1 Decreased cerebral blood flow in non-hospitalized adults who self-isolated due to COVID-

2	Dunning	Title	Carabral	blood	flow	and	COI	/ID	10
5	Kummig	I IUC.	Celebrai	01000	now	anu	CUV	ш-	12

- 4 William S.H. Kim^{1,2}; Xiang Ji³; Eugenie Roudaia⁴; J. Jean Chen^{1,4,5}; Asaf Gilboa^{4,6}; Allison
- 5 Sekuler^{4,6,7}; Fuqiang Gao^{2,3}; Zhongmin Lin^{1,8}; Aravinthan Jegatheesan^{1,8}; Mario Masellis^{2,3,9};
- 6 Maged Goubran^{1,2,8,10}; Jennifer S. Rabin^{9–11}; Benjamin Lam^{2,3,9}; Ivy Cheng^{12–14}; Robert
- 7 Fowler^{14,15}; Chris Heyn^{2,16}; Sandra E. Black^{2,3,9}; Simon J. Graham^{1,2,8,*}; Bradley J.
- 8 MacIntosh^{1,2,8,17,*}
- ⁹ ¹Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- 10 ²Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- ³LC Campbell Cognitive Neurology Research Group, Sunnybrook Health Sciences Centre,
- 12 Toronto, Ontario, Canada
- ⁴Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario,
- 14 Canada
- 15 ⁵Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- ⁶Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- ¹⁷ ⁷Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton,
- 18 Ontario, Canada
- ⁸Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- ⁹Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre,
- 21 University of Toronto, Toronto, Ontario, Canada
- ¹⁰Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, Ontario,
- 23 Canada

- 24 ¹¹Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- 25 ¹²Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- 26 ¹³Integrated Community Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- ¹⁴Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- ¹⁵Emergency & Critical Care Research Program, Sunnybrook Research Institute, Toronto,
- 29 Ontario, Canada
- 30 ¹⁶Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- 31 ¹⁷Computational Radiology & Artificial Intelligence Unit, Division of Radiology and Nuclear
- 32 Medicine, Oslo University Hospital, Oslo, Norway
- 33 * indicates senior authorship
- 34 Corresponding Author:
- 35 Bradley J. MacIntosh, Sunnybrook Research Institute, University of Toronto, 2075 Bayview
- 36 Avenue, Room M6-180, M4N 3M5, Toronto, ON, Canada
- 37 Email: brad.macintosh@utoronto.ca

38 Abstract

39	The long-term consequences of coronavirus disease 2019 (COVID-19) on brain physiology and
40	function are not yet well understood. From the recently described NeuroCOVID-19 study, we
41	examined cerebral blood flow (CBF) in 50 participants recruited to one of two groups: 1) adults
42	who previously self-isolated at home due to COVID-19 (n = 39; 116.5 \pm 62.2 days since positive
43	diagnosis), or 2) controls who experienced flu-like symptoms but had a negative COVID-19
44	diagnosis ($n = 11$). Participants underwent arterial spin labeling magnetic resonance imaging at 3
45	T to yield measures of CBF. Voxel-wise analyses of CBF were performed to assess for between-
46	group differences, after controlling for age and sex. Relative to controls, the COVID-19 group
47	exhibited decreased CBF in the thalamus, orbitofrontal cortex, and regions of the basal ganglia.
48	Within the COVID-19 group, CBF differences in occipital and parietal regions were observed
49	between those with $(n = 11)$ and without $(n = 28)$ self-reported on-going fatigue. These results
50	suggest long-term changes in brain physiology in adults across the post-COVID-19 timeframe.
51	Moreover, CBF may aid in understanding the heterogeneous symptoms of the post-COVID-19
52	condition. Future longitudinal studies are needed to further characterize the consequences of
53	COVID-19 on the brain.

54 **Keywords:** cerebral blood flow; COVID-19; SARS-CoV-2; fatigue; post-COVID-19

1. Introduction

56	Growing evidence suggests that the consequences of severe acute respiratory syndrome
57	coronavirus 2 (SARS-CoV-2) infection extend beyond the respiratory system. ^{1,2} As many as two
58	thirds of individuals suffering from coronavirus disease 2019 (COVID-19) are reported to
59	experience neurological and/or psychiatric symptoms during acute stages of infection. ^{3–5} In some
60	cases, symptoms have been reported to persist or even develop in the months following
61	infection; ⁶ this stage of COVID-19 has been referred to as the "post-COVID-19 condition" by
62	the World Health Organization. Symptoms such as fatigue and so-called "brain fog" prevail in
63	the post-COVID-19 timeframe; ^{2,7,8} however, the long-term impact of COVID-19 on the brain is
64	not well characterized. Efforts aimed at describing the post-COVID-19 condition as it relates to
65	the brain are needed to mitigate pressure on strained healthcare systems worldwide. ⁹
66	The effects of SARS-CoV-2 infection on the central nervous system are complex and
67	likely involve multiple potential pathways. One theorized pathway is the nasal mucosal route of
68	entry, whereby the virus may travel from the olfactory bulb to the primary olfactory cortex,
69	which has direct connections to several brain regions including the thalamus, orbitofrontal cortex,
70	and other midbrain regions; ¹⁰ however, conclusive evidence of this pathway remains elusive.
71	Another potential pathway may involve SARS-CoV-2 infiltrating cells expressing the
72	angiotensin-converting enzyme (ACE-2) receptor, notably endothelial cells of the vasculature, ¹¹
73	and thus constituents of the neurovascular unit. For example, stroke and cerebrovascular disease
74	secondary to COVID-19 have been reported. ^{12,13} This notion of neurovascular involvement is
75	further supported by a recent study demonstrating SARS-CoV-2 infection of tissue-cultured
76	pericyte-like cells. ¹⁴ In both cases, particularly the ACE-2 receptor pathway, ¹⁵ SARS-CoV-2-
77	induced neuroinflammation is likely to contribute to the post-COVID-19 condition.

