − 𝑦�̂�

𝑦�̂�
|

𝑛

𝑗=1

× 100)

𝐸𝑁

𝑖=1
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Metrics for “per patient”  

𝑅𝑀𝑆𝐸 =
1

𝑃𝑁
∑ √

1

𝑛
∑(𝑦𝑗 − 𝑦�̂�)

2
𝑛

𝑗=1

𝑃𝑁

𝑖=1

 

 

𝑀𝐴𝐸 =
1

𝑃𝑁
∑ ( 

1

𝑛
∑|𝑦𝑗 − 𝑦�̂�|

𝑛

𝑗=1

)

𝑃𝑁

𝑖=1

 

 

𝑀𝐴𝑃𝐸 =
1

𝑃𝑁
∑ ( 

1

𝑛
∑ |

𝑦𝑗 − 𝑦�̂�

𝑦�̂�
|

𝑛

𝑗=1

× 100)

𝑃𝑁

𝑖=1

 

 

 

n: number of measurements, EN: number of encounters, PN: number of patients, 𝑦�̂�: 

predicted vancomycin level from the model, 𝑦𝑗: actual vancomycin level 

 

CrCl: Creatinine Clearance, RMSE: Root Mean Square Error, MAE: Mean Absolute 

Error, MAPE: Mean Absolute Percentage Error 

 

 

 

 

4. S Figure 1. Histogram of Vancomycin Levels 
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5. S Table 3. Accuracy based on  Overall measurements, Encounter, and 

Patient in Train, Validation, and Test Datasets 

 

    

Train Data 
Measurement: 11,240 

Encounter: 6050 
Patient: 3813 

Validation Data 
Measurement: 2306 

Encounter: 1250 
Patient: 821 

Test Data 
Measurement: 2438 

Encounter: 1300 
Patient: 806 

Model 
Type of 
Measurement 

RMSE MAE MAPE 
RMS

E 
MAE MAPE RMSE MAE MAPE 

VTDM 

Overall 
measurements 

8.09 6.16 38.73 7.24 5.5 35.24 8.58 6.54 41.81 

Per Encounter 6.03 5.84 38.66 5.44 5.24 34.46 6.18 5.94 39.86 

Per Patient 6.49 6.23 37.93 5.61 5.4 32.86 6.93 6.56 45.07 

VTDM with 
Feedback 

Overall 
measurements 

6.07 4.3 28.08 5.27 3.82 24.81 6.29 4.26 29.55 

Per Encounter 4.15 3.94 27.21 3.77 3.56 24.16 4.24 3.98 29.18 

Per Patient 4.85 4.55 28.27 4.14 3.90 23.79 5.00 4.63 33.96 

PK-RNN-V 
Overall 
measurements 

5.29 3.81 32.53 5.42 3.95 34.91 5.86 4.09 37.57 
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Per Encounter 4.00 3.74 32.46 4.18 3.93 35.68 4.18 3.92 38.83 

Per Patient 4.21 3.80 31.87 4.08 3.76 35.97 4.49 4.01 34.62 

PK-RNN-V 
E with 

feedback 

Overall 
measurements 

4.92 3.46 23.97 4.92 3.51 23.95 5.39* 3.64* 25.41* 

Per Encounter 3.48 3.25 23.63 3.66 3.42 23.48 3.61* 3.37* 24.32* 

Per Patient 3.81 3.51 23.25 3.66 3.43 22.19 4.20* 3.80* 24.03* 

PK-RNN-V 
E with Full 
Feedback 

Overall 
measurements 

4.86 3.42 23.81 4.87 3.47 23.52 5.37 3.62 25.05 

Per Encounter 3.46 3.23 23.55 3.63 3.39 23.21 3.59 3.35 24.12 

Per Patient 3.74 3.43 23.01 3.56 3.32 21.18 4.14 3.75 23.42 

PK-RNN-V 
E without 

Creatinine/
GFR 

Overall 
measurements 

5.19 3.72 26.16 5.43 3.98 27.34 5.91 4.01 27.14 

Per Encounter 3.72 3.49 25.56 4.1 3.86 26.31 3.97 3.71 25.68 

Per Patient 4.16 3.84 26.25 4.15 3.89 26.28 4.72 4.30 28.42 

RMSE: Root mean square error, MAE: Mean absolute error, MAPE: Mean absolute percentage 

error, VTDM: Vancomycin Therapeutic Drug Model, RNN: Recurrent Neural Network, PK: 

Pharmacokinetics,  

* PK-RNN-V E with feedback model had significantly better performance compared to VTDM 

with feedback model (paired T-test: p-value < 0.05) 

VTDM: Basic patient demographics, such as age, gender, weight, and height, and levels of 

creatinine are processed.  

VTDM feedback: The first vancomycin level is used to update the model in addition to VTDM 

model 

PK-RNN: Variables listed in table 1, but vancomycin level, are included in the model. 

PK-RNN-V E feedback: The first vancomycin level is used in addition to PK-RNN.  

PK-RNN-V E full feedback: All vancomycin levels are used to update the models.   

PK-RNN-V E without Creatinine/GFR: Creatinine levels and GFR were excluded from 

predicting features.  

 

6. S Table 4.  All Model Accuracy Results Depending on the Timing of 

Vancomycin Level Measurements 

 

  

First Measurement 
Measurement: 1300 

Encounter: 1300 
Patient: 806 

Second Measurement 
Measurement: 622 

Encounter: 622 
Patient: 453 

Third or More 
Measurements 

Measurement: 516 
Encounter: 277 

Patient: 222 

Model 
Type of 

Measurement 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 
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VTDM 

Overall 
measurements 

7.09 4.85 65.18 7.77 5.9 90.88 9.47 7.31 135.59 

Per Encounter 4.85 4.85 65.18 5.9 5.9 90.88 6.83 6.59 117.61 

Per Patient 4.73 4.49 57.1 5.74 5.57 76.24 6.93 6.56 100.37 

VTDM with 
Feedback 

Overall 
measurements 

n/a n/a n/a 
5.7 3.88 35.97 6.94 4.72 44.64 

Per Encounter n/a n/a n/a 3.88 3.88 35.97 4.81 4.56 43.85 

Per Patient n/a n/a n/a 3.85 3.68 33.72 5.00 4.63 42.28 

PK-RNN-V 

Overall 
measurements 

5.22 3.87 32.95 5.62 3.95 39.63 6.14 4.26 35.08 

Per Encounter 3.87 3.87 32.95 3.95 3.95 39.63 4.25 3.96 38.28 

Per Patient 4.04 3.80 33.22 4.10 3.93 38.90 4.32 3.92 35.92 

PK-RNN-V E 
with 

Feedback 

Overall 
measurements 

n/a n/a n/a 4.89* 3.34* 24.53* 5.94* 4.00* 28.59 

Per Encounter n/a n/a n/a 3.34* 3.34* 24.53* 4.08* 3.80* 29.04 

Per Patient n/a n/a n/a 3.34* 3.21* 24.94* 4.20* 3.80* 29.90 

PK-RNN-V E 
with Full 
Feedback 

Overall 
measurements  

n/a n/a n/a 4.89 3.34 24.53 5.9 3.96 28.94 

Per Encounter n/a n/a n/a 3.34 3.34 24.53 4.01 3.74 28.98 

Per Patient n/a n/a n/a 3.34 3.21 24.94 4.14 3.75 29.95 

RMSE: Root Mean Square Error, MAE: Mean Absolute Error, MAPE: Mean Absolute 

Percentage Error 

n/a: The results were excluded as feedback model uses the first measurement to completely fit 

the model to the actual values before the accuracy measurements. 

* PK-RNN-V E with feedback model had significantly better performance compared to VTDM 

with feedback model (paired T-test: p-value < 0.05) 

 

7. S Table 5. Model Accuracy in Different Subgroups 

S Table 5-A. Model Accuracy by “Overall measurements” in Different Subgroups 

 

a. Root Mean Square Error (RMSE) 

  
Hispanic 

N:389 
White 
N:880 

AA 
N:560 

Age  
>65 

N:925 

BMI 
>30 

N:982 

BMI 
>35 

N:551 

DM 
N:671 

HTN 
N:997 

CKD 
N:297 

Norepii 

N:123 

VTDM 8.21 7.65 9.66 7.72 8.92 9.64 7.75 8.04 8.3 11.93 

VTDM with 
Feedback 

6.04 5.25 7.62 5.47 6.3 6.9 5.47 5.21 5.44 5.84 

PK-RNN-V 7.01 5.54 5.98 5.22 5.46 5.69 5.41 5.32 5.14 7.23 

PK-RNN-V E 
with 
feedback 

6.03 4.68* 5.79* 4.53* 4.99* 5.46* 4.87* 4.45* 4.72* 5.47 
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PK-RNN-V E 
with Full 
Feedback 

5.92 4.66 5.88 4.48 4.95 5.41 4.81 4.42 4.7 5.44 

PK-RNN-V E 
without 
Kidney 
Function 

6.47 5.00 6.91 4.98 5.4 5.99 5.14 4.98 5.46 5.03 

 

b. Mean Absolute Error (MAE) 

  

Hispanic 
N:389 

White 
N:880 

AA 
N:560 

Age  
>65 

N:925 

BMI 
>30 

N:982 

BMI 
>35 

N:551 

DM 
N:671 

HTN 
N:997 

CKD 
N:297 

Norepii 

N:123 

VTDM 6.12 5.78 7.29 6 7.15 7.91 6.06 6.38 6.53 9.63 

VTDM with 
Feedback 

4.14 3.77 4.76 3.9 4.33 4.74 3.97 3.92 4.14 4.08 

PK-RNN-V 4.84 4.01 3.78 3.86 4.03 4.25 3.94 3.88 4.00 5.21 

PK-RNN-V E 
with 
feedback 

3.84 3.35* 3.61* 3.36* 3.64* 3.89* 3.47* 3.36* 3.52* 4.23 

PK-RNN-V E 
with Full 
Feedback 

3.78 3.34 3.62 3.32 3.62 3.88 3.44 3.31 3.49 4.24 

PK-RNN-V E 
without 
Kidney 
Function 

4.22 3.7 4.32 3.68 3.97 4.34 3.69 3.74 4.12 4.00 

 

c. Mean Absolute Percentage Error (MAPE) 

  

Hispani
c 

N:389 

White 
N:880 

AA 
N:560 

Age  
>65 

N:925 

BMI 
>30 

N:982 

BMI 
>35 

N:551 

DM 
N:671 

HTN 
N:997 

CKD 
N:297 

Norepii 

N:123 

VTDM 47.11 35.84 41.98 34.9 42.67 46.63 36.44 38.1 33.57 51.08 

VTDM with 
Feedback 

37.18 23.92 30.08 22.77 28.33 31.23 26.04 24.76 22.07 22.94 

PK-RNN-V 49.39 30.11 29.84 32.34 43.31 37.78 39.92 37.45 31.08 37.60 

PK-RNN-V E 
with 

Feedback 

25.27 23.61 24.59* 21.50 25.21* 
27.93

* 
22.45* 20.98* 20.17 24.61 

PK-RNN-V E 
with Full 
Feedback 

24.46 23.36 24.49 21.11 24.87 27.61 22.12 20.67 19.97 24.69 

PK-RNN-V E 
without 
Kidney 

Function 

28.96 25.76 28.52 23.54 26.6 29.1 24.52 24.46 27.48 23.48 

AA: African American, BMI: Body Mass Index, DM: Diabetes Mellitus, HTN: Hypertension, CKD: 

Chronic Kidney Diseases 
i Patients who were on norepinephrine.  
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* PK-RNN-V E with feedback model had significantly better performance compared to VTDM 

with feedback model (paired T-test: p-value < 0.05) 

In this table, only test dataset results are summarized.  

 

 

S Table 5 B. Model Accuracy by “per encounter” in Different Subgroups 

 

a. Root Mean Square Error (RMSE) 

  
Hispanic 

N:204 
White 
N:506 

AA 
N:282 

Age  
>65 yo 
N:512 

BMI 
>30 

N:519 

BMI 
>35 

N:292 

DM 
N:363 

HTN 
N:556 

CKD 
N:169 

Norepii 

N:57 

VTDM 5.92 5.6 6.91 5.52 6.74 7.17 5.95 6.18 6.06 8.56 

VTDM with 
Feedback 

4.10 3.82 4.98 3.73 4.34 4.68 3.87 3.97 3.89 4.53 

PK-RNN-V E 
with 
feedback 

3.82 3.42* 3.56* 3.32* 3.65* 3.83* 3.55 3.44* 3.52 4.47 

PK-RNN-V E 
with Full 
Feedback 

3.8 3.4 3.54 3.31 3.63 3.8 3.53 3.42 3.5 4.44 

PK-RNN-V E 
without 
Kidney 
Function 

4.15 3.77 4.22 3.66 3.86 4.16 3.83 3.85 4.34 4.18 

 

b. Mean Absolute Error (MAE) 

  
Hispanic 

N:204 
White 
N:506 

AA 
N:282 

Age  
>65 yo 
N:512 

BMI 
>30 

N:519 

BMI 
>35 

N:292 

DM 
N:363 

HTN 
N:556 

CKD 
N:169 

Norepii 

N:57 

VTDM 5.73 5.36 6.56 5.37 6.55 6.97 5.76 6.02 5.96 8.21 

VTDM with 
Feedback 

3.85 3.58 4.62 3.54 4.12 4.44 3.65 3.77 3.73 4.17 

PK-RNN-V E 
with 
feedback 

3.56 3.19* 3.27* 3.13* 3.41* 3.53* 3.34 3.27 3.34 4.11 

PK-RNN-V E 
with Full 
Feedback 

3.54 3.18 3.25 3.11 3.4 3.52 3.33 3.24 3.32 4.1 

PK-RNN-V E 
without 
Kidney 
Function 

3.87 3.53 3.94 3.44 3.64 3.9 3.61 3.65 4.15 3.93 
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c. Mean Absolute Percentage Error (MAPE) 

  
Hispanic 

N:204 
White 
N:506 

AA 
N:282 

Age  
>65 yo 
N:512 

BMI 
>30 

N:519 

BMI 
>35 

N:292 

DM 
N:363 

HTN 
N:556 

CKD 
N:169 

Norepii 

N:57 

VTDM 42.48 34.35 39.74 32.49 40.52 43.61 36.17 37.08 31.03 43.84 

VTDM with 
Feedback 

32.99 23.58 31.06 21.72 28.49 31.95 25.48 24.59 19.71 22.99 

PK-RNN-V E 
with 
feedback 

23.68 23.9 23.58* 20.3 25.01 27.39 22.44 21.19* 19.69 24.57 

PK-RNN-V E 
with Full 
Feedback 

23.47 23.71 23.39 20.08 24.8 27.23 22.29 20.99 19.58 24.53 

PK-RNN-V E 
without 
Kidney 
Function 

27.36 25.33 26.63 22.35 25.14 28.07 25.14 24.47 28.37 26.1 

AA: African American, BMI: Body Mass Index, DM: Diabetes Mellitus, HTN: Hypertension, CKD: 

Chronic Kidney Diseases 
i Patients who were on norepinephrine.  

* PK-RNN-V E with feedback model had significantly better performance compared to VTDM 

with feedback model (paired T-test: p-value < 0.05) 

In this table, only test dataset results are summarized.  

 

S Table 5 C. Model Accuracy by “per patient” in Different Subgroups 

a. Root Mean Square Error (RMSE) 

  
Hispanic 

N:131 
White 
N:316 

AA 
N:154 

Age  
>65 yo 
N:350 

BMI 
>30 

N:362 

BMI 
>35 

N:203 

DM 
N:194 

HTN 
N:324 

CKD 
N:98 

Norepii 

N:52 

VTDM 5.78 6.22 8.07 6.3 7.5 8.4 6.14 6.69 6.5 8.9 

VTDM with 
Feedback 

4.50 4.30 5.88 4.69 4.91 5.6 4.43 4.58 4.46 5.21 

PK-RNN-V 
E with 
feedback 

4.54* 3.89* 4.4* 3.94* 3.96* 4.48* 3.58* 3.85* 4.21 5.95 

PK-RNN-V 
E with Full 
Feedback 

4.5 3.86 4.33 3.87 3.93 4.46 3.55 3.79 4.18 5.88 

PK-RNN-V 
E without 
Kidney 
Function 

5.18 4.25 5.24 4.46 4.51 5.04 3.98 4.26 4.92 4.96 

 

b. Mean Absolute Error (MAE) 

  
Hispanic 

N:131 
White 
N:316 

AA 
N:154 

Age  
>65 yo 

BMI 
>30 

BMI 
>35 

DM 
N:194 

HTN 
N:324 

CKD 
N:98 

Norepii 

N:52 
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N:350 N:362 N:203 

VTDM 5.45 5.86 7.44 6.02 7.19 8.11 5.76 6.31 6.14 8.43 

VTDM with 
Feedback 

4.17 3.9 5.19 4.35 4.52 5.16 4.01 4.16 4.00 4.70 

PK-RNN-V 
E with 
feedback 

4.07* 3.54* 3.80* 3.64* 3.56* 3.99* 3.11* 3.46* 3.77 5.38 

PK-RNN-V 
E with Full 
Feedback 

4.06 3.52 3.75 3.57 3.55 3.98 3.1 3.4 3.74 5.34 

PK-RNN-V 
E without 
Kidney 
Function 

4.74 3.9 4.67 4.14 4.13 4.62 3.57 3.88 4.48 4.55 

 

c. Mean Absolute Percentage Error (MAPE) 

  

Hispanic 
N:131 

White 
N:316 

AA 
N:154 

Age  
>65 yo 
N:350 

BMI 
>30 

N:362 

BMI 
>35 

N:203 

DM 
N:194 

HTN 
N:324 

CKD 
N:98 

Norepii 

N:52 

VTDM 61.63 37.12 48.74 34.65 43.26 47.1 41.01 43.33 31.44 41.85 

VTDM with 
Feedback 

54.56 24.46 37.64 24.66 28.00 30.17 32.35 30.9 21.19 23.16 

PK-RNN-V 
E with 
feedback 

27.2 21.99 25.23* 21.36* 23.27* 25.78* 20.52* 21.49* 22.59 27.1 

PK-RNN-V 
E with Full 
Feedback 

26.83 21.6 24.78 20.69 23.02 25.5 20.39 21.07 22.38 26.95 

PK-RNN-V 
E without 
Kidney 
Function 

35.03 26.11 31.66 26.62 26.94 29.71 25.78 26.57 33.66 23.77 

AA: African American, BMI: Body Mass Index, DM: Diabetes Mellitus, HTN: Hypertension, CKD: 

Chronic Kidney Diseases 
i Patients who were on norepinephrine.  

* PK-RNN-V E with feedback model had significantly better performance compared to VTDM 

with feedback model (paired T-test: p-value < 0.05) 

In this table, only test dataset results are summarised.  

 

8. S Table 6. Diagnostic Codes used for Baseline Characteristics 

Comorbidities ICD 9 or 10 codes 
Cerebral vascular 
diseases  

I60-I69, 430-438 

Coronary artery 
diseases 

I25.10, I25.83, Z95.5, I25.810, 414.01, V45.82 
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Heart failure 398.91, 402.01, 402.11, 402.91, 404.01,404.03, 404.11, 404.13, 404.91, 
404.93, I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, P29.0, I50.32, I50.23, 
I42.5-I42.9, 425.4-425.9, I43.x, I50.x, 428.x 

Chronic 
pulmonary 
diseases 

I27.8, I27.9, J68.4, J70.1, J70.3, 506.4, 416.8, 416.9, J44.0, J44.1, 
J84.9, 508.1,508.8, J98.01, 518.1, 770.2, 748.61, 516.31, 500, 502, 503, 
505, Z99.81, V46.2, J40.x-J47.x, J60.x-J70.x, 490.x-505.x, J84.x, J98.x 

Hypertension 401.1, 401.9, 642.0, I10, I13.0, I10.x, 401.x, 402.10, 402.90, 404.10, 
404.90, 405.1, 405.9, 401.0, 642.1, 642.2, 642.7, 642.9, I13.2, I13.10, 
I13.11, I12.9, I13.0, I11.0, I13.0, 402.x-405.x, I11.x-I13.x, I15.x 

Diabetes 648.0, E10.0, E10.1, E10.9, E11.0, E11.1, E11.9, E12.0, E12.1, E12.9, 
E13.0, E13.1, E13.9, E14.0, E14.1, E14.9, 250.0-250.3, 775.1, E11.10, 
250.4-250.9, E10.2-E10.8, E11.2-E11.8, E12.2-E12.8, E13.2-E13.8, 
E14.2-E14.8 

Chronic kidney 
diseases (CKD) 

403.11,403.91,404.12, 404.92, V42.0, V45.1, V56.0, V56.8, 403.01, 
404.02, 404.03, 404.13,404.93, I12.0, I13.1, N25.0, Z94.0, Z199.2,588.0, 
I13.0, 585.x, 586.x, V56.x, N18.x, NI9.x, Z49.0-Z49.2 

Hemodialysis N18.6, Z99.2, 585.6, 39.95, 54.98, V45.1 
HIV/AIDS B20.x-B22.x, B24.x, 042.x-044.x 
Cancer 203.8, 238.6, 273.3,  V10.71, V10.72, V10.79, C90.0, C90.2, 203.0, 

200.x-202.3x, 202.5-203.0, C81.x-C85.x, C88.x, C96.x, 200.x-202.x, 
196.x-199.x, C77.x-C80.x, 140.x-172.x, 174.x, 175.x, 179.x-195.x, V10.x, 
C00.x-C26.x, C30.x-C34.x,  C37.x-C41.x, C43.x, C45.x-C58.x, C60.x-
C76.x, C97.x, 174.x-195.x 

Solid Organ 
Transplantation 

V42.9, Z94.0, V42.0, Z94.4, V42.7, Z94.2, V42.6, Z94.1, V42.1, V42.2, 
V42.83, Z94.83, V42.84, Z94.82 

 

ECMO status was retrieved from nurse documentation such as ECMO settings.  

 

HIV: Human immunodeficiency virus, AIDS: Acquired Immunodeficiency 

syndrome  

 

9. S Table 7. Generic Name of Medications Included in PK-RNN-V models 

 

Generic Name of Medications Included in PK-RNN-V models 

abacavir, abacavir/dolutegravir/lamiVUDine, acyclovir, albumin human, albuterol, albuterol-

ipratropium, allopurinol, amikacin, Amino Acids 10% (Premasol), Amino Acids 3% w/lytes 

(Procalamine), AMIODarone, amitriptyline, amLODipine, amoxicillin, amoxicillin-clavulanate, 

amphotericin B liposomal, ampicillin, ampicillin-sulbactam, aspirin, atazanavir, atenolol, 

atorvastatin, atovaquone, atropine, azathioprine, azithromycin, aztreonam, benazepril, 

bictegravir/emtricitabine/tenofovir, bosentan, buPROPion, busPIRone, calcitriol, calcium 

acetate, calcium carbonate, calcium carbonate-magnesium chloride, calcium chloride, 

calcium gluconate, calfactant, captopril, carbamazepine, carbidopa/entacapone/levodopa, 

carbidopa-levodopa, CARboplatin, carboprost, carvedilol, cefazolin, cefdinir, cefepime, 

cefoxitin, cefpodoxime, ceftaroline, ceftazidime, ceftazidime-avibactam, ceftolozane-

tazobactam, ceftriaxone, cefuroxime, celecoxib, cephalexin, chlorproMAZINE, cholecalciferol, 
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cholestyramine, cilostazol, ciprofloxacin, clarithromycin, clindamycin, clonidine, clopidogrel, 

cobicistat-darunavir, colchicine, colistimethate, cycloSPORINE, cycloSPORINE ophthalmic, 

dabigatran, dapsone, daptomycin, darunavir, desmopressin, dexamethasone, Dextrose 10% 

in Water IV, Dextrose 20% in Water IV, Dextrose 5% in Lactated Ringers IV, Dextrose 5% in 

Water IV, Dextrose 5% with 0.225% NaCl IV, Dextrose 5% with 0.45% NaCl IV, Dextrose 5% 

with 0.9% NaCl IV, Dextrose 50% in Water IV, Dextrose 70% in Water IV, diazepam, 

diclofenac, digoxin, diltiazem, diphenhydrAMINE, DOBUTamine, dolutegravir, donepezil, 

