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Abstract 
 
Background: 
 
Clostridioides difficile infection (CDI) is a leading cause of healthcare-associated infections and 
may result in organ dysfunction, colectomy, and death. We recently showed that published risk 
scores to predict severe complications from CDI demonstrate poor performance upon external 
validation. We hypothesized that building and validating a model using geographically and 
temporally distinct cohorts would more accurately identify patients at risk for complicated CDI. 
 
Methods:  
 
We conducted a multi-center retrospective cohort study of adult subjects diagnosed with CDI in 
the US. After randomly partitioning the data into training/validation set, we developed and 
compared three machine learning algorithms (Lasso regression, random forest, stacked ensemble 
models) with 10-fold cross-validation that used structured EHR data collected within 48 hours of 
CDI diagnosis to predict disease-related complications from CDI (intensive care unit admission, 
colectomy, or death attributable to CDI within 30 days of diagnosis). Model performance was 
assessed using area under the receiver operating curve (AUC).  
 
Results:  
 
A total of 3,762 patients with CDI were included of which 218 (5.8%) had complications. Lasso 
regression, random forest, and stacked ensemble models all performed well with AUC ranging 
between 0.89-0.9. Variables of importance were similar across models, including albumin, 
bicarbonate, change in creatinine, systolic blood pressure, non-CDI-related ICU admission, and 
concomitant non-CDI antibiotics. Sensitivity analyses indicated that model performance was 
robust even when varying derivation cohort inclusion and CDI testing approach.  
 
Conclusion:  
 
Using a large heterogeneous population of patients, we have developed and validated a 
prediction model based on structured EHR data that accurately estimates risk for complications 
from CDI.  
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Introduction 

Clostridiodes (Clostridium) difficile infection (CDI) is the leading cause of healthcare-

associated infection in United States (U.S.) hospitals, accounting for nearly half a million 

infections per year [1,2]. Furthermore, up to 8% of patients with CDI may develop complicated 

disease, which is associated with worse outcomes, including organ dysfunction, severe sepsis, 

colectomy, and death [3]. In addition to the substantial patient morbidity and mortality, CDI has 

been attributed to $4.8 billion in acute healthcare costs in the United States, with even more costs 

associated with non-acute-care settings [4].  

While multiple effective medical therapies have been developed, such as vancomycin, 

fidaxomicin, monoclonal antibodies, and fecal microbiota transplant [5], it remains unclear 

which patients are highest risk for a complicated disease course and therefore should receive 

more aggressive upfront therapy to improve outcomes. Current risk scores developed to identify 

patients at high risk for complicated CDI, have limited generalizability due to being developed in 

small, single-center cohorts or having not undergone rigorous external or prospective validation 

[5–14]. Recently, our group demonstrated that published CDI severity scoring systems 

performed poorly when tested on a large, multicenter cohort within the US [15]. Thus, an 

accurate prediction model that can be easily applied early after CDI diagnosis is needed to 

identify patients at risk for complicated CDI and to facilitate effective therapy that minimizes the 

risk for adverse CDI outcomes. In this study, we aimed to determine whether using structured 

electronic health record data from several geographically distinct centers in the US would 

provide a more generalizable predictive model for complicated CDI.  

 

Methods 
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Patient Cohorts: 

We conducted a multi-center retrospective longitudinal cohort study at four 

geographically and temporally distinct cohorts, including the University of Michigan (2010-

2012, 2015-2016), University of Wisconsin (2014-2015), and University of Chicago (2013-

2015), as previously described by Perry et al. [15]. Adult subjects ≥18 years who were diagnosed 

with CDI were included in our analysis. CDI was diagnosed by presence of diarrhea (≥3 

unformed stools in a 24-hour period) and positive real-time PCR for the tcdB gene (Simplexa C. 