78	Neuroimaging studies have shown that COVID-19 is associated with alterations to brain
79	structure and/or punctate lesions (i.e., microbleeds, white matter hyperintensities), often in small
80	samples of acutely infected individuals. ^{12,16-20} In a unique study using pre- and post-infection
81	data from a large UK Biobank sample, Douaud et al. observed longitudinal decreases in grey
82	matter thickness, particularly in limbic regions, among adults who self-isolated or were
83	hospitalized due to COVID-19. ²¹ There are few cohort neuroimaging studies focusing on brain
84	physiology in the post-COVID-19 timeframe; ^{1,22-28} such imaging contrasts may be particularly
85	relevant given the putative involvement of the vasculature in SARS-CoV-2 infection. ^{29,30} Of the
86	studies that exist, most involve adults who were hospitalized or in intensive care due to a more
87	severe course of COVID-19.
88	As part of the Toronto-based NeuroCOVID-19 study, ³¹ we conducted arterial spin
89	labeling (ASL) magnetic resonance imaging (MRI) to probe cerebral blood flow (CBF), a
90	measure of brain physiology and function, in non-hospitalized adults recovering from COVID-19.
91	Our primary aim was to compare voxel-wise CBF (with and without partial volume correction)
92	between adults who previously self-isolated at home due to COVID-19 and controls who
93	experienced flu-like symptoms but tested negative for COVID-19. We hypothesized that the
94	adults who previously self-isolated due to COVID-19 would exhibit altered CBF relative to
95	controls, when assessed weeks/months beyond infection. Given the prevalence of fatigue as a
96	symptom of the post-COVID-19 condition, ^{7,8,32–35} we then performed an exploratory analysis of
07	

98 2. Materials and methods

99 **2.1. Participants**

Participants in the current study were recruited between May 2020 and September 2021 through
the Department of Emergency Medicine at Sunnybrook Health Sciences Centre, physician
referral, and community advertisements. Eligibility and consenting procedures were performed
over phone or email. The Research Ethics Board at Sunnybrook Health Sciences Centre
approved this study.
Inclusion criteria for this study included being between 20 and 75 years of age and

having documented evidence of a positive or negative COVID-19 diagnosis, as determined by a
provincially-approved facility through a nasopharyngeal and/or oropharyngeal swab and
subsequent real-time reverse transcription polymerase chain reaction (PCR) test. Exclusion
criteria for this study included previous diagnosis of dementia, an existing neurological disorder,
previous traumatic brain injury, severe psychiatric illness, on-going unstable cardiovascular
disease, or contraindications to MRI (e.g., ferromagnetic implants).

112 **2.2.** Study setting

Sunnybrook Health Sciences Centre is an academic tertiary level hospital. Prior to the pandemic, its emergency department received approximately 61,000 patients per year. Specialty services include trauma, interventional cardiology, stroke, oncology, neurosurgery, psychiatry, and highrisk obstetrics and gynecology. Its catchment area includes the Greater Toronto area and nearby regions (https://sunnybrook.ca/content/?page=care-programs).

118 **2.3. Study design**

119 The current study is an observational cohort neuroimaging study and is part of the

120 NeuroCOVID-19 protocol, which has been previously described.³¹ We report on participants

121 who were recruited to one of two groups: 1) adults who previously self-isolated at home due to

122 COVID-19, or 2) controls who experienced flu-like symptoms but tested negative for COVID-19.

123 Herein, we refer to the former as the COVID-19 group and the latter as the control group. The

124 rationale for including this unique control group was that they may act as a better "baseline"

against which the COVID-19 group could be compared (i.e., a group with non-specific flu-like

126 symptoms who tested negative for COVID-19). Once non-infectious (i.e., following completion

127 of a 14-day quarantine period and/or a negative PCR test), participants were invited for an on-

site visit. Study staff and participants abided by the hospital's infection prevention and control

129 guidelines.

The primary outcome measure of the current study is ASL-derived CBF. Other outcome
measures were assessed using: 1) a self-reported questionnaire of flu-like symptoms, 2) the
Cognition and Emotion Batteries from the National Institutes of Health (NIH) Toolbox,^{36,37} and 3)
the 40-odorant University of Pennsylvania Smell Identification Test (UPSIT, Sensonics
International).³⁸ The latter two assessments have been well-validated.³⁹⁻⁴¹

The self-reported questionnