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Abstract 24 
 25 
The potential for bias in non-representative, large-scale, low-cost survey data can limit their 26 
utility for population health measurement and public health decision-making. We developed a 27 
multi-step regression framework to bias-adjust vaccination coverage predictions from the large-28 
scale US COVID-19 Trends and Impact Survey that included post-stratification to the American 29 
Community Survey and secondary normalization to an unbiased reference indicator. As a case 30 
study, we applied this framework to generate county-level predictions of long-run vaccination 31 
coverage among children ages 5 to 11 years. Our vaccination coverage predictions suggest a 32 
low ceiling on long-term national coverage (46%), detect substantial geographic heterogeneity 33 
(ranging from 11% to 91% across counties in the US), and highlight widespread disparities in the 34 
pace of scale-up in the three months following Emergency Use Authorization of COVID-19 35 
vaccination for 5 to 11 year-olds. Generally, our analysis demonstrates an approach to leverage 36 
differing strengths of multiple sources of information to produce estimates on the time-scale 37 
and geographic-scale necessary for proactive decision-making. The utility of large-scale, low-38 
cost survey data for improving population health measurement is amplified when these data 39 
are combined with other representative sources of data.  40 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.18.22275217doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Background 41 
 42 
The COVID-19 pandemic highlighted the importance of local and timely indicators to inform 43 
public health decision-making, but such indicators have remained elusive in areas critical to 44 
pandemic response. For example, indicators of people’s vaccination intentions could ideally be 45 
used to predict subsequent vaccine uptake and to drive targeted efforts to reduce hesitancy 46 
and thereby increase achieved coverage. However, representative survey data are too costly to 47 
collect repeatedly with samples large enough for county-level estimation in the United States, 48 
while unrepresentative large-scale survey data have been shown to yield biased estimates with 49 
misleadingly small margins of error.1–3 Although programmatic data offer retrospective 50 
reporting of coverage at county-level, these data become available too late to enable 51 
prospective planning and decision-making, and many important indicators do not have routine 52 
reporting systems.1,4 53 
 54 
Combining data sources with different advantages and limitations can help to balance tradeoffs 55 
between time, cost, and representativeness of data collection. Studies in other areas of health 56 
have combined multiple data sources for retrospective bias correction and small area 57 
estimation.5–8 The COVID-19 pandemic catalyzed a new era of massive real-time data collection 58 
for public health, exemplified by the US COVID-19 Trends and Impact Survey, which has been 59 
running daily since April 2020.2 The US survey has an average of 40,000 responses daily. Its size 60 
allows for timely small-area estimation of many policy-relevant leading indicators, but its utility 61 
has been questioned due to bias in estimates of vaccination coverage compared to 62 
representative reporting data.3 Approaches to gain actionable insights from these large-scale 63 
survey data are relevant to current COVID-19 pandemic response, and to general population 64 
health measurement, for which similar large-scale, low-cost surveys could be deployed in the 65 
future. 66 
 67 
Although COVID-19 vaccination has been central to the public health response to the pandemic, 68 
coverage has plateaued well below 100%, with wide variation across communities. COVID-19 69 
vaccination intentions have been an important indicator derived from survey data over the 70 
course of the pandemic.5,9–13 Vaccination intentions can be used to anticipate eventual 71 
vaccination coverage for different groups, which can then be used to direct resources and 72 
targeted interventions, design policies, deploy additional risk reduction tools, and monitor both 73 
the pace and equity of scale-up. In the United States, children ages 5 to 11 years became the 74 
most recently eligible group for COVID-19 vaccination when Emergency Use Authorization was 75 
extended at the end of October 2021.14 In this study, we present a framework to bias-adjust 76 
estimates of vaccine intentions from the large-scale COVID-19 Trends and Impact Survey and 77 
predict future county-level vaccination coverage plateaus, using vaccination among children 78 