DOPamine, doxazosin, DOXOrubicin, doxycycline, efavirenz, emtricitabine, emtricitabine-

tenofovir, enalapril, enoxaparin, EPINephrine, epoetin alfa, epoprostenol, ergocalciferol, 

ertapenem, erythromycin, esmolol, ethambutol, etoposide, etravirine, famciclovir, famotidine, 

febuxostat, fenofibrate, FENTanyl, fidaxomicin, finasteride, flecainide, fluconazole, 

fondaparinux, foscarnet, fosfomycin, furosemide, gabapentin, ganciclovir, gentamicin, 

glimepiride, glipiZIDE, glucagon, hepatitis B immune globulin, hydrALAZINE, 

hydrochlorothiazide, hydrocortisone, hydroxychloroquine, hydroxyurea, hydrOXYzine, 

ibuprofen, ibutilide, ifosfamide, imatinib, infliximab, insulin glargine, insulin isophane, insulin 

isophane-insulin regular, insulin lispro, insulin lispro-insulin lispro protamine, Insulin regular, 

irbesartan, isoniazid, isosorbide dinitrate, isosorbide mononitrate, itraconazole, ketamine, 

ketorolac, labetalol, lacosamide, lamivudine, leflunomide, leucovorin, levalbuterol, 

levetiracetam, levofloxacin, linezolid, lisinopril, lithium, loperamide, loratadine, LORAzepam, 

losartan, lubiprostone, magnesium citrate, magnesium gluconate, magnesium hydroxide, 

magnesium lactate, magnesium oxide, magnesium sulfate, mannitol, 

medroxyPROGESTERone, megestrol, melatonin, meloxicam, meropenem, mesalamine, 

metFORmin, methadone, methotrexate, methylnaltrexone, methylphenidate, 

methylPREDNISolone, metoclopramide, metoprolol, METRONIDazole, micafungin, 

midazolam, midodrine, milrinone, minocycline, minoxidil, mirtazapine, mycophenolate mofetil, 

mycophenolic acid, nafcillin, naloxone, naproxen, nevirapine, niacin, niCARdipine, 

NIFEdipine, nitazoxanide, nitrofurantoin, norepinephrine, nortriptyline, octreotide, olanzapine, 

olmesartan, omega-3 polyunsaturated fatty acids, omeprazole, ondansetron, oseltamivir, 

oxcarbazepine, oxybutynin, OXYcodone, oxytocin, pamidronate, pantoprazole, paroxetine, 

pembrolizumab, penicillin G benzathine, penicillin G potassium, penicillin V potassium, 

pentamidine, phenobarbital, phenytoin, pioglitazone, piperacillin-tazobactam, polymyxin B 

sulfate, potassium acetate, potassium chloride, potassium phosphate, potassium phosphate-

sodium phosphate, pravastatin, prazosin, prednisoLONE, predniSONE, pregabalin, 

primaquine, probenecid, prochlorperazine, progesterone, promethazine, propofol, 

propranolol, pyrazinamide, pyridoxine, quetiapine, quinine, raltegravir, ramipril, ranitidine, 

repaglinide, ribavirin, rifabutin, rifampin, rifaximin, ritonavir, rivaroxaban, rosuvastatin, 

sertraline, sevelamer, sildenafil, simvastatin, sirolimus, sitagliptin, sodium acetate, sodium 

bicarbonate, sodium biphosphate-sodium phosphate, sodium chloride, Sodium Chloride 

0.45% IV, Sodium Chloride 0.9% IV, Sodium Chloride 3% IV, sodium chloride nasal, sodium 

citrate, sodium ferric gluconate complex, sodium hypochlorite topical, sodium phosphate, 

sodium polystyrene sulfonate, sotalol, spironolactone, sulfasalazine, sumatriptan, tacrolimus, 

tamsulosin, tenofovir, terazosin, terbinafine, testosterone, ticagrelor, tigecycline, tizanidine, 

tobramycin, tolvaptan, topiramate, torsemide, TPN Central Order Details - Neonatal, TPN 

Order Details - Pediatric, TPN Peripheral Order Details - Neonatal, tramadol, trazodone, 
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valacyclovir, valganciclovir, valproic acid, valsartan, vancomycin, vasopressin, verapamil, 

vinCRIStine, voriconazole, warfarin, zidovudine 
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