difficile Universal Direct, Diasorin Molecular LLC, Cypress, CA) at University of Wisconsin 

and University of Chicago. Meanwhile, at both University of Michigan cohorts, CDI was 

diagnosed by presence of diarrhea (≥3 unformed stools in a 24-hour period) and a positive stool 

test for toxigenic C. difficile (positive testing for both the glutamate dehydrogenase [GDH] 

antigen and TcdA/TcdB by enzyme immunoassay [C. Diff Quik Chek Complete, Alere, 

Waltham, MA], or real-time polymerase chain reaction for the tcdB gene performed when 

GDH/toxin results were discordant). Patients with positive laboratory testing for CDI were 

identified using electronic health record (EHR).  

 

Primary Outcome: 

We defined CDI as complicated if it led to any of three adverse outcomes within 30 days 

of CDI diagnosis: admission to intensive care unit (ICU), colectomy, or death attributable to CDI 

as determined by the study team physicians [13,17]. Clinical and demographic variables 

including comorbidities, medications, vitals, laboratory results, and study results (such as 

radiographic imaging) were collected for each patient’s admission through automated query of 
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the EHR. The institutional review boards at the University of Michigan, University of Chicago, 

and University of Wisconsin gave ethical approval for this work. 

 

Predictor Variables: 

A total of 32 predictor variables were evaluated, including demographic, biometric, 

biochemical, and co-morbid conditions (see Supplementary Table 1). Variable inclusion was 

based on literature review of clinically relevant factors. Non-CDI-related ICU admission and 

non-CDI concurrent antibiotics were included as predictor variables but only if ICU admission 

and/or antibiotic use were unrelated to CDI. 

 

Data Pre-Processing: 

We used R version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria) for 

cleaning and wrangling data. Data were randomly split with 75% of the data used for model 

training and the remaining 25% data held out for testing and validation. The data were stratified 

by the proportion of severe CDI events so that the distribution of the outcome was maintained in 

both the training and test set. Missing data were imputed using random forest-based imputation 

strategies (i.e., using the R package missForest) [18], which has previously been shown to have 

the lowest imputation error for both continuous and categorical variables [19]. Numeric variables 

were centered and scaled while categorical variables were recoded into dummy variables.  

 

Model Development and Testing: 

We developed three separate machine learning classification models using the 

Tidymodels framework [20], including L1-regularized logistic regression (least absolute 
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shrinkage and selection operator or Lasso) using the R package glmnet [21], random forest with 

the R package ranger [22], and extreme gradient boosted trees with the R package XGBoost [23]. 

The best performing algorithms were combined in an ensemble model using stacking with the R 

package stacks [24]. Machine learning algorithms were first applied to training data to 

parameterize and fit the model. Ten-fold cross-validation was utilized to tune model 

hyperparameters. To evaluate the prediction accuracy of machine learning models, area under the 

receiver operating characteristic (ROC) curves (AUC) were calculated for each model using 

independent test data.  

 

Variable Importance: 

Variable importance was determined by permutation-feature importance analysis using 

the R package vip [25]. Permutation-feature importance measures the increase in prediction error 

when the variable is permuted and the relationship between variable and outcome is broken, thus 

the drop in the model score is indicative of how much the model depends on the feature [26]. To 

further improve interpretability of our machine learning models, we also performed locally 

interpretable model-agnostic explanations using the R package breakDown, which decomposes 

model predictions into parts that can be attributed to particular variables [27]. 

 

Sensitivity Analyses: 

To determine whether our models were generalizable across sites and time, we performed 

a sensitivity analysis where we trained the machine learning algorithms on three cohorts and 

validated model performance on the fourth cohort. We repeated this process three times so that 

models were validated on each individual cohort.  
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Furthermore, as the definition of CDI varied by individual centers, we performed an 

additional sensitivity analysis to determine whether diagnosis of CDI by PCR only versus two-

step mechanism influenced our model predictions. Sites that diagnosed CDI by PCR only (i.e. 

University of Wisconsin and University of Chicago) were analyzed separately from sites that 

utilized a two-step diagnostic approach (i.e. University of Michigan 2010 and 2016). We 

randomly split the data, training the model on 75% of the data and tested and validated our 

models on the remaining held-out 25% of the data. Model performance was evaluated as 

described above.    

 

Results 

Patient Characteristics: 

A total of 3,762 patients testing positive for C. difficile were collected from four cohorts 

at three sites from 01/01/2010 to 12/31/2015 (Table 1). Overall, the mean age was 56.49 ± 19.82 

years, 53.5% female, 68.6% Caucasian, 25.7% Black (with the highest proportion in the 

University of Chicago cohort), and 5.7% reported another race or not specified. A total of 218 

patients (5.8%) met the primary endpoint, including 65 (4.5%) at the University of Chicago 

cohort; 90 (7.9%) at the University of Michigan 2010-2012 cohort; 28 subjects (4.4%) at the 

University of Michigan 2010-2012 cohort; and 35 (6.5%) at the University of Wisconsin.  

 

Model Training and Performance: 

Data were randomly split into a training set of 2,763 cases and an independent validation 

set of 921 cases. Splitting of the data set was stratified by the proportion of severe CDI to 

preserve the distribution of complicated CDI in both the training and validation set. We found 
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that lasso regression, random forest, and stacked ensemble models all performed well with AUC 

scores ranging from 0.88-0.89 (Figure 1) when tested on an independent test dataset. However, 

XGBoost models showed poor performance (AUC 0.50) and were not carried forward in 

subsequent analyses (data not shown). The random forest model performed marginally better 

than the lasso regression and stacked ensemble model, but only with a magnitude of 0.01, which 

is unlikely to be clinically significant. Model calibration plots for the three models are illustrated 

in Supplemental Figure 1.  

 

Sensitivity Analyses: 

To test the generalizability of our multi-cohort approach as well as to assess for temporal 

trends and variations in management practices and participant composition among the various 

cohorts, we performed a sensitivity analysis by deriving models using only three of the four 

cohorts in the dataset and holding out the fourth cohort as the independent test set. We found that 

even models trained on only three cohorts were able to predict severe CDI in the fourth cohort 

left out of the training set with high accuracy. Model performance was robust in this sensitivity 

analysis (AUC ranging from 0.84-0.92) although there was a drop in performance when data 

from the University of Chicago was held out and used as the test set (AUC 0.75-0.76) (Figure 

2).  

In addition, to determine whether the method for CDI diagnosis may have impacted 

model performance, we performed separate sensitivity analyses using data from sites that used 

PCR alone (i.e. University of Chicago and University of Wisconsin) vs. two-step testing (i.e. 

University of Michigan 2010 and 2016) to train and validate models. For sites that used two-step 

testing, our models retained excellent performance (AUC 0.89 – 0.91), while model performance 
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was lower when using sites that used PCR testing alone as the hold-out-test set (AUC 0.79 – 

0.84) (Supplemental Figure 2). 

 

Predictive Features for Complicated CDI: 

We performed a permutation-based variable importance analysis to determine the variable 

importance of each predictor of complicated CDI (Figure 3).  Interestingly, the variables of 

importance were similar across models, but varied in their relative contribution to each model. 

The top predictors shared across all models included albumin, bicarbonate, change in creatinine, 

systolic blood pressure, non-CDI-related ICU admission within 30 days, and concomitant non-

CDI antibiotics within 30 days of CDI diagnosis. Model performance was similar despite 

differences in relative contributions by each variable. 

To enhance the interpretability of our machine learning models, we also performed 

breakdown plots to determine how each variable contributes to a final prediction. For patients 

with low predicted probability of complicated CDI (Figure 4A-B), absence of factors, such as 

non-CDI-related ICU admission, concurrent non-CDI antibiotics, low CO2 levels, low systolic 

blood pressure, and peak WBC count were associated with decreased risk for complicated CDI. 