ages 5 to 11 years as an illustrative case study.  79 
 80 
Methods 81 
 82 
We developed a multi-step regression framework (Figure 1) to predict vaccination coverage 83 
plateaus among children ages 5 to 11 years. First, we estimated county-level parental hesitancy 84 
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toward vaccinating their children using a mixed effects logistic regression model fit to survey 85 
data. Next, we estimated the relationship between county-level hesitancy and observed 86 
vaccination coverage, for youth ages 12 to 17 years, who became eligible for COVID-19 87 
vaccination earlier than children ages 5 to 11 and therefore provide a reference group, using a 88 
second logistic regression model. Finally, we combined the results from the two regression 89 
models to predict county-level vaccination coverage for 5- to 11-year-olds. 90 
 91 
Data Sources 92 
We combined individual-level survey responses from Wave 11 of the COVID-19 Trends and 93 
Impact Survey (CTIS) collected during the period from July 1, 2021, through October 31, 2021, 94 
with data from Wave 12, collected during the period from December 19, 2021, through 95 
February 14, 2022. The survey is managed and implemented by the Delphi Group at Carnegie 96 
Mellon University. Participants are recruited through Facebook and the sampling frame is the 97 
Facebook Active User base. Additional information on the COVID-19 Trends and Impact Survey 98 
has been previously published.2 The full questionnaire for Waves 11 and 12 is available online.15 99 
 100 
In addition to CTIS, we used individual-level sociodemographic data (age, documented sex, 101 
education, race/ethnicity, and household structure) from the 2015-2019 American Community 102 
Survey for post-stratification.16 Individual-level data from the American Community Survey are 103 
available at the public-use microdata area level. We mapped public-use microdata areas to 104 
counties using the Missouri Census Data Center’s Geographic Correspondence Engine.17 When 105 
a single county contained multiple public-use microdata areas, we aggregated public-use 106 
microdata areas to the county-level. When a single public-use microdata area spanned multiple 107 
counties, we assumed the same distribution of sociodemographic characteristics for each 108 
county.  109 
 110 
Finally, we used complete vaccination coverage data for ages 12 to 17 years reported at the 111 
county-level by the Centers for Disease Control and Prevention for the second-stage regression, 112 
and data from the same source over the first three months after eligibility for ages 5 to 11 years 113 
for performance evaluation of coverage predictions.18 114 
 115 
Estimating County-Level Hesitancy 116 
To estimate county-level parental hesitancy, we fit a mixed-effects logistic regression to survey 117 
data on attitudes of parents/guardians towards vaccinating their children. We classified “No, 118 
definitely not” and “No, probably not” as hesitant responses to the question “Will you choose 119 
to get a COVID-19 vaccine for your child or children when they are eligible?”. Responses of “Yes, 120 
definitely” and “Yes, probably” were considered not hesitant. Consistent with previous 121 
analyses, we used the imprecise but available construct of “reported hesitancy” and focused on 122 
it principally as an intermediate indicator that would be subsequently mapped to long-run 123 
vaccination coverage. 124 
 125 
The CTIS survey questionnaire evolved as new information became available over the course of 126 
the pandemic. Importantly, while Wave 11 asked parents about vaccine hesitancy, it did not ask 127 
for the ages of their children. Since Wave 12 elicited the age of the parent’s oldest child, we 128 
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used it to examine differences in parental hesitancy for those whose oldest child was between 129 
the ages of 12 and 17 versus ages 5 to 11.  130 
 131 
The first-stage logistic regression modeled the probability of parental hesitancy as a function of 132 
fixed effects for documented gender (male, female), age group (18-24, 25-34, 35-44, 45-54, 55-133 
64, 65+), education (high school or fewer years of education, some college or a two-year 134 
degree, four-year degree, graduate degree), and race/ethnicity (Hispanic, non-Hispanic 135 
American Indian or Alaska Native, non-Hispanic Asian, non-Hispanic Black, non-Hispanic Native 136 
Hawaiian or Other Pacific Islander, non-Hispanic White, non-Hispanic multiracial or other race), 137 
and age group of child (unknown, 12 to 17, and 5 to 11), and nested random intercepts on state 138 
and county: 139 
 140 

