HostSeq : A Canadian Whole Genome Sequencing and Clinical Data Resource

Yoo S ^{1,16}*, Garg E ²*, Elliott LT ², Hung RJ ^{3,4}, Halevy AR¹, Brooks JD ³, Bull SB ^{3,4}, Gagnon F ³, Greenwood CMT ^{6,7}, Lawless JF ⁸, Paterson AD ^{1,3}, Sun L ³, Zawati MH ⁶, Lerner-Ellis J ^{3,5}, Abraham RJS ⁹, Birol I ⁹, Bourque G ⁶, Garant J-M ⁹, Gosselin C ⁹, Li J ⁹, Whitney J ¹, Thiruvahindrapuram B ¹, Herbrick J-A ¹, Lorenti M ¹, Reuter MS ¹, Adeoye NO ¹, Liu S ¹, Allen U ^{1,3}, Bernier FP ^{10,11}, Biggs CM ^{12,13,14}, Cheung AM ¹⁵, Cowan J ^{16,17}, Herridge M ¹⁵, Maslove DM ¹⁸, Modi BP ¹³, Mooser V ⁶, Morris SK ^{1,3}, Ostrowski M ^{3,19}, Parekh RS ^{1,3,20}, Pfeffer G ²¹, Suchowersky O ²², Taher J ^{3,5}, Upton J ^{1,3}, Warren RL ⁹, Yeung RSM ^{1,3}, Aziz N ¹, Turvey SE ^{12,13}, Knoppers BM ⁶, Lathrop M ⁶, Jones SJM ⁹, Scherer SW ^{1,3}, [#]Strug LJ ^{1,3}

* These authors contributed equally.

[#]Correspondence to:
Professor Lisa J. Strug
Departments of Statistical Sciences and Computer Science
The University of Toronto
Senior Scientist
The Hospital for Sick Children
Email: lisa.strug@utoronto.ca

¹ The Hospital for Sick Children, Ontario, Canada

² Simon Fraser University, British Columbia, Canada

³ University of Toronto, Ontario, Canada

⁴ Lunenfeld-Tanenbaum Research Institute, Sinai Health, Ontario, Canada

⁵ Sinai Health System, Ontario, Canada

⁶ McGill University, Quebec, Canada

⁷ Lady Davis Institute for Medical Research, Jewish General Hospital, Quebec, Canada

⁸ University of Waterloo, Ontario, Canada

⁹ Canada's Michael Smith Genome Sciences Centre, British Columbia, Canada

¹⁰ University of Calgary, Alberta, Canada

¹¹ Alberta Children's Hospital, Alberta, Canada

¹² University of British Columbia, British Columbia, Canada

¹³ BC Children's Hospital, British Columbia, Canada

¹⁴ St. Paul's Hospital, British Columbia, Canada

¹⁵ University Health Network, Ontario, Canada

¹⁶ University of Ottawa, Ontario, Canada

¹⁷ The Ottawa Hospital Research Institute, Ontario, Canada

¹⁸ Queen's University, Ontario, Canada

¹⁹ St. Michael's Hospital, Unity Health, Ontario, Canada

²⁰ Women's College Hospital, Ontario, Canada

²¹ Hotchkiss Brain Institute, Department of Clinical Neurosciences, and Department of Medical

Genetics, Cumming School of Medicine, University of Calgary, Alberta, Canada

²² University of Alberta, Alberta, Canada

ABSTRACT

HostSeq was launched in April 2020 as a national initiative to integrate whole genome sequencing data from 10,000 Canadians infected with SARS-CoV-2 with clinical information related to their disease experience. The mandate of HostSeq is to support the Canadian and international research communities in their efforts to understand the risk factors for disease and associated health outcomes and support the development of interventions such as vaccines and therapeutics. HostSeq is a collaboration among 13 independent epidemiological studies of SARS-CoV-2 across five provinces in Canada. Aggregated data collected by HostSeq are made available to the public through two data portals: a phenotype portal showing summaries of major variables and their distributions, and a variant search portal enabling queries in a genomic region. Individual-level data is available to the global research community for health research through a Data Access Agreement and Data Access Compliance Office approval. Here we provide an overview of the collective project design along with summary level information for HostSeq. We highlight several statistical considerations for researchers using the HostSeq platform regarding data aggregation, sampling mechanism, covariate adjustment, and X chromosome analysis. In addition to serving as a rich data source, the diversity of study designs, sample sizes, and research objectives among the participating studies provides unique opportunities for the research community.

KEYWORDS

SARS-CoV-2, COVID-19, host genetics, clinical databank, whole genome sequencing

BACKGROUND

Following exposure to SARS-CoV-2 (the virus that causes COVID-19), some individuals remain disease- or symptom-free while others develop a spectrum of symptoms from mild to severe with the potential for fatal outcomes (1). This variability in response to exposure suggests that susceptibility is mediated at least in part by host genetic factors (2). Genetic factors have been associated with acquisition and severity of other viral infections (3–7), including SARS-CoV-1 (8,9). A growing body of work demonstrates a role for host genetics in SARS-CoV-2 (10–14). Despite the relative novelty of the SARS-CoV-2 virus and the challenges of identifying genetic contributors in a changing environment (2), several loci contributing to infection susceptibility and illness severity have been identified (15). Associated loci are comprised of rare and common variations and occur throughout the genome, including but not limited to chromosome X and the HLA region on chromosome 6.

In 2020, several countries launched efforts to identify the genetic factors affecting COVID-19 outcomes to support diagnostics, therapy and vaccine development. However, Canada was not poised to do so because, although population-based cohorts exist (16,17), a national whole genome sequencing cohort broadly consented for research and translation, and linked to rich clinical and public health data, did not exist at the onset of the global pandemic. Here we describe the development of this national platform to address pressing questions concerning COVID-19 and other health outcomes in Canada. In April 2020, as part of the Canadian pandemic response, Genome Canada (a not-for-profit organization funded by the Government of Canada) launched the Canadian COVID-19 Genomics Network (CanCOGeN) (18). CanCOGeN established a coordinated pan-Canadian network of studies in collaboration with Canada's national platform for genome sequencing and analysis (CGEn). Beginning June 2020, CGEn developed HostSeq: a national databank of independent clinical and epidemiological studies enrolling SARS-CoV-2-infected participants across Canada. The goal of HostSeq is to create a data repository with whole genome sequencing and harmonized clinical information, including comorbidities for 10,000 Canadians. With the launch of HostSeq, investigators can now begin to address questions of genetic susceptibility to SARS-CoV-2 infection and outcomes from the Canadian perspective. The approvals in place to link HostSeq to other local, provincial or national data resources expand the utility of the resource, including genetic susceptibility for future implications of SARS-CoV-2 infection. Further, summary statistics from association studies of HostSeq have been contributed and are aligned with international efforts including the COVID-19 Host Genetic Initiative (HGI) (19) and COVID Human Genetic Effort (https://www.covidhge.com/). Most importantly, we have established the research project infrastructure necessary for future pan-Canadian genome sequencing studies. In this resource paper introducing the HostSeq Databank, we present its design characteristics, high-level analytic considerations pertaining to it, and the research opportunities this rich resource provides.

CONSTRUCTION AND CONTENT

HostSeq Project Design

HostSeq (Figure 1) is a project representing a consortium of investigator-initiated SARS-CoV-2related research studies across Canada. Each partner study was required to adhere to core consent elements (Table S1), contribute blood (or in rare cases saliva) samples for whole genome sequencing, and provide clinical information using a standardized case report form (Table S2).

Within these studies, eligible participants include individuals of any age with a positive SARS-CoV-2 test performed by any Health Canada approved method. In some studies, suspected cases with clinically assessed COVID-19-related symptoms but without a positive test diagnosis were also included. Within the primary studies, each participant consented to use of their whole genome sequence for future research (20). Participants also consented to the update, linkage and collection of their data from medical records and charts, as well as from administrative databases, and the deposition of data in a cloud-based, access-controlled databank which can be shared with approved researchers including international and commercial researchers. Additionally, participants had the option to consent to be re-contacted for updates or additional health information, or for invitations to participate in new research. Informed consent was obtained from individuals at each of the participating study sites. For the HostSeq Databank, approval was sought from the study's Research Ethics Board (REB) for inclusion in HostSeq.