In contrast, for patients with high predicted probability for complicated CDI (Figure 4C-D), 

non-CDI-related ICU admission, high WBC count, low systolic blood pressure, low albumin 

level, and concurrent non-CDI antibiotics were associated with increased risk for complicated 

CDI. 

 

Discussion  
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In this multi-site cohort study, machine learning models based on structured electronic health 

record data accurately predicted disease-related complications from CDI. All three machine 

learning methods, including lasso regression, random forest, and a stacked ensemble method 

demonstrated excellent performance in predicting severe complications from CDI (i.e., AUC of 

88-89%). Importantly, we intentionally developed models without site-specific variables, and our 

results suggest that this model is generalizable across centers and time, which is critical when 

considering the heterogeneity in patient population and practice patterns across the United States. 

Furthermore, our results were generally agnostic to specific algorithms and performed equally 

well when using both linear and nonlinear machine learning approaches. Finally, although there 

was some model-specific variability, the predictors most important in discriminating severe 

complications attributable to CDI were similar between models.  

While several CDI severity and complication scoring systems have been developed 

previously, they generally were developed from single centers and were not externally validated 

[5–14]. Our group recently published the largest external validation of published CDI severity 

scoring systems and found that all models yielded AUC scores below 70% suggesting that 

current models are not generalizable and cannot reliably predict severe complications from CDI 

[15]. 

There are multiple notable strengths to our analysis which make our approach generalizable. 

First, our models were developed using data from three geographically distinct sites, which were 

composed of a heterogenous population. When we validated our model on each site as an 

independent hold-out data set, our models continue to demonstrate good performance. Secondly, 

our models were robust despite differences in temporal trends and practice patterns across sites. 

For example, CDI was diagnosed by positive PCR test alone at the University of Chicago and the 
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University of Wisconsin, while a two-step algorithm was required for positive CDI diagnosis at 

the University of Michigan. Furthermore, the University of Michigan started to use Vancomycin 

as first-line treatment for CDI starting in 2013 while the other centers did not switch from 

metronidazole to vancomycin as first-line treatment until mid-2016. Despite these differences in 

practice patterns and temporal trends, our sensitivity analyses demonstrated that our model 

retained good performance when deriving models from the three earlier cohorts and validating it 

on the latter University of Michigan cohort as well as deriving and validating models on the two 

sites that used PCR testing alone for CDI diagnosis compared to sites that used a two-step 

algorithm.  

While our model showed strong performance overall, we did see a noticeable drop in 

performance on sensitivity analyses when the model was validated on the cohort from the 

University of Chicago. We speculate that this may be related to the diversity of the patients 

comprising the University of Chicago cohort that was not captured when this site was not 

included in deriving the model. Black individuals represented a larger proportion of the cohort at 

the University of Chicago compared with other sites, while Black race was associated with a 

higher likelihood of severe CDI outcomes. Thus, important information related to racial diversity 

may have been lost when model derivation was performed using only the University of Michigan 

and University of Wisconsin cohorts which were comprised of a small proportion of Black 

patients. We believe this also strengthens the rationale for building and validating our primary 

model using four geographically and temporally heterogeneous cohorts, which was critical in 

developing a more generalizable model for predicting complicated CDI.  

We achieved similar classification performance when using lasso regression, random forest 

or combining these algorithms using a stacked ensemble method. While random forest models 
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showed a numerically higher performance compared to the other models, the incremental benefit 

was likely negligible. Machine learning algorithms, such as random forest and stacked ensemble 

methods, do not produce coefficients and are inherently less interpretable compared with lasso 

regression [26]. Thus, transforming model results into a risk score is more complex. Given the 

ease of interpretation as well as reduced computational costs associated with regression-based 

approaches, our lasso regression model may be favored for future applications.  

In general, variables that carried the greatest importance were consistent across models and 

across sites. Most variables identified as important predictors of complicated CDI by our model 

are also consistent with our clinical and biological understanding of CDI pathogenesis and 

progression, such as peak creatinine, peak white blood cells, low albumin levels, low blood 

pressure, low hemoglobin, advanced age, concurrent antibiotic use for treating non-CDI 

infections, low bicarbonate, and ICU admissions. Importantly, all variables were collected within 

48 hours of CDI diagnosis, which increases the clinical utility of our model, by allowing for 

early calculation of patients at risk for developing complicated CDI. Leukocytosis (white blood 

cell count > 15,000 cells/mL) and acute rise in serum creatinine > 1.5 mg/dL are well established 

markers for severe CDI and were initially incorporated into guidelines by Society for Healthcare 

Epidemiology of America and the Infectious Disease Society of America in 2018 to determine 

which patients at risk for severe disease and should be offered more aggressive upfront therapy 

(i.e., vancomycin over metronidazole) [28]. In addition, older age [29,30], hypoalbuminemia 

[31],  low hemoglobin [32], concurrent antibiotic use [31], and ICU admission [14,31] have also 

been previously identified as predictors of poor outcomes from CDI. Although ICU admission 

was part of our composite endpoint, we were careful to include only patients who were admitted 

to the ICU prior to CDI diagnosis as our predictor variable.  
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Our study has several notable strengths. To our knowledge, this is the largest study 

combining data from four distinct cohorts composed of both temporally and geographically 

distinct patients to create a predictive model of complicated CDI. This significantly improved the 

generalizability of the model. Previous models predicting severe or complicated CDI were 

mostly derived from smaller single centers. By using rigorous and well-validated predictive 

modeling techniques and by comparing several different predictive modeling approaches, we 

were able to develop a highly accurate model for predicting complicated CDI using readily 

available structured EHR data.  In addition, the use of permutation-based variable importance 

analysis allowed us to identify the importance of each predictor in our models. By improving the 

interpretability of our model, we anticipate this will enhance clinical utility, provider buy-in, and 

uptake of use when implemented.  

These results should be interpreted in the context of several limitations. First, our analysis is 

retrospective. Prospective studies are necessary for understanding how such models perform in 

real time. Second, our models were derived from four cohorts from major academic medical 

centers in the midwestern United States. Model performance will have to be evaluated outside of 

this setting to confirm generalizability as patient populations, clinical protocols, and risk factors 

may vary across institutions. Third, given that our model merely identified associations, 

additional prospective investigation is required to establish the direction of the true underlying 

relationships (e.g., through RCTs). Moreover, despite the removal of variables that could serve 

as proxies for our composite outcome, some model features may not be true risk factors but 

rather markers for the beginning of complicated CDI itself. In the future, this may be elucidated 

by tracking the evolution of a patient’s risk over multiple days of their hospitalization. Fourth, 

we cannot exclude the possibility that patients may experience the outcome at another hospital, 
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and thus we may have potentially underestimated the extent of complications from CDI. In 

addition, although CDI testing was recommended only for symptomatic patients during our study 

period and this was further validated by chart review, some positive CDI tests might reflect 

asymptomatic carriers. Lastly, our model employed a large number of variables which may 

affect clinician-perceived useability; however, this would be mitigated by embedding a decision 

tool which utilizing our prediction models directly within the EHR.  

In summary, this multi-center cohort study comprised of a large heterogeneous population 

demonstrates that machine learning algorithms based on structured EHR data can accurately 

estimate patients’ risk for developing complications from CDI. Our approach leverages variables 

that can be readily extracted from the EHR early in the course of a patient’s CDI. This approach 

has many potential applications for guiding clinician decision making in the management of 

CDI. Future studies may determine whether prospective deployment of this model may aid 

clinicians to tailor patient therapy in real-time and allow for early use of more aggressive 

therapies to minimize risk of complications.  
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AUC, area under the receiver operator characteristic curve; CDI, Clostridiodes difficile infection; 

EHR, electronic health records; ICU, intensive care unit.  
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Figure Legends: 

Figure 1. Receiver operator characteristic (ROC) curves for Lasso, Random Forest, and Stacked 

Ensemble models. After randomly splitting the data into training/validation sets, Lasso 

regression (red line), Random Forest (blue line), and Stacked Ensemble (green line) models were 

trained. All models demonstrated excellent performance when tested on an independent 

validation set (Lasso regression: AUC = 0.88 [95% CI 0.84-0.93]; Random Forest: AUC = 0.89 

[95% CI 0.84-0.94]; Stacked Ensemble: AUC = 0.88 [95% CI 0.83-0.94]). 

 

Figure 2. Models are robust despite geographical, demographic, and temporal variability. To 

determine whether models were generalizable across centers and across time, machine learning 

algorithms were derived and trained using data from three cohorts and then validated model 

performance on the fourth cohort (labeled as Test in the figure). This process was repeated three 

times so that models were validated on each individual cohort. The Lasso regression (red line), 

Random Forest (blue line), and Stacked ensemble (green line) models demonstrated good 

performance when tested on (A) the University of Michigan 2010-2012 cohort (Lasso regression: 

AUC = 0.84 [95% CI 0.79-0.89); Random Forest: AUC = 0.87 [95% CI 0.82-0.91]; Stacked 

Ensemble: AUC = 0.86 [95% CI 0.82-0.91]); (B) University of Wisconsin cohort (Lasso 

regression: AUC = 0.92 [95% CI 0.86-0.98]; Random Forest: AUC = 0.92 [95% CI 0.86-0.98]; 
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Stacked Ensemble: AUC = 0.92 [95% CI 0.86-0.98]); and (D) University of Michigan 2015-

2016 cohort (Lasso regression: AUC = 0.91 [95% CI 0.87-0.96]; Random Forest: AUC = 0.89 

[95% CI 0.82-0.95]; Stacked Ensemble: AUC = 0.90 [95% CI 0.84-0.96]). Performance of the 

models dropped but still showed adequate performance when tested on (C) the University of 

Chicago cohort (Lasso regression: AUC = 0.76 [95% CI 0.70-0.82]; Random Forest: AUC = 

0.75 [95% CI 0.67-0.80]; Stacked Ensemble: AUC = 0.75 [95% CI 0.68-0.82]). 

 

Figure 3. Variable Importance Plot for Lasso Regression and Random Forest. Twenty of the 

most important variables by permutation-based variable importance analysis are illustrated for 

(A) Lasso Regression and (B) Random Forest. Variables positively associated with complicated 

Clostridiodes difficile infection (CDI) are shown in blue while variables negatively associated 

with complicated CDI are shown in orange. Please note, determining the directionality of 

association for variables using permutation-based variable importance analysis with nonlinear 

based machine learning techniques, such as random forest, is not possible.  

 

Figure 4. Breakdown plot for patients with low and high predicted probability for complicated 

Clostridiodes difficile infection (CDI). Breakdown plot is shown for (A) Lasso and (B) random 

forest model in the same patient (patient #1) with low predicted probability for CDI. Similarly, 

breakdown plot is depicted for (C) Lasso and (D) random forest model in a patient with high 

predicted probability for complicated CDI (patient #277). Intercept represents the mean model-

specific predicted probability for complicated CDI while each subsequent variable increases or 

decreases predicted probability and results in the overall predicted probability (labeled 

prediction).  
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Supplemental Figure 1. Calibration plot for Lasso, Random Forest, and Stacked Ensemble 

Models. The calibration plots fitted with a locally estimated scatterplot smoothing (loess) curve 

for the Lasso regression (red line), Random Forest (blue line), and Stacked Ensemble (green 

line) models show overall good agreement between observed and predicted outcomes. However, 

the Lasso regression and Random Forest models tend to overestimate risk for complicated CDI at 

low probabilities while the Stacked Ensemble model underestimates the risk for complicated 

CDI at low probabilities.  

 

Supplemental Figure 2. Models retain good performance despite differences in definitions for 

Clostridiodes difficile infection (CDI) across centers. As the definition for CDI employed at the 

University of Chicago and the University of Wisconsin differed from that used at the University 

of Michigan, we performed a sensitivity analysis to see if our model was robust to these 

differences. (A) Using data only from the University of Chicago and University of Wisconsin 

cohorts which were randomly split 75/25 into training/validation sets, machine learning 

algorithms were trained and then validated on the independent test set. Lasso models (red line), 

random forest (blue line), and stacked ensemble (green line) showed good performance when 

validated on the independent test set. (B) This process was repeated but using data only from the 

University of Michigan 2010 and 2016 cohorts. From University of Chicago and University of 

Wisconsin and then validated model performance on both University of Michigan cohorts 

(labeled as Michigan 2010 and Michigan 2016).  
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Table 1: Patient Characteristics 
 

 

University of 
Chicago  

(2013-2015) 
(N=1341) 

University of 
Michigan  

(2010–2012) 
(N=1144) 

University of 
Michigan  

(2016)  
(N=646) 

University of 
Wisconsin  

(2014–2015) 
(N=515) 

Total Patient 
Population 
(N=3646) 

Age (years) [Mean (SD)] 58.7 (18.5) 57.3 (18.0) 57.7 (18.2) 59.2 (16.1) 58.2 (18.0) 

Female [n (%)] 703 (52.4%) 625 (54.6%) 344 (53.3%) 264 (51.3%) 1936 (53.1%) 

Race      

    Caucasian 545 (40.6%) 933 (81.6%) 558 (86.4%) 475 (92.2%) 2511 (68.9%) 

    Black  713 (53.2%) 147 (12.8%) 46 (7.1%) 26 (5.0%) 932 (25.6%) 

    Other 83 (6.2%) 64 (5.6%) 42 (6.5%) 14 (2.7%) 203 (5.6%) 

Inpatient Admission 1341 (100.0%) 1144 

(100.0%) 
469 (72.6%) 515 (100.0%) 3469 (95.1%) 

ICU Admission Transfers [n 
(%)] 

84 (6.3%) 144 (12.6%) 9 (1.4%) 61 (11.8%) 298 (8.2%) 

Disease-related Complications 
from C. difficile [n (%)] 

     

    30-day Mortality 39 (2.9%) 49 (4.3%) 23 (3.6%) 17 (3.3%) 128 (3.5%) 

    30-day Colectomy 16 (1.2%) 4 (0.3%) 1 (0.2%) 5 (1.0%) 26 (0.7%) 

    30-day ICU Admission  18 (1.3%) 49 (4.3%) 5 (0.8%) 26 (5.0%) 98 (2.7%) 

Concomitant non-CDI 
Antibiotics use within 30days 

908 (67.7%) 756 (66.1%) 228 (35.3%) 354 (68.7%) 2246 (61.6%) 

Peak WBCs (K/uL) [Mean (SD)] 11.3 (12.0) 13.4(12.4) 12.2 (15.5) 13.7(20.2) 12.5 (14.1) 

Baseline Creatinine (mg/dL) 
[Mean (SD)] 

1.6 (2.2) 1.4 (1.7) 1.2 (1.3) 1.5(1.9) 1.5 (1.9) 

Peak Creatinine (mg/dL) [Mean 
(SD)] 

2.1 (2.4) 1.6 (1.8) 1.3 (1.4) 2.0 (2.4) 1.8 (2.1) 

Creatinine Change (mg/dL) 0.5 (1.1) 0.3 (1.1) 0.1 (0.7) 0.5 (1.0) 0.4 (1.0) 
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[Mean (SD)] 
Acute Kidney Injury      

  None 734 (54.7%) 797 (69.7%) 299 (46.3%) 289 (56.1%) 2119 (58.1%) 

  Stage 1 588 (43.8%) 336 (29.4%) 47 (7.3%) 159 (30.9%) 1130 (31.0%) 

  Stage 2 3 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (0.1%) 

  Stage 3 734 (54.7%) 797 (69.7%) 299 (46.3%) 289 (56.1%) 2119 (58.1%) 

      

Lowest Albumin (g/dL) [Mean 
(SD)] 

3.034 (0.707) 3.157 (0.664) 3.305 (0.739) 2.650 (0.676) 3.083 (0.716) 

      

Lowest Hemoglobin (g/dL) [Mean 
(SD)] 

9.725 (1.889) 9.489 (1.990) 10.016 

(2.346) 
9.253 (2.239) 9.628 (2.062) 

Peak Platelets (K/uL) [Mean (SD)] 250.434 

(147.188) 
258.749 

(186.944) 
259.821 

(135.329) 
217.984 

(125.550) 
250.003 

(157.399) 

Lowest Sodium (mmol/L) [Mean 
(SD)] 

136.008 (4.728) 136.508 

(4.214) 
137.767 

(3.790) 
136.903 

(4.388) 
136.571 

(4.419) 

Lowest Bicarbonate (mmol/L) 
[Mean (SD)] 

20.090 (4.524) NA 24.403 

(4.412) 
22.606 

(4.453) 
21.611 (4.836) 

Maximum Body Temperature (°F) 
[Mean (SD)] 

98.924 (0.785) 99.526 (1.462) 99.982 

(1.616) 
99.759 

(1.499) 
99.395 (1.340) 

Maximum Systolic Blood Pressure 
(mmHg) [Mean (SD)] 

105.965 (9.102) 99.329 

(19.353) 
93.894 

(18.664) 
99.479 

(16.855) 
101.164 

(16.142) 

Number of positive prior CDI 
[Mean (SD)] 

0.192 (0.394) 0.266 (0.442) 0.289 (0.454) 0.058 (0.234) 0.213 (0.410) 

Peripheral Vascular Disease 109 (8.1%) 75 (6.6%) 153 (23.7%) 107 (20.8%) 444 (12.2%) 

Peptic Ulcer Disease 0 (0.0%) 27 (2.4%) 67 (10.4%) 4 (0.8%) 98 (2.7%) 

Congestive Heart Failure 323 (24.1%) 151 (13.2%) 153 (23.7%) 129 (25.0%) 756 (20.7%) 

Malignancy 225 (16.8%) 220 (19.2%) 0 (0.0%) 515 (100.0%) 960 (26.3%) 
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Metastatic Malignancy 156 (11.6%) 61 (5.3%) 0 (0.0%) 41 (8.0%) 258 (7.1%)  

Chronic Pulmonary Disease 333 (24.8%) 320 (28.0%) 205 (31.7%) 157 (30.5%) 1015 (27.8%) 

Rheumatoid Arthritis 189 (14.1%) 77 (6.7%) 39 (6.0%) 39 (7.6%) 344 (9.4%) 

Diabetes without Complication 290 (21.6%) 267 (23.3%) 187 (28.9%) 171 (33.2%) 915 (25.1%)  

Diabetes with Complication 100 (7.5%) 127 (11.1%) 0 (0.0%) 94 (18.3%) 321 (8.8%)  

Renal Disease 410 (30.6%) 309 (27.0%) 230 (58.2%) 196 (38.1%) 1145 (33.7%) 

Obesity 116 (8.7%) 72 (6.3%) 164 (25.9%) 18 (3.5%) 370 (10.2%) 

Inflammatory Bowel Disease 97 (7.2%) 110 (9.6%)   108 (16.7%) 26 (5.0%) 231 (9.2%) 
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