ln(
𝑝𝑖𝑗𝑘

1 − 𝑝𝑖𝑗𝑘
) = 𝛼𝑗𝑘 + 𝛽𝑋𝑖𝑗𝑘  141 

𝛼𝑗𝑘 =  𝛼𝑘 + 𝜇𝑗𝑘; 𝜇𝑗𝑘~𝑁(0, 𝜎𝜇𝑗𝑘
2 ), 142 

𝛼𝑘~𝑁(0, 𝜎𝛼𝑘
2 ), 143 

𝑖 = individual CTIS responses from parents/guardians;  𝑗 = counties; 𝑘 = states 144 
 145 
We did not perform a weighted regression to include the CTIS survey weights, instead adjusting 146 
for the probability of inclusion and non-response through post-stratification.19 We combined 147 
data from counties with a sample size of 10 or fewer into grouped counties, by state. To 148 
generate county-level predictions of hesitancy, including uncertainty around these predictions, 149 
from the first-stage regression, we generated 1,000 draws of subgroup-level predicted 150 
probabilities of hesitancy for unique combinations of documented gender, age group, 151 
education, race/ethnicity, and county using the estimated regression coefficients, assuming a 152 
multivariate normal distribution of the parameters including the fixed and random effects (𝑝̂𝑔𝑗), 153 

where 𝑔 corresponds to each unique demographic characteristic combination. We then post-154 
stratified county- and subgroup-level predicted probabilities of hesitancy to produce overall 155 

county-level hesitancy estimates (𝜃̂𝑗): 156 

 157 

𝜃̂𝑗 =
∑ 𝑤𝑔𝑗𝑝̂𝑔𝑗

∑ 𝑤𝑔𝑗
. 158 

 159 
The weights (𝑤𝑔𝑗) used for post-stratification were based on an analysis of individual-level data 160 

from the American Community Survey that reflected household structure and incorporated 161 
children’s sample weights. First, we identified each child’s parents/guardians based on the first 162 
available of the following: 1) parents directly coded in the American Community Survey, 2) 163 
grandparents designated as responsible for one or more children directly coded in the 164 
American Community Survey, 3) adults (18+) in the same household and same family unit, and 165 
4) adults (18+) in the same household but different family unit. Next, we assigned the child’s 166 
sample weight to each of their parents/guardians, dividing the weight by the total number of 167 
identified parents/guardians. Finally, we summed the children’s sample weights across each 168 
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subgroup (𝑔), defined by the demographic characteristics of the parents/guardians, and each 169 
county (𝑗), resulting in the final weight (𝑤𝑔𝑗) used for post-stratification. 170 

 171 
Predicting County-Level Vaccination Coverage from Hesitancy Estimates  172 
We used a second logistic regression model to translate county-level hesitancy estimates to 173 
county-level vaccination coverage predictions. We trained the model on paired county-level 174 
hesitancy and coverage estimates for children ages 12 to 17 years, and then projected the 175 
predictive relationships onto the hesitancy estimates for children ages 5 to 11 years under the 176 
assumption that the same relationships would apply across the two age groups. To estimate the 177 
regression model for the 12 to 17 year group, we first generated estimates of parental 178 
hesitancy for this group using the same regression model specification described above for the 179 
5 to 11 year group, in this case predicting hesitancy for parents of children ages 12 to 17 years 180 
and post-stratifying estimates based on household structure and sample weights of children 181 
ages 12 to 17 years. These county-level hesitancy estimates were used as independent 182 
variables in the second logistic regression. For our dependent variable, we used coverage data 183 
from February 1, 2022, which was approximately nine months after 12-17 year-olds first 184 
became eligible for vaccination (ages 16-17 years in early April 2021 and ages 12-15 years on 185 
May 10, 2021). 186 
 187 
For states with at least ten counties reporting vaccination coverage data for children ages 12 to 188 
17 years on February 1, 2022, with CDC reporting completeness exceeding 80%, we fit state-189 
specific regressions. For all other states and the District of Columbia (n=7), we fit regressions at 190 
the census division level. This prevented overfitting to small numbers of counties or low-quality 191 
reporting data. Regressions were weighted based on the size of the 12 to 17 population in each 192 
county. The second regression was fit to each of the 1,000 draws of county-level hesitancy from 193 
the first regression. Uncertainty from the second regression was captured through 1,000 draws 194 
from the multivariate normal distribution of the fixed effects plus the residual variance. 195 
 196 
Finally, we used the models fit on the relationship between parental hesitancy and vaccination 197 
coverage for children ages 12 to 17 to predict coverage for children ages 5 to 11 years based on 198 
our first-stage estimates of hesitancy for this age group. Final prediction intervals were based 199 
on the 2.5th and 97.5th percentiles of one million final county-level coverage predictions (1,000 200 
draws from the first regression crossed with 1,000 draws from the second regression). 201 
 202 
Performance Evaluation 203 
We compared our estimates of parental hesitancy towards vaccinating children ages 12 to 17 204 
years to estimates on the same indicator produced by the Office of the Assistant Secretary for 205 
Planning and Evaluation (ASPE), including comparing correlation coefficients between 206 
estimated county-level hesitancy and observed vaccination coverage on February 1, 2022.  207 
 208 
To evaluate our use of the relationship between hesitancy and coverage for children ages 12 to 209 
17, applied to children ages 5 to 11, we assessed interim coverage predictions for the 5 to 11 210 
age group at three months after EUA expansion against observed county-level coverage 211 
reported by the CDC, based on the intraclass correlation coefficient and percentage of counties 212 
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for which the 95% prediction interval contained the observed coverage level nationally and at 213 
the state level. Since the CDC does not report separate county-level coverage estimates for 214 
ages 12 to 15 versus 16 to 17, the time since an age group first became eligible for vaccination 215 
is an imprecise but best-available approach to this interim performance evaluation. 216 
 217 
Monitoring Progress and Equity in Scale-Up 218 
To monitor pace of vaccination scale-up, we defined a measure of “3-month progress” as: 219 
 220 