The HostSeq Databank shares data with the global research community following review and approval by the HostSeq-independent Data Access Compliance Office (DACO). The DACO verifies that the proposed research has REB approval from their host institution and conforms to HostSeq's REB-approved SARS-CoV-2 or other health outcome research. DACO-approved researchers sign inter-institutional legal agreements, which outline how the shared data is to be used, stored, and privacy protected.

*Figure 1. Sample and data flow in HostSeq*¹.

Whole Genome Sequencing

All HostSeq samples undergo whole genome sequencing in a standardized fashion at one of the three CGEn nodes: Toronto (The Centre for Applied Genomics at The Hospital for Sick Children), Montréal (McGill Genome Centre at McGill University), and Vancouver (Canada's Michael Smith Genome Sciences Centre) on the Illumina NovaSeq6000 platform at 30X depth. Prior to sequencing, quality assurance is performed at multiple stages throughout the process (21). Concordance of the genotyping pipeline among sequencing sites is verified using the Ashkenazi trio set from the Genome in a Bottle Consortium (22).

¹ Aspects of graphics acquired from Wikimedia Commons.

Sequenced samples are analyzed jointly using an in-house pipeline encoded in Nextflow (23) and Snakemake (31), containerized using Docker (21). The Genome Reference Consortium human build 38 (GRCh38 assembly version GCA_000001405.15) reference genome that includes the alternative HLA decoy genes² is used. Genomes are processed following the Best Practices guidelines of the Genome Analysis ToolKit (GATK v4.2.5.0). This includes alignment of sequences to the reference genome, and the genotyping of each sample individually followed by joint-calling of all genotypes together. Associated scripts can be found in a public repository (<u>https://svn.bcgsc.ca/bitbucket/users/jmgarant</u>). Software packages used to process and analyze the WGS data are listed in Table S3.

The in-house pipeline is as follows. Sequences are aligned to the reference genome using DRAGEN mapper (DRAGMAP v1.3.0) (25), sorted with Picard tools (v2.25.0) and bases are recalibrated using the Base Quality Score Recalibration (BQSR) of GATK. GATK HaplotypeCaller is used in Dragen mode on diploid samples for short variant discovery. Aligned sequences are thus converted to genomic Variant Calling Format (gVCF) files, which are then filtered and imported to a GATK GenomicsDB for joint-calling using the GATK GenotypeGVCFs tool. We perform HLA Class I typing using OptiType software (v1.3.1) (26); perform housekeeping with bcftools (v1.11) and samtools (v1.14) (27); check for sample contamination using VerifyBamID2 (v2.0.1) (28); check agreement between reported sex-atbirth and sex chromosome composition using PLINK software (v1.90) (29); and predict ancestry admixture (30) and relatedness (31) using Genetic Relationship and Fingerprinting software (GRAF v2.4). We use PLINK (v2.00) (32) and R (3.6.3) (33) for genetic data analysis. Additionally, we compare the genetic principal components of HostSeq with the 1000 Genomes Project reference populations (34,35) following the guidelines of plinkQC (36). Samples are excluded based on the following checks (Figure S1): (i) genotyping call rate < 95%, (ii) sex chromosome composition and reported sex-at-birth mismatch, (iii) samples identified as duplicates, (iv) possibly mislabelled samples, (v) sample contamination rate > 3%, and (vi) mean coverage < 10. The whole genome sequence data are readily available in joint VCF format (aligned sequences can be made available upon request).

Contributing Studies and Data Harmonization

As of December 20, 2022, 13 participating studies contributed data and biospecimens to HostSeq (Table S4). Although all 13 studies continue collecting clinical information, 6 have completed their participant recruitment. To date, we have harmonized data from all 13 studies. The participating studies are predominantly prospective SARS-CoV-2 studies based in hospitals, and are seeking to identify genetic factors that contribute to varying COVID-19 outcomes. Here we summarize characteristics of the 13 harmonized studies. Three studies—genMARK, Alberta

² <u>https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/</u>

Childhood COVID-19 Cohort ("AB3C"), and Genomic Determinants of COVID-19 ("GD-COVID") —are using a case-control design, in which laboratory-confirmed COVID-19 cases are matched with controls (see Table S4 for matching factors and control eligibility). One study—Quebec COVID-19 Biobank ("BQC19")—collected clinical data and biospecimens from 12 hospitals in Quebec (37). The remaining studies are case-cohorts with patients that either have a confirmed or suspected diagnosis of COVID-19. From these studies, the HostSeq Databank includes data from study subjects on demographics, comorbidities and assessment and treatment provided for COVID-19.

Clinical data from the participating studies is systematically harmonized by the HostSeq team in an ongoing process. In the first stage, we verify the raw data by checking for missingness, consistency, inadmissible values, and aberrant values across the variables. In the second stage, we harmonize the data guided by a set of common definitions and rules, including application of uniform classification, coding, and measurement units specified in the HostSeq Codebook (available through the *HostSeq Phenotype Portal* described below in *HostSeq Data Portals*). For example, all laboratory test variables are converted into predefined units; text entries in French are translated into English; and medications and complications variables are coded by timeline (prior to illness vs. during illness vs. post-discharge follow-up). Any potential data errors detected in the harmonization process are communicated to the participating study teams and resolved through follow-up.

Study-specific sample sizes currently range from 11 to 4,602. To date, in the HostSeq databank the 13 studies have contributed 9,913 clinical records and submitted 10,978 samples (Table 1). With the exception of two studies that have recruitment across multiple provinces (CANCOV, CONCOR-Donor; n=2,196), most studies are province-specific: six studies in Ontario (GENCOV, GenOMICC, SCB, LEFT-GEN, genMARK, Understanding Immunity to Coronaviruses; n=3,114), one in Quebec (BQC19; n=4,602), two in Alberta (AB3C; AB-HGS n=262) and two in British Columbia (GD-COVID, Host Factors; n=804). Table S4 summarizes their research objectives and study designs. Detailed information for each study is also provided on the CGEn website (https://www.cgen.ca/hostseq-studies-2).

Table 1. Status of DNA sample sequencing (as of December 20, 2022). SAMPLES column indicates DNA samples submitted to HostSeq for sequencing. DATA column indicates raw clinical records submitted to HostSeq. Of these, a total of 9,427 records have been harmonized.

	STUDY		
STUDY TITLE	ACRONYM	SAMPLES	DATA
The Hospital for Sick Children's COVID-19	SCB	566	223
Biobank			
Genetic Markers of Susceptibility to COVID-19	genMARK	876	738

The Canadian COVID-19 Prospective Cohort Study	CANCOV	1409	1,284
The Genetics of Mortality in Critical Care	GenOMICC	328	331
Implementation of Serological and Molecular Tools	GENCOV	1,290	1,111
to Inform COVID-19 Patient Management			
	CONCOR-	787	787
Convalescent Plasma for COVID-19 Research	Donor		
Host Genetic Factors Underlying Severe COVID-19	Host Factors	11	11
The Quebec COVID-19 Biobank	BQC-19	4,602	4,323
Genomic Determinants of COVID-19:	GD-COVID	793	793
Integration of Host and Viral Genomic Data to			
Understand the COVID-19 Epidemiologic Triangle			
HostSeq - Canadian COVID-19 Human Host	LEFT-GEN	43	43
Genome Sequencing Ottawa			
Understanding Immunity to Coronaviruses to		11	10
Develop New Vaccines and Therapies against 2019-			
nCoV			
Alberta Childhood COVID-19 Cohort Study	AB3C	188	188
Host Genetic Susceptibility to Severe Disease from	AB-HGS	74	71
COVID-19 Infection			
TOTAL		10,978	9,913

RESULTS

Clinical Data Summary

The results discussed in this section are based on approximately 95% of the total expected cohort size of 10,000 participants. Although completeness varies across studies, we have achieved over 70% completeness of key variables capturing demographics, comorbidities, healthcare use, and patient outcome. Among the 9,427 currently available harmonized samples, HostSeq has 54.6% females and 41.5% males (and the remaining 3.9% are missing reported sex-at-birth), with an overall mean age (at recruitment) of 47.9 years. Distributions of sex and age vary across the studies (Table S5). Apart from studies including pediatric participants (AB3C, SCB), mean age in the studies ranges from 36.9 years (genMARK) to 63.5 years (GenOMICC). Underlying health conditions are collected in all studies, but using a variety of collection methods (medical chart reviews, participant surveys, and patient interviews). A total of 24 comorbidity variables across cardiovascular, respiratory, immunological, neurological systems, and other pathologies are collected in HostSeq. Distributions of comorbidities across the studies are available through the *HostSeq Phenotype Portal*.

While approximately half of the HostSeq participants were hospitalized and half were assessed in outpatient or community settings, the proportion of hospitalized versus non-hospitalized patients varied substantially across the studies. In all but one study (GenOMICC), participants presented predominantly with mild or moderate symptoms and did not require admission to intensive care units or invasive ventilation support. Of the hospitalized patients, 54.0% were discharged home, 15.0% were transferred to other hospitals or healthcare settings (e.g., rehabilitation centers or long-term care facilities) and 11.9% were reported deceased (Table 2).

Table 2. Hospitalization and patient outcomes in HostSeq. SD: standard deviation; 1 n=9,427 is a subset of the expected cohort of greater than 10,000; 2 Data not available for 605 participants (6.4%); 3 Data not available for 372 participants (3.9%); 4 Data not available for 595 participants (6.3%); 5 Data not available for 1,721 participants (18.3%); 6 Denominator is 3,478 hospitalized participants. Data currently in collection for 652 participants (18.7%)

HostSeq All Studies (n=9,427) ¹		
Age ²	Mean (SD)	47.9 (29.1)
	Median (min, Q1, Q3, max)	48.0 (0.1, 33.4, 61.9, 104.2)
Sex at birth ³	Male	3,911 (41.5%)
	Female	5,144 (54.6%)
Hospitalization ⁴	Yes	3,478 (36.9%)
	No	5,354 (56.8%)
ICU admission ⁵	Yes	1,148 (12.2%)
	No	6,558 (69.6%)
Patient outcome 6,7	Discharged alive	1,879 (54.0%)
	Transfer to another facility	521 (15.0%)
	Palliative discharge	3 (0.1%)
	Hospitalized	9 (0.3%)
	Death	414 (11.9%)

HostSeq Data Portals

HostSeq provides public access to two data portals: (1) The *Phenotype Portal* shows summaries for the major variables of the HostSeq harmonized clinical data; and (2) the *Variant Search Portal* enables queries in a genomic region to see all variants and their alleles identified in the HostSeq genomes. Both portals are static platforms that are updated periodically when a new release version of their respective data is available.

The *HostSeq Phenotype Portal* (<u>https://hostseq.ca/phenotypes.html</u>) provides information for clinical variables at aggregate and study-specific levels. Users can access variables by category (e.g., demographics, comorbidities, complications) and view their distributions (categorical variables are presented as boxplots, and numerical variables are presented as histograms and violin plots). Displays are limited to variables with \geq 70% completeness. Researchers can also find links to the HostSeq study protocol and up-to-date data dictionaries on this portal.

The *HostSeq Variant Search Portal* (<u>https://hostseq.ca/dashboard/variants-search</u>) allows for queries of the HostSeq genetic data. The primary querying functionality is supported by the CanDIG-server (38), a platform enabling federated querying of genomics data. Beacon APIs (39) from the Global Alliance for Genomics and Health (GA4GH) are also built-in to allow HostSeq to join the federated Beacon network. Users can query information about a specific allele of interest. Information about the variants that can be queried includes their position and alleles and the respective internal frequencies of the alleles (minor allele frequencies are reported if they exceed 0.1). All columns in the table can be sorted and filtered.

Genetic Data Summary

Results reported in this section are based on an interim joint-called set of 6,500 HostSeq genomes, of which 6,316 passed all quality checks (see *Methods*). Our predicted population structure covers five major ancestry groups (Figures 2 and S2-3; 69% European, 6% Admixed American, 8% East Asian, 8% South Asian, 6% African, and approximately 3% uncategorized) and closely matches self-reported ancestries (where available). Additionally, there are 300 and 518 pairs of first- and second-degree relationships, respectively.

Currently HostSeq provides 174.5 million short variants consisting of single nucleotide variants and indels. We report HLA Class I haplotypes for three loci (*HLA-A*, *HLA-B* and *HLA-C*) with bi-allelic typing at 4-digit resolution (allele group with specific alleles). The numbers of unique alleles for *HLA-A*, *HLA-B* and *HLA-C* in 4436 genomes are 73, 145 and 49, respectively (the most common alleles per locus are *HLA-A**02:01, *HLA-B**07:02 and *HLA-C**07:01).

Figure 2. PCA projection of HostSeq genomes against reference superpopulations. HostSeq genomes were merged with the 1000 Genomes reference set. The first two principal components of this merged data are shown here with HostSeq genomes in black and 1000 Genomes samples colored by their superpopulation: AFR=African, AMR=Admixed American, EAS=East Asian, SAS=South Asian, EUR=European.

UTILITY AND DISCUSSION

HostSeq provides unique opportunities to explore the genetics among SARS-CoV-2 positive individuals in Canada and the facilitation of an organizational governance and oversight for researchers in Canada and beyond. Even though the participating studies in HostSeq are heterogenous with different designs and objectives (Table 3 and Table S4), HostSeq is an opportunity to leverage that diversity to address research questions. Several issues need to be considered when analysing HostSeq data in a given research context. For example: (1) whether data from different studies should be analysed separately or combined (and how to combine those data); (2) the selection strategies used by the contributing studies to recruit participants; (3) adjustment of covariates for association tests with genetic variants; and (4) the details of X chromosome analysis.

Table 3. Aspects of participant ascertainment in HostSeq. Study participants who were not confirmed to
be positive for infection either by molecular/serology test or clinical symptoms are not included in this
Table.

Desired research study eligibility	Active infection at recruitment	Past infection or disease at recruitment
Infected participants in ICU	Host Factors BQC19 CANCOV GENCOV GenOMICC SCB	SCB AB-HGS
Infected inpatient participants (i.e., hospitalized)	AB3C Host Factors BQC19 CANCOV GENCOV SCB	AB-HGS GENCOV genMARK LEFT-GEN SCB
Infected outpatient participants	AB3C BQC19 CANCOV GENCOV genMARK	genMARK GD-COVID-19 GENCOV LEFT-GEN SCB

Infected participants from	CONCOR-Donor
community enrollment	

Individual or Combined Analysis

Whether an investigator's research question would be best answered by within-study comparisons or analyses including multiple studies will require careful consideration of participant ascertainment criteria. For example, comorbidities might be analyzed within-study then combined via a meta-analysis to account for differences in study designs among the contributing studies. In contrast, for the disease severity indicated by hospitalization duration, it may be appropriate to jointly analyze the subset of studies that focus on in-patient recruitment. Table 3 provides details for the recruitment aspects that may frame such research questions. For example, to compare the genetics of hospitalized patients to non-hospitalized patients within the same study, data from AB3C, BQC19, CANCOV, GENCOV, genMARK, LEFT-GEN and SCB could be used. To compare ICU patients to non-ICU hospitalized patients, Host Factors, BQC19, CANCOV, GENCOV and SCB could be used.

Given the heterogeneity of the studies in HostSeq, the best approach for certain outcomes may be to analyse relevant studies individually. The feasibility of combining estimates or test results from separate studies, as in meta-analyses, depends on whether the individual studies measure and estimate the same features. The appropriateness of a joint analysis of participant data from multiple studies in an overarching model (perhaps with inclusion of study effects) also depends on whether the studies measure those same features. Although the combination of study-level estimates or tests can be as efficient as joint analysis in large samples (40), meta-analysis of summary data can be less efficient in smaller samples. When individual data are available, joint analysis is recommended, incorporating sparse-data methods for variants with low minor allele counts and outcomes with low prevalence (41,42). Furthermore, with study or environmental factors and other sources of heterogeneity, joint analysis can exploit gene-environment interaction (43) and give insight into sources of within- and between-study variation.

Given the dynamic nature of the COVID-19 pandemic, temporal and spatial variation withinand between-studies is another source of heterogeneity that is challenging and deserves consideration. Studies with prolonged recruitment and wide variation in dates of infection may allow such factors to be examined. When looking across the participating HostSeq studies, it may be of interest to examine changes in the profiles of recruited patients as the seropositivity rates and vaccination rates changed with time across Canada and as treatments changed and improved (for example, by combining HostSeq data with serological studies).

Participant Selection Mechanism

Most of the participating studies are designed to include individuals who tested positive for SARS-CoV-2 at a participating institution or individuals who volunteered to donate blood and previously had a positive test. For such participants, it can be difficult to specify exactly what population they represent. To reduce bias and improve interpretation of results, the processes by which individuals join a given study needs to be considered (44). Here, we interpret bias relative to the effect of a variable (genetic or otherwise) in a target population. If an analysis is to involve an outcome variable (e.g., hospitalized versus not hospitalized), a genetic variable of interest and some additional covariates, then the validity of standard statistical methods is linked to how the sample inclusion depends on the outcome. Such dependence occurs in response-selective designs in which individuals are included in a study according to the values of an outcome (45–47). Except for the simple case-control setting, weighting or conditional estimation is needed to avoid estimation bias of the genetic association. Such methods require estimation or specification of the probability of being selected for inclusion. We encourage analyses that address study sample selection mechanisms.

Methods to account explicitly for selection conditions are similar to methods used for the analysis of secondary traits in case-control studies (48,49). From a methodological standpoint, we also encourage studies of bias and Type 1 error control when standard analyses are used (such as unweighted logistic regression). When the selection mechanism is not easily described, comparison of study samples to population or administrative data may provide insights.

Finally, as HostSeq includes various ancestries, care must be taken to avoid confounding through population stratification (for example, by use of stratification, mixed models, and genetic principal components). This issue, alongside issues related to the heterogeneity of participating studies, are not unique to HostSeq, and arise in most collaborative multi-center or consortium-based research.

Covariate Adjustment

The choice of adjustment covariates in tests for association of outcome with a genetic variant is context dependent and open to discussion in many settings (50,51). In testing for genetic associations with COVID-19 outcomes, one strategy would be to adjust for factors such as age and sex that may affect selection or the outcome in question but are not associated with the genetic variant (unless it is on the sex chromosomes; as mentioned below in *Sex difference and X Chromosome Analyses* below). We must also consider whether to adjust for factors such as comorbidities, which may be related both to the outcome and to the variant. This is of particular importance for severe COVID-19: in the ICU, 1-year mortality outcomes increase with each additional week spent in ICU, each decade in age, and each additional comorbid illness in the Charlson score (52). From a causal perspective, adjusting for multiple covariates without a clear

conceptual framework could lead to adjustment for variables that lie on the causal pathway (53). If there is a causal link from variant to outcome that passes through such a variable, then researchers could choose to test for either direct or indirect effects of the variant. As part of the process of learning about genetic effects on COVID-19 outcomes, we encourage analyses both with and without adjusting for such factors.

For the discovery stage in genetic association studies, power considerations are important. There have been suggestions that adjusting for too many covariates decreases power (51,54), and that two-phase strategies of genome-wide screening by simple analysis followed by targeted in-depth modelling is adequate and efficient. However, this is an area for which further study is warranted.

Sex Difference and X Chromosome Analyses

COVID-19 displays sexual dimorphism with greater severity in males (55–57). In addition to environmental exposures and sex-specific autosomal genetic effects, it is reasonable to hypothesize that some X chromosomal variants play a role in COVID-19 outcomes. Indeed, one gene on the X-chromosome, the angiotensin-converting enzyme 2 (*ACE2*, Xp22.2), has been reported to be important in SARS-Cov-2 infection and genetic analysis has demonstrated association evidence with *ACE2* variants (19).

However, all published GWAS of SARS-CoV-2 susceptibility or COVID-19 severity, to the best of our knowledge, uses the traditional genotype coding (0, 1 and 2 for a female; 0 and 2 for a male) that assumes X-inactivation through a dosage compensation model (i.e., with alleles in the non-pseudo-autosomal regions being expressed exactly half of the time in genetic females (58)). Yet, it has been reported that close to one-third of the X chromosome genes can escape X-inactivation (59,60); if so, the genotype of a male should be coded 0 and 1 by convention. To robustly deal with X-inactivation uncertainty we recommend the use of recent methods for genetic analysis of SARS-CoV-2 related research questions such as model averaging and selection (61,62) and an easy-to-implement regression model (63). Rare X-chromosome variant analysis (64,65) and X-inclusive polygenic risk scores also require careful consideration and further research.

Health Research in the Canadian Context

People living in Canada are insured under single-payer health care systems administered at the provincial or territorial level. These systems broadly cover physician and hospital services, as well as procedures. This provides a unique opportunity to conduct passive follow-up to understand the short-term and long-term outcomes related to SARS-CoV-2 infection. Administrative health data are generated through patient contact with the health care systems and

maintained in multiple databases that, with the appropriate approvals, can be linked using a unique encoded identifier to study specific, patient-level data (including genetic data). These data are administrative or procedural (e.g., surgeries, emergency department visits, hospital visits, comorbidities, routine medical exams), clinical (e.g., prescription medications, cancer screening), laboratory (e.g., blood measurements), social (e.g., education, income), and environmental (e.g., rurality, walkability, food insecurity, exposure to air pollution). The participant informed consent used by HostSeq allows for linkage to these data, transforming the HostSeq dataset into a longitudinal study. Specifically, linkage to administrative provincial data will provide: 1) a retrospective, longitudinal account of medical histories, health system utilization and diagnoses; and 2) prospective, longitudinal follow-up tracking the natural history of SARS-CoV-2 infection including multisystem inflammatory syndrome in children (MIS-C) and Long COVID, identifying new diagnoses (e.g., diabetes, cancer), long-term health outcomes (e.g., premature mortality), and health resource utilization. Linkage of the HostSeq study samples to provincial administrative data offers opportunities to collect additional data on risk factors and longitudinal outcomes, and opportunities to extend genetic association analyses. Administrative data can also facilitate evaluation of the representativeness of study samples and inform future study design.

The limitations of HostSeq data for investigation of specific scientific questions depend on limitations of the relevant participant studies. In addition, investigations that involve combining data or results from separate participant studies may require assumptions about comparability or heterogeneity; such assumptions should be scrutinized.

CONCLUSIONS

Through the HostSeq initiative, Canada has built research infrastructure to investigate health effects of SARS-CoV-2 infection and COVID-19, and their association with genetic variants. This infrastructure can also be used for future epidemics. The unique features of the HostSeq project highlighted here present novel opportunities to develop, evaluate, and apply statistical methods that contribute to the understanding of genetic associations with COVID-19-related morbidity and mortality, as well as other phenotypes. The augmentation and linkage of the HostSeq questionnaire and genetic databank with other data resources is made possible by broad and flexible consent and will generate a dynamic population-based resource. This will allow for study of a broad range of research questions and sustained productivity over the years to come.

DECLARATIONS

Ethics approval and consent to participate

HostSeq was approved by the Research Ethics Board of the Hospital for Sick Children (lead site) (#1000070720 from 2020-present). Written informed consent was obtained from all participants or parents/guardians/substitute decision makers prior to inclusion in the study. Additional REB information from the participating PIs:

Site	PI	REB
The Hospital for Sick Children	Stephen Scherer	1000070720
The Hospital for Sick Children	Rae Yeung	1000070060
The Hospital for Sick Children	Upton Allen	1000069580
University Health Network	Angela Cheung	CTO ID 2157
Queens University	David Maslove	CTO ID 3209
Mount Sinai Hospital	Jordan Lerner-Ellis	CTO ID 3302
The Hospital for Sick Children	Rulan Parekh	1000070462
BC Children's Hospital	Catherine Biggs	H20-01667
University of Montreal Health Centre		19.389 (internal) MP-02-2020-8929 (multicentre)
BC Children's Hospital	Stuart Turvey	H21-00054
The Ottawa Hospital	Juthaporn Cowan	20210119-01H
Unity Health	Mario Ostrowski	20-044
University of Calgary	Gerald Pfeffer	20-0574_MOD3
University of Calgary	Francois Bernier	20-0480_MOD6

Consent for publication

Not applicable.

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available due to privacy concerns but are available through a Data Access Agreement and Data Access Compliance Office (DACO) approval (<u>https://www.cgen.ca/daco-main</u>).

Aggregated data are publicly available through two data portals: a phenotype portal showing summaries of major variables (<u>https://hostseq.ca/phenotypes.html</u>) and their distributions, and a variant search portal enabling queries in a genomic region (<u>https://hostseq.ca/dashboard/variants-search</u>). The code used for processing the WGS data can be found in a publicly accessible repository (<u>https://svn.bcgsc.ca/bitbucket/users/jmgarant</u>).

Competing interests

The authors declare that they have no competing interests.

Funding

PI, Affiliations	Study name	Grants (funder and details)
Stephen Scherer,	CGEn HostSeq - Canadian	Genome Canada, Innovation, Science and
Lisa Strug, The	COVID-19 Human Host Genome	Economic Development Canada
Hospital for Sick	Sequencing Databank	
Children, Toronto,		
ON		
Vincent Mooser,	Biobanque Quebec COVID-19	PHAC 2021-HQ-000051
CGEn-Montreal, QC		FRQ-S
		MSSS
Rae Yeung, The	SickKids COVID-19 Biobank	CFI cost center # 6220200122 (Proposal ID
Hospital for Sick		HSC0005268)
Children, Toronto,		CIHR/COVID-19 Immunity Task Force:
ON		CIHR GA4-177739
		CIHR MM1-181123
Angela Cheung and	The Canadian COVID-19	Canadian Institutes of Health Research
Margaret Herridge,	Prospective Cohort Study	(CIHR), COVID-19 Rapid Research
University Health	(CanCOV)	Funding Opportunity - Clinical
Network, Toronto,		Management and Health System
ON		CIHR/COVID-19 Immunity Task Force:
		Grant number: 44/643
Jordan Lerner-Ellis,	Implementation of serological and	CIHR #VR4-172753
Jenniter Taher, Sinai	molecular tools to inform COVID-	CIHR sub-awards: # 4611/0 and #461304
Health, Toronto, UN	19 patient management (GENCOV)	
Rulan Parekh, The	Adaptive Immunity and Outcomes	Ministry of Colleges and Universities
Hospital for Sick	of Convalescent Plasma	(Ontario COVID-19 Rapid Research Fund)
Children, Toronto,		
UN E annia	All sets Childhand COVID 10	C
Francois Bernier,	Alberta Unitanooa UUVID-19	Genome Alberta (KKP2)
Calgary Calgary	Conort (ADCCC)	Alberta Children's Hospital Mitogen DV
A R		Milogen DA
Unton Allen The	COVID-19 genMARK study	SickKids Foundation
Hospital for Sick	COVID-17 genitizing study	University of Toronto # 508791
Children. Toronto.		
ON		
Stuart Turvey, BC	Genomic determinants of COVID-	Genome British Columbia COV199
Children's Hospital,	19	
Vancouver, BC		
David Maslove,	Genetics of Mortality in critical	Ontario Innovation Fund Innovation Grant
Queens University,	care (GenOMICC)	administered by the Southeastern Ontario
Kingston, ON		Academic Medical Organization (SEAMO)
Catherine Biggs,	Improving outcomes through	Providence Healthcare Research Institute
Stuart Turvey, BC	precision medicine for adults with	
Children's Hospital,	primary immunodeficiencies.	
Vancouver, BC		
Mario Ostrowski, St.	Understanding Immunity to	CIHR VR1-172711
Michael's Hospital,	Coronaviruses to Develop New	
Unity Health,	Vaccines and Therapies against	
Toronto, ON	2019-nCoV	
Gerald Pfeffer,	Host Genetic Susceptibility to	Hotchkiss Brain Institute, University of
University of	Severe Disease from COVID-19	Calgary
Calgary, Calgary,	Infection	Cumming School of Medicine, University
AB		of Calgary

Authors' contributions

LJS led the study design and implementation.

Data harmonization: SY; genomic data analysis: EG.

Genetic epidemiology: LJS, JDB, SBB, LTE, FG, CMTG, RJH, JFL, ADP, LS.

Writing: SY, EG, LTE, RJH, ARH, JDB, SBB, FG, CMTG, JFL, ADP, LS, LJS.

Data processing and sharing: SY, EG, LTE, MLo, ARH, RJSA, IB, GB, J-MG, CG, JL, JW, BT, MSR, J-AH, NOA, SL, MHZ; SJMJ led the data processing and sharing.

Study contributors: JL-E, UA, FPB, CMB, AMC, JC, MH, DMM, BPM, VM, SKM, MO, RSP, GP, OS, JT, SET, JU, RLW, RSMY.

NA coordinated the three CGEn nodes; SET led study site recruitment; BMK designed the consent and data access process; MLa led the Quebec site; SJ led sequence informatics and the variant portal; NA, SWS and LJS provided overall study oversight.

Acknowledgements

We wish to express gratitude to all HostSeq project participant studies and the individual participants within these studies for their contribution.

REFERENCES

- 1. Government of Canada. COVID-19 signs, symptoms and severity of disease: A clinician guide. 2021 [Accessed Summer 2022]. Available from: <u>https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/guidance-documents/signs-symptoms-severity.html</u>
- 2. Lin YC, Brooks J, Bull S, Gagnon F, Greenwood C, Hung R, et al. Statistical power in COVID-19 case-control host genomic study design. Genome Med. 2020;12(1):115.
- 3. Allers K, Schneider T. CCR5∆32 mutation and HIV infection: Basis for curative HIV therapy. Curr Opin Virol. 2015;14:24–9.
- 4. Nordgren J, Svensson L. Genetic susceptibility to human norovirus infection: An Update. Viruses. 2019;11(3):226.
- 5. Coppola N, Marrone A, Pisaturo M, Starace M, Signoriello G, Gentile I, et al. Role of interleukin 28-B in the spontaneous and treatment-related clearance of HCV infection in patients with chronic HBV/HCV dual infection. Eur J Clin Microbiol Infect Dis. 2014;33(4):559–67.
- Trandem K, Anghelina D, Zhao J, Perlman S. Regulatory T cells in hibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus. J Immunol. 2010;184(8):4391–400.
- 7. Mahallawi W, Khabour O, Zhang Q, Makhdoum H, Suliman B. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13.
- 8. Ng M, Lau KM, Li L, Cheng SH, Chan W, Hui P, et al. Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J Infect Dis. 2004;190(3):515–8.
- 9. Lin M, Tseng HK, Trejaut J, Lee HL, Loo J, Chu CC, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;4(1):1–7.
- 10. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick A, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–8.
- Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams C, Walker S, et al. Whole genome sequencing reveals host factors underlying critical COVID-19. Nature. 2022;607(7917):97– 103.
- 12. COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–7.
- 13. Zhang Q, Bastard P, COVID Human Genetic Effort, Cobat A, Casanova JL. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603(7902):587–98.
- 14. COVID-19 Host Genetics Initiative, Ganna A. Mapping the human genetic architecture of COVID-19: An update. medRxiv. 2021;21265944.
- 15. Niemi MEK, Daly MJ, Ganna A. The human genetic epidemiology of COVID-19. Nat Rev Genet. 2022;23(5):533–46.

- 16. Raina P, Wolfson C, Kirkland S, Griffith L, Oremus M, Patterson C, et al. The Canadian Longitudinal Study on Aging (CLSA). Can J Aging Rev Can Vieil. 2009;28(3):221–9.
- 17. Dummer T, Awadalla P, Boileau C, Craig C, Fortier I, Goel V, et al. The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention. Can Med Assoc J. 2018;190(23):E710–17.
- 18. Song L, Liu H, Brinkman F, Gill E, Griffiths E, Hsiao W, et al. Addressing privacy concerns in sharing viral sequences and minimum contextual data in a public repository during the COVID-19 pandemic. Front Genet. 2022;12:716541.
- 19. COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19. Nature. 2022;608(7921):97–103.
- 20. Knoppers B, Beauvais M, Joly Y, Zawati M, Rousseau S, Chasse M, et al. Modeling consent in the time of COVID-19. J Law Biosci. 2020;7(1):1–6.
- 21. Corbett R, Eveleigh R, Whitney J, Barai N, Bourgey M, Chuah E, et al. A distributed whole genome sequencing benchmark study. Front Genet. 2020;1524.
- 22. Zook J, Catoe D, McDaniel J. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data. 3(1): 1–26.
- 23. Tommaso PD, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017;35(4):316–9.
- 24. Van der Auwera G, O'Connor B. Genomics in the cloud: Using Docker, GATK, and WDL in Terra. 1st ed. O'Reilly Media; 2020.
- 25. Illumina, Inc. DRAGMAP. 2019. [Accessed Summer 2022]. Available from: https://github.com/Illumina/DRAGMAP
- 26. Szolek A, Schubert B, Mohr C, Sturm M, Kohlbacher O. OptiType: Precision HLA typing from next-generation sequencing data. Bioinforma Oxf Engl. 2014;30(23):3310–6.
- 27. Danecek P, Bonfield J. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2).
- Zhang F, Flickinger M, Gagliano Taliun S, InPSYght Psychiatric Genetics Consortium, Abecasis G, Scott L, et al. Ancestry-agnostic estimation of DNA sample contamination from sequence reads. Genomic Res. 2020;30(2):185–94.
- 29. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D. Plink: A tool set for wholegenome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
- 30. Jin Y, Schaffer A, Feolo M, Holmes J, Kattman B. GRAF-pop: A fast distance-based method to infer subject ancetry from multiple genotype datasets without principal components analysis. G3 Bethesda Md. 2019;9(8):2447–61.
- 31. Jin Y, Schaffer A, Sherry S, Feolo M. Quickly identifying identical and closely related subjects in large databases using genotype data. PLOS ONE. 2017;12(6):e0179106.

- 32. Chang C, Chow C, Tellier L, Vattikuti S, Purcell S, Lee J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4(7):13742–15.
- 33. R Core Team. R: A language and environment for statistical computing. 2022. [Accessed Fall 2022]. Available from: <u>https://www.r-project.org/</u>
- 34. Roslin N, Weili L, Paterson A, Strug L. Quality control analysis of the 1000 Genome Project Omni2,5 genotypes. bioRxiv. 2016;10.1101/078600v1
- 35. The 1000 Genomees Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.
- 36. Meyer HV. meyer-lab-cshl/plinkQC: plinkQC 0.3.2. 2020. [Accessed Fall 2022]. Available from: https://meyer-lab-cshl.github.io/plinkQC/
- Tremblay K, Rousseau S, Zawati M, Auld D, Chasse M, Coderre D, et al. The Biobanque quebecoise de la COVID-19 (BQC19)–A cohort to prospectively study the clinical and biological determinants of COVID-19 clinical trajectories. PLOS ONE. 2021;16(5).
- 38. Dursi L, Bozoky Z, de Borja R, Li H, Lipski A, Brudno M. Federated network across Canada for multi-omic and health data discovery and analysis. Cell Genomics. 2021;1(2):100033.
- 39. Fiume M, Cupak M, Keenan S, Rambla J, de la Torre S, Dyke S, et al. Federated discovery and sharing of genomic data using Beacons. Nat Biotechnol. 2019;37(3):220–4.
- 40. Lin D, Zeng D. Proper analysis of secondary phenotype data in case-control association studies. Genet Epidemiol. 2009;33(3):256–65.
- 41. Ma C, Blackwell T, Boehnke M, Scott L. Recommended joint and meta-analysis strategies for casecontrol association testing of single low-count variants. Genet Epidemiol. 2013;37(6):539–50.
- 42. Chen DG, Liu D, Min X, Zhang H. Relative efficiency of using summary versus individual data in random-effects meta-analysis. Biometrics. 2020;76(4):1319–29.
- 43. Kraft P, Yen YC, Stram D, Morrison J, Gauderman W. Exploiting gene-environment interactions to detect genetic associations. Hum Hered. 2007;63(2):111–9.
- 44. Griffith G. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat Commun. 2020;11(1):1–12.
- 45. Tao R, Zeng D, Franceschini N, North K, Boerwinkle E, Lin DY. Analysis of sequence data under multivariate trait-dependent sampling. J Am Stat Assoc. 2015;110(510):560–72.
- 46. Lawless J, Kalbfleisch J, Wild C. Semiparametric methods for response-selective and missing data problems in regression. Stat Methodol Ser B. 1999;61(2):413–38.
- 47. Huang B, Lin D. Efficient association mapping of quantitative trait loci with selective genotyping. Am J Hum Genet. 2007;80:567–76.
- 48. Monsees G, Tamimi R, Kraft P. Genome-wide association scans for secondary traits using casecontrol samples. Genet Epidemiol. 2009;33(8):717–28.

- 49. Tounkara F, Lefebvre G, Greenwood C, Oualkacha K. A flexible copula-based approach for the analysis of secondary phenotypes in ascertained samples. Stat Med. 2020;39(5):517–43.
- 50. Gail M, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regression and omitted covariates. Biometrika. 1984;71(3):431–44.
- 51. Pirinen M, Donnelly P, Spencer C. Including known covariates can reduce power to detect genetic effects in case-control studies. Nat Genet. 2012;44(8):848–51.
- Herridge M, Cheung A, Tansey C, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, et al. One-year outcomes in survivors of the Acute Respiratory Distress Syndrome. N Engl J Med. 2003;348(8):683–93.
- 53. Lederer D, Bell S, Branson R, Chalmers J, Marshall R, Maslove D, et al. Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals. Ann Am Thorac Soc. 2019;16(1):22–8.
- 54. Aschard H, Vilhjalmsson B, Joshi A, Price A, Kraft P. Adjusting for heritable covariates can bias effect estimates in Genome-Wide Association Studies. Am J Hum Genet. 2015;96(2):329–39.
- 55. Peckham H, de Gruijter N, Raine C, Radzisweska A, Ciurtin C, Wedderburn L. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun. 2020;11(1):1–10.
- 56. Vahidy F, Pan A, Ahnstedt H, Munshi Y, Choi H, Tiruneh Y, et al. Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area. PLOS ONE. 2021;16(1):e0245556.
- 57. Pradhan A, Olasson PE. Sex differences in severity and mortality from COVID-19: Are males more vulnerable? Biology of Sex Differences. 2020;11(53).
- 58. Song Y, Biernacka J, Winham S. Testing and estimation of X-chromosome SNP effects: Impact of model assumptions. Genet Epidemiol. 2021;45(6):577–92.
- 59. Tukiainen T, Villani AC, Yen A, Rivas M, Marshall J, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550(7675):244–8.
- 60. Lee S, Wu M, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics. 2012;13(4):762–75.
- 61. Wang J, Talluri R, Shete S. Selection of X-chromosome inactivation model. Cancer Inform. 2017;16:1–8.
- 62. Chen B, Craiu R, Sun L. Bayesian model averaging for the X-chromosome inactivation dilemma in genetic association study. Biostatistics. 2020;21(2):319–35.
- 63. Chen B, Craiu R, Strug L, Sun L. The X factor: A robust and powerful approach to X-chromosomeinclusive whole-genome association studies. Genet Epidemiol. 2021;45(7):694–709.
- 64. Derkach A, Lawless J, Sun L. Pooled association tests for rare genetic variants: A review and some new results. Stat Sci. 2014;29(2):302–21.

65. Lee S, Abecasis G, Boehnke M, Lin X. Rare-variant association analysis: Study designs and statistical tests. Am J Hum Genet. 2014;95(1):5–23.

APPENDIX

Table S1. HostSeq Core Consent Elements. In order to deposit datasets in <u>HostSeq COVID-19 controlled-access Databank</u>, all the elements in this table must be obtained in the research consent.

ELEMENTS	DETAILS
Research data	Whole genome sequencing of the sample and the ongoing collection of clinical data from participant's medical records/chart, administrative databases, etc.
International sharing	International sharing of genetic and clinical data
Future research use	Future health research on COVID-19 and other health outcomes
Commercial use	Use of genetic and clinical data for commercial purposes
Controlled access	Sharing of genetic and clinical data through a controlled-access mechanism
Storage on cloud servers in Canada	Storage of genetic and clinical data in the HostSeq Databank, on centralized Canadian cloud servers
Duration of storage	Indefinite storage of genetic and clinical data
Data withdrawal	Not possible to withdraw data that has already been distributed and used
Re-identification	Low risk that the participant could be re-identified in the future
Re-contact (optional)	Optional re-contact to update personal information, provide new health information, or to be invited to participate in new research projects.

IDENTIFICATION	COMORBIDITIES	LAB RESULTS
Host Hospital	Comorbidities: Immune system	Haemoglobin
Source study participant ID	HIV	WBC count
HostSeq ID	Immunocompromised status	Lymphocyte count
DNA ID	Onset of COVID-19 to	Neutrophil count
	immunocompromisation	_
Sequencing site	Organ transplant	Haematocrit
Was informed consent obtained?	Organ type of transplant	Platelets
Study enrollment date	Autoimmune or rheumatologic disease	APTT/APTR
DOB	Diabetes	APTT
Age	Type I diabetes	PT
Laboratory COVID-19 test result	Type II diabetes	INR
Suspected to be COVID-19 positive?	Comorbidities: Respiratory system	ALT/SGPT
Ambulatory	Asthma	Total Bilirubin
Hospitalized State	COPD	AST/SGOT
Date of admission	Cystic fibrosis	Glucose
Sex at birth	Sleep apnea	Blood Urea Nitrogen (urea)
Gender	Do you use a home CPAP device?	Lactate
Ancestry	Comorbidities:	
	Genitourinary/Metabolic	Creatinine
Height (cm)	Chronic kidney disease	Sodium
Weight (Kg)	Liver disease	Potassium
DEMOGRAPHICS	Gallbladder	Procalcitonin
Country of birth	Pancreas	CRP
Education	Comorbidities: Cardiovascular system	CT chest
Employment	Coronary intervention	Chest X-Ray performed?
Type of residence	Coronary artery bypass	ECG
Household composition	Congestive heart failure	POCUS
PREGNANCY	Hypertension	Echocardiogram
Pregnancy - currently pregnant?	Myocardial infarction	LDH
RISK FACTORS	Myocardial infarction Type I	D-Dimer
Cigarettes	Myocardial infarction Type II	Fibrinogen
How many cigarettes daily?	Peripheral vascular disease	Ferritin
Vaping	Stroke	Triglycerides
Cannabis	Arrhythmias	IL-6
AT ADMISSION/ASSESSMENT	Comorbidities: Neurological	CD4
COVID-19 test date	Dementia	CD8

Table S2. HostSeq Case Report Form.

Date of diagnosis	Neurological or neuropsychiatric disease	CD4/CD8 ratio
Serology	Comorbidities: Cancer	NT-proBNP
Serology positive test date	Currently diagnosed with cancer?	BNP
Date of last negative test	Patient age at diagnosis	Troponin
PCR	Leukemia	TREATMENT
Commercial serology test kit name	Lymphoma	ICU or High Dependency Unit admission?
Onset date of first/earliest symptom	Sarcoma	If yes, date of ICU admission
ER triage date at this facility	Carcinoma	If yes, date of ICU discharge
Transfer from another facility?	Myeloma	Prone ventilation
ABO blood type	Mixed types	Inhaled nitric oxide
Rh factor	Cancer location	Tracheostomy inserted
Home medications	Cancer treatment in the past 12 months	Extracorporeal support
BCG vaccine	Other comorbidities	RRT or dialysis
COVID-19 Vaccine?	PATHOGEN TESTING	Inotropes/vasopressors
Name of first dose vaccine	Pathogen testing done during this illness	OTHER intervention or procedure
Name of second dose vaccine	Influenza	MEDICATION
SYMPTOMS	Coronavirus	Antiviral agent
Cough	RSV	Azithromycin "Zithromax"
Days with cough	Adenovirus	Any other antibiotic
Difficulty breathing	Enterovirus	Corticosteroid
Fever	Bacteria	Antifungal agent
Days with fever	Other infectious respiratory diagnosis	Colchicine
Heart rate	Was there a physician diagnosis of pneumonia?	Chloroquine "Aralen"
Highest respiratory rate	Suspected non-infective	Hydroxycholorquine
Systolic blood pressure	COMPLICATIONS	Tocilizumab "Actemra"
Diastolic blood pressure	Viral pneumonitis	Kineret "Anakinra"
Oxygen saturation	Bacterial pneumonia	IVIG
Fatigue	Acute Respiratory Distress Syndrome	Plasma
Myalgia (general aches and pain)	Pneumothorax	Other COVID therapy
Runny nose	Pleural effusion	OUTCOME
Sore throat	Cryptogenic organizing pneumonia (COP)	Outcome
Loss of taste/smell sense	Bronchiolitis	Outcome date
Nosebleed	Meningitis / Encephalitis	Self-care ability versus before illness
Ear pain	Seizure	Repeat hospital visit within 30 days?

Wheezing	Stroke / Cerebrovascular accident	Date and reason
Chest pain	Congestive heart failure	
Joint pain	Cardiac inflammation (mark all that apply)	
Headache	Cardiac arrhythmia	
seizures	Cardiac ischaemia	
Altered consciousness/confusion	Cardiac arrest	
Abdominal pain	Coagulation disorder / Disseminated Intravascular Coagulation	
Diarrhea	Anemia	
Nausea/vomiting	Rhabdomyolysis / Myositis	
Conjunctivitis	Acute renal injury/ Acute renal failure	
Skin rash	Gastrointestinal haemorrhage	
Other symptoms	Pancreatitis	
Asymptomatic	Liver dysfunction	
	Hyperglycemia	
	Hypoglycemia	
	Inflammatory syndrome/Kawasaki Disease like	
	Other, please specify	

PROCESS	SOFTWARE	VERSION	URL	
Sequence alignment	DRAGMAP	1.3.0	https://github.com/Illumina/DRAGMAP	
Sorting alignments	Picard tools	2.25.0	https://broadinstitute.github.io/picard/	
Genotyping	HaplotypeCaller	GATK 4.2.5.0	https://gatk.broadinstitute.org/hc/en- us/articles/4418062719899- HaplotypeCaller	
Joint-calling	GenotypeGVCFs	GATK 4.2.5.0	https://gatk.broadinstitute.org/hc/en- us/articles/4418054384027- GenotypeGVCFs	
HLA Class I typing	OptiType	1.3.1	https://github.com/FRED-2/OptiType	
Sample contamination	VerifyBamID2	2.0.1	https://github.com/Griffan/VerifyBamID	
Ancestry and sex prediction	GRAF	2.4	https://github.com/ncbi/graf	
Miscellaneous	GATK	4.2.5.0	https://gatk.broadinstitute.org/hc/en- us/articles/4418051394587Tool- Documentation-Index	
	Samtools	1.14	http://samtools.github.io/	
	Bcftools	1.11	http://samtools.github.io/ bcftools/bcftools.html	
	PLINK	1.90 and 2.0.0	https://www.cog-genomics.org/plink/	
	R	3.6.3	https://cran.r-project.org/	

Table S3. Software used for processing WGS data.

STUDY, PI	OBJECTIVES	ELIGIBILITY	
GENCOV	To identify the characteristics of the antibody	All outpatients (seen in ER and	
	response that result in maintained immune	assessment centres) with mild symptoms	
Jordan Lerner-Ellis	response and better patient outcomes; to	as well as hospitalized patients with	
Jennifer Taher	determine impact of genetic differences on	severe symptoms, recruited from six	
	COVID-19 infection severity and immune	hospitals in Ontario.	
	response; to determine impact of different viral		
	strains on antibody response and patient		
	outcomes.		
GenOMICC	To identify genetic determinants of severe, life-	All patients with confirmed COVID-19	
	threatening COVID-19 infections.	admitted to ICU	
David Maslove			
CANCOV	To evaluate early to one-year outcomes in	Hospitalized patients (>16 years and	
	patients with COVID-19 and their family	positive COVID-19 test) and their	
Angela Cheung	caregivers.	caregivers.	
Margaret Herridge			
		Anticipated deaths or withdrawal of life-	
		sustaining treatment within 48 hours,	
		catastrophic neurological injury, patients	
		unlikely to comply with follow-up are	
		excluded.	
genMARK	Primary . To identify genetic variation	Individuals without a known	
TT / A11	associated with:	immunodeficiency who experienced	
Upton Allen	1). Susceptibility to COVID-19 and SARS-CoV	illness due to confirmed COVID-19	
	infection among study subjects vs controls	infection.	
	subjects	Controls: individuals exposed to	
	Secondary To assess immune responses	COVID-19 but are symptom-free as far	
	including T cell function and	as COVID-19 is concerned. Controls are	
	cytokine/chemokine profiles among subjects	tested for subclinical infection. Controls	
	with different severity of COVID-19	are 1.1 matched by age groups from	
		within the same home, using the most	
		distantly related household member.	
LEFT-GEN	To understand immunopathogenesis of	All patients with confirmed COVID-19.	
	persistent symptoms	r	
Juthaporn Cowan	r · · · · · · · · · · · · · · · · · · ·		
BQC19	To support the institutions of the health and	All patients who tested for COVID-19 at	
	social services network (HSSN) by making the	participating institutions	
Vincent Mooser	unique biological material and data accessible		
	for research on COVID-19 and related diseases.		

Table S4. List of HostSeq participating studies as described in respective protocols.

CONCOR-Donor	To determine if the titers of SARS-CoV-2 specific neutralizing antibody and serum ELISA	Individuals ≥17 years, who recovered from COVID-19 infection and volunteer	
Rulan Parekh	antibodies are correlated with clinical and demographic factors; to characterize duration of immunity over 1 year and determine if the titers are modified by clinical and demographic factors; to identify genetic predictors of SARS- CoV-2-specific neutralizing antibody and serum ELISA antibody titers at baseline and over time	to donate convalescent plasma	
AB3C	To establish prospective cohort study of all children in Alberta tested for or diagnosed with	All children in Alberta, aged 0-17 years, who have a respiratory sample tested for	
Francois Bernier	confirmed or probable COVID-19 infection; to conduct a detailed multiomic precision-	COVID-19 in 2020; diagnosed with probable COVID-19 (as defined by	
	medicine evaluation of some children in Alberta with confirmed or probable COVID-19	Alberta Health), but not tested.	
	infection and some healthy controls; to evaluate	Controls: 25 healthy children in Calgary	
	virus in children measuring the development of	controls will be identified from previous	
	and without clinically apparent confirmed or	Infectious Diseases Epidemiology &	
	probable COVID-19 infection	Vaccine Evaluation or enrolled in All Our Families cohort or in the Healthy	
		Infants and Children Clinical Research Program	
Host Genetic Factors	To determine what proportion of patients with	Individuals aged <70 years with	
Underlying Severe	severe COVID-19 have an underlying IEI and	documented COVID-19 infection, who	
COVID-19	characterize the role of genetic factors in	are previously healthy with severe	
Catherine Biggs	targeted treatments e.g., if patients with	any of the following: requiring ICU	
	hyperinflammation have variants dysregulating	admission, cardiorespiratory support	
	JAK-STAT signaling, JAK inhibitors	such as non-invasive or mechanical	
		oxygenation, or unusual complications	
		such as multisystem inflammatory	
		syndrome in children (MIS-C) associated	
		inflammatory).	
GD-COVID	To identify host and viral genomic factors associated with COVID-19 disease	Individuals of any age with documented	
Stuart Turvey	susceptibility and health outcomes	resident of BC; have viral genome	
		sequencing data available through	
		VirusSeq; provide permission to contact Health Authority CTCP or BCCDC	
		COVID-19 survey	

Understanding	To determine B cell and antibody immunity to	Individuals 18 years old or older. Those	
Immunity to	coronaviruses; to identify candidate targets of	with blood samples hemoglobin < 100	
Coronaviruses	the virus for vaccine development; to identify	g/L or pregnant or with hemophilia or	
	novel neutralizing antibodies to 2019-nCoV that	platelet count $< 50,000$ / ul are excluded.	
Mario Ostrowski	can be used in therapeutics; to understand the		
	innate immune response against 2019-nCoV; to		
	identify host factors that play critical roles in		
	developing strong immunity to coronaviruses.		
SickKids COVID-19	To establish a central biobank of biological	All patients presenting to the Hospital for	
Biobank	samples and related core patient level data that	Sick Children with a suspected or	
	will serve as a single point of access that	confirmed diagnosis of COVID-19, and	
Rae Yeung	supports a unified and collaborative approach to	family members of participants as	
-	clinical and translational research related to the	applicable.	
	current COVID-19 pandemic and future works.		
AB-HGS	Identify host genetic susceptibility factors	Confirmed SARS-CoV-2 infection (by	
	associated with requirement for hospitalisation	provincial nucleic acid test)	
Gerald Pfeffer	due to COVID-19.	Required admission to hospital (either	
	Family members who did not require	medical units or critical care)	
	hospitalisation were recruited as controls.	Age <60 years	
		Unvaccinated participants only	
		Omicron variant cases were excluded	

STUDY	SEX		AGE	
	Male	Female	Mean (SD)	Median (IQR)
GENCOV	515 (46.4%)	596 (53.6%)	45.3 (14.6)	44.0 (23.0)
GenOMICC	179 (54.1%)	152 (45.9%)	63.5 (14.4)	66.0 (18.5)
CANCOV	558 (42.8%)	746 (57.2%)	51.8 (16.1)	51.0 (24.0)
CONCOR-Donor	241 (30.2%)	557 (69.8%)	44.5 (13.5)	44.0 (22.0)
BQC19	1,744 (46.4%)	2,011 (53.6%)	52.5 (20.6)	52.5 (29.5)
genMARK	170 (28.5%)	426 (71.5%)	36.9 (15.8)	38.0 (21.0)
LEFT-GEN	23 (52.3%)	21 (47.7%)	50.9 (15.5)	50.0 (24.3)
GD-COVID-19	308 (38.8%)	485 (61.2%)	46.3 (18.9)	46.0 (28.0)
Host Genetic Susceptibility	36 (50.7%)	35 (49.3%)	49.5 (11.4)	52.0 (16.0)
Understanding immunity	5 (50.0%)	5 (50.0%)	43.6 (13.9)	42.5 (21.0)
AB3C	95 (50.5%)	93 (49.5%)	11.5 (4.5)	12.0 (7.0)
SCB	144 (64.6%)	79 (35.4%)	9.6 (7.0)	8.0 (13.0)

Table S5. Distribution of sex and age across HostSeq studies (n=9,427). SD: Standard deviation; IQR: interquartile range.

Figure S1. Quality of HostSeq genomes. (A) *Missing rate* < 5% (B) *Contamination rate* < 3% (C) *Mean coverage* > 10.

Figure S3. Genetic distances score of HostSeq genomes. The four genetic distances (GD1-4) scores from GRAF-pop (see Methods) represent distance of each genome from several reference populations and are used to predict ancestry. Barycentric coordinates of GD1 and GD2 are used to predict admixture proportion of African, East Asian and European ancestries.