progress =  
Observed three month coverage

Predicted nine month coverage
. 221 

 222 
To monitor equity in the pace of vaccination scale-up, we used linear regression to analyze 223 
associations between this progress measure and the county-level socioeconomic status domain 224 
of the CDC’s Social Vulnerability Index, which reflects measures of poverty, unemployment, 225 
income, and education.20 226 
 227 
Study Approval and Data Availability 228 
The study was approved by Stanford’s Institutional Review Board, under protocol number 229 
56018. All analyses were conducted using the R programming language version 3.6.3. Analytic 230 
code is available through GitHub (https://github.com/PPML/CTIS-County-Vaccination-231 
Coverage). The COVID-19 Trends and Impact Survey microdata can be accessed through a data 232 
use agreement with Carnegie Mellon University, while the American Community Survey data 233 
and CDC vaccination data are publicly available. 234 
 235 
Results 236 
 237 
Data 238 
Between July 1 and October 31, 2021, a total of 613,460 responses to Wave 11 of the US 239 
COVID-19 Trends and Impact Survey (CTIS) were collected from parents/guardians of children 240 
under age 18 with complete demographic information. To allow for variation in parental 241 
hesitancy by child age group, we supplemented the analyses with 119,465 responses collected 242 
from parents/guardians whose oldest children were between the ages of 5 and 17 years in 243 
Wave 12, between December 19, 2021 and February 14, 2022. We report exclusions in the 244 
sample flowchart (Supplemental Figure S1). Unweighted and weighted distributions of 245 
respondents by age, documented gender, education, and race/ethnicity are reported in Table 1. 246 
Post-stratification to the American Community Survey reduced bias from the non-247 
representative sample. Of 3,142 counties, 1,203 had a sample size of at least 100, while 293 248 
had a sample size between one and 10, and 23 had zero respondents. Maps of county-level 249 
sample sizes and sample rates are reported in Supplemental Figures S2 and S3. 250 
 251 
Hesitancy Estimates 252 
Modeled county-level parental hesitancy toward vaccination for children ages 5 to 11 years 253 
ranged from 7% (95% Prediction Interval: 5-9%) in San Mateo County, California to 74% (61-254 
84%) in Platte County, Wyoming. Although the population-weighted national average hesitancy 255 
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was 31%, 2,787 counties (89% of all counties) had hesitancy levels exceeding this benchmark. 256 
The skewed distribution of county-level estimates versus state- and national-aggregates is 257 
largely driven by lower hesitancy in urban areas with large populations and higher hesitancy in 258 
rural areas with smaller populations. Across counties, median hesitancy towards vaccination 259 
was 21% (IQR: 18-25%) higher for parents of children ages 5 to 11, compared to parents of 260 
children ages 12 to 17. Our estimates of hesitancy among parents of children ages 12 to 17 261 
using data from CTIS reflected substantially more sub-state variation in hesitancy, compared to 262 
previously published estimates from ASPE (Figure 2). Additionally, our estimates showed a 263 
stronger correlation with vaccination coverage on February 1, 2022, among children ages 12 to 264 
17 years (CTIS: -0.78; ASPE: -0.44) (Supplemental Figure S4).  265 
 266 
Predicted Coverage Levels 267 
Predicted mean national plateau coverage level among children ages 5 to 11 by August 2022, 268 
nine months after EUA, was 46%. There was substantial state-level variation in predicted 269 
plateau coverage, ranging from 30% and below in Wyoming, Alabama, Mississippi, Idaho, and 270 
Louisiana to 66% and above in Connecticut, District of Columbia, and Massachusetts. Four out 271 
of the five counties with the highest predicted coverage were in California. Ninety-two percent 272 
of counties are predicted to fall short of a 50% coverage benchmark by August 2022 for children 273 
ages 5 to 11, while 56% of counties are predicted to not reach 30% coverage. Eighty-six percent 274 
of counties are predicted to fall short of their state average coverage level, highlighting an 275 
urban-rural divide in vaccination. Higher levels of predicted coverage are concentrated in the 276 
northeast, west coast, and in urban centers across the country (Figure 3). 277 
 278 
Model Validation 279 
Figure 4 shows the relationship between predicted three-month coverage among children ages 280 
5 to 11 years and observed coverage three months after EUA. The intraclass correlation 281 
coefficient for consistency of predicted versus observed three-month coverage at national level 282 
was 0.81. Intraclass correlation coefficients were greater than 0.75 for 16 states, between 0.50 283 
and 0.75 for 19 states, and less than 0.50 for 10 states. Intraclass correlation coefficients at 284 
state level are reported in Supplemental Table S5. The prediction interval for three-month 285 
coverage included the observed coverage level for 81% of counties. 286 
 287 
Monitoring Progress and Equity in Scale-Up 288 
Relative to long-term predicted coverage levels, at the state level, Vermont, Rhode Island, and 289 
Maine had the fastest pace of scale-up of coverage among children ages 5 to 11 years at three 290 
months after EUA, while Louisiana, Alabama, and Mississippi had the slowest pace of scale-up 291 
(Figure 5). We find that errors in nine-month coverage predictions among ages 12 to 17 years 292 
were not significantly associated with the socioeconomic status domain of the CDC’s Social 293 
Vulnerability Index (SVI) in all states except South Dakota, Nevada, and Montana. As a result, in 294 
addition to predicting plateau coverage levels, we can use county-level predicted coverage 295 
levels to monitor equity in the pace of vaccination scale-up. More vulnerable counties, as 296 
measured by the socioeconomic status domain of the CDC’s SVI generally made less progress 297 
toward reaching their plateau coverage levels over the first three months after EUA expansion, 298 
compared to less vulnerable counties. There was significantly slower scale-up progress in more 299 
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vulnerable (higher SVI) counties in 36 out of 46 states reporting data on vaccination coverage 300 
among children ages 5 to 11 years (Figure 6).  301 
 302 
Discussion 303 
 304 
We generated bias-adjusted county-level predictions of long-term vaccination coverage for 305 
children ages 5 to 11 years that leveraged data on parental vaccination intentions from the 306 
COVID-19 Trends and Impact Survey (CTIS). To mitigate the impacts of selection bias in the 307 
sample, we combined CTIS data with representative sociodemographic data from the American 308 
Community Survey and unbiased programmatic data on vaccination coverage. Our approach to 309 
estimation and propagation of multiple sources of uncertainty produced prediction intervals 310 
that included observed coverage levels for 81% of counties three-months after EUA. Our 311 
estimation framework can be broadly used to generate actionable indicators on the time-scale 312 
and at the geographic-scale required for decision-making during the pandemic and beyond. 313 
 314 
Our predictions for vaccination coverage nine months after EUA for children ages 5 to 11 years 315 
suggest that 92% counties are likely to fall short of a 50% coverage benchmark. Across and 316 
Within states, there is substantial geographic heterogeneity in both parental hesitancy and 317 
predicted coverage. These estimates have implications for targeting of efforts to promote 318 
vaccination uptake among eligible children and expectations for eventual vaccination uptake 319 
among younger children who are not yet eligible. They also underscore the continued need for 320 
other protective measures, including masking, testing, and improved ventilation, in schools 321 
during periods of significant community transmission.21,22 322 
 323 
Despite consistent messaging about the importance of promoting equity in vaccination scale-324 
up, we observe a pervasive pattern of slower vaccination scale-up in more vulnerable counties, 325 
as measured by the socioeconomic domain of the CDC’s Social Vulnerability Index.23–25 The 326 
socioeconomic status domain of the Social Vulnerability Index comprises measures of income, 327 
poverty, employment, and education. Moving forward, as vaccination is extended to even 328 
younger children and as new rounds of boosters or new vaccines are authorized, more 329 
intensive and explicitly pro-equity policies and programs are required to break the cycle of 330 
inequity in vaccination scale-up that has been repeated in every phase of the vaccination 331 
campaign.26–29 332 
 333 
Large-scale, low-cost surveys offer a promising approach to population health measurement. 334 
They offer advantages for rapid and continuous deployment and allow estimation at smaller 335 
geographic scales compared to traditional approaches to data collection, including 336 
representative household surveys and retrospective reporting data. These advantages of 337 
county-level data in CTIS, compared to the state-level data available from the Census 338 
Household Pulse Survey are evident in their respective performance in capturing sub-state 339 
heterogeneity in vaccination intentions and coverage. The correlation between parental 340 
hesitancy and coverage among children ages 12 to 17 years for CTIS was -0.78, compared to a 341 
correlation coefficient of -0.44 for ASPE estimates based on the Census Household Pulse 342 
Survey.5 343 
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 344 
Beyond the COVID-19 pandemic, large-scale, low-cost surveys could be applied to regularly 345 
generate and update estimates of county-level geographic heterogeneity in determinants of 346 
health, healthcare access, and health outcomes. Designing integrated health measurement 347 
systems that intentionally combine sources with different advantages across the spectrum of 348 
timeliness, geographic granularity, and representativeness can maximize the benefits of data 349 
collection relative to their costs. Future large-scale, low-cost data collection efforts should 350 
ensure sufficient indicators are incorporated in the survey instrument for post-stratification, as 351 
well as availability of appropriate reference indicators for secondary bias-adjustment. 352 
 353 
The results of our study should be interpreted in the context of several limitations. First, to 354 
predict plateau coverage for children ages 5 to 11 years we assumed that the relationship 355 
between hesitancy and coverage observed for children ages 12 to 17 applies to this younger 356 
age group. Our three-month validation supports this assumption, which is necessary for 357 
prospective estimation. Second, estimates of hesitancy for children of different age groups only 358 
became available in Wave 12 of the CTIS survey, and respondents are only asked about 359 
intentions to vaccinate their oldest child. Third, we rely on historical relationships between 360 
hesitancy and observed coverage, which will not capture the evolving COVID-19 policy and 361 
epidemiologic landscape. Fourth, our analytic framework is designed to capture geographic 362 
variation in coverage but not variation by other important population characteristics such as 363 
race/ethnicity within small geographic areas. Despite these limitations, our estimates reflect a 364 
principled approach to generating bias-adjusted estimates of vaccination coverage that can be 365 
used to inform decisions and evaluate actual progress against a reference scenario.  366 
 367 
Conclusion 368 
 369 
A combination of post-stratification and secondary normalization to an unbiased reference can 370 
reduce bias in large-scale, low-cost survey data. Applying this method to predict long-term 371 
county-level COVID-19 vaccination coverage among children ages 5 to 11 years, we find 372 
substantial sub-state geographic heterogeneity and disparities in the pace of scale-up. Although 373 
direct estimates of vaccination coverage from the COVID-19 Trends and Impact Survey are 374 
biased, a multi-step regression strategy can result in bias-adjusted actionable predictions on the 375 
time-scale and geographic-scale required for proactive decision-making in the pandemic.  376 
 377 
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Data Availability 379 
Survey microdata are not publicly available because survey participants only consented to 380 
public disclosure of aggregate data, and because the legal agreement with Facebook governing 381 
operation of the survey prohibits disclosure of microdata without confidentiality protections for 382 
respondents. Deidentified microdata are available to researchers under a Data Use Agreement 383 
that protects the confidentiality of respondents. Access can be requested online (https://cmu-384 
delphi.github.io/delphi-epidata/symptom-survey/data-access.html). Requests are reviewed by 385 
the Carnegie Mellon University Office of Sponsored Programs and Facebook Data for Good.  386 
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Main Figures and Tables 407 
 408 
Table 1. Unweighted and weighted distribution of sociodemographic variables of included 409 
guardians from the COVID-19 Trends and Impact Survey (CTIS), compared to distribution of 410 
sociodemographic variables of parents/guardians in the American Community Survey (ACS) 411 
 412 

 
CTIS Survey 

Data: 
Unweighted 

CTIS Survey 
Data: 

Weighted 

Parents/Guardians 
of Children Ages 

12-17 

Parents/Guardians 
of Children Ages 

5-11 

Documented Gender*     

Female 65.4% 53.9% 55.4% 55.4% 

Male 34.6% 46.1% 44.6% 44.6% 

Age Group     

18-24 1.9% 5.8% 0.7% 1.4% 

25-34 13.7% 17.7% 8.4% 29.6% 

35-44 29.0% 28.3% 42.1% 48.7% 

45-54 25.6% 24.4% 39.3% 16.8% 

55-64 16.0% 13.6% 7.9% 2.5% 

65+ 13.7% 10.2% 1.6% 1.0% 

Education     

High school or less 21.7% 25.1% 37.1% 35.9% 

Some college or two-year 
degree 

35.9% 35.9% 29.7% 29.8% 

Four-year degree 23.2% 21.7% 20.4% 20.7% 

Graduate degree 19.2% 17.3% 12.8% 13.6% 

Race/Ethnicity     

American Indian or Alaska 
Native 

1.1% 1.0% 0.7% 0.7% 

Asian 2.8% 3.4% 5.4% 5.9% 

Black 7.1% 7.2% 11.5% 11.5% 

Hispanic 17.3% 21.7% 22.0% 23.0% 

Native Hawaiian or Other 
Pacific Islander 

0.3% 0.3% 0.2% 0.2% 

Other 4.8% 5.2% 1.8% 2.0% 

White 66.6% 61.2% 58.4% 56.7% 

 413 
*CTIS collects information on the respondent’s self-reported gender, while the ACS collects information on the 414 
respondent’s self-reported sex.  415 
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Figure 1. Methods Flowchart. 416 
 417 

 418 
  419 
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Figure 2. Comparison of county-level hesitancy estimates for parents of children ages 12-17 produced by CTIS (left) and ASPE 420 
(right). 421 
 422 
 423 

 424 
 425 
 426 
 427 
  428 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.18.22275217doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Figure 3. County-level map of predicted plateau complete vaccination coverage levels by August 2022 for children ages 5-11 years. 429 
The color scale is split at the national average predicted coverage of 46%. 430 
 431 

  432 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2022. ; https://doi.org/10.1101/2022.05.18.22275217doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.18.22275217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Figure 4. Three-month validation of county-level predicted versus observed complete coverage among children ages 5 to 11 years. 433 
 434 
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Figure 5. State-level three-month complete vaccination scale-up progress for children ages 5-11 years, and nine-month predicted 436 
coverage. 437 
 438 

   439 
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Figure 6. Association between three-month county-level complete vaccination progress for children ages 5-11 years and the 440 
socioeconomic status domain of the CDC’s Social Vulnerability Index. The intensity of the trend lines is proportional to the linear 441 
regression R2. 442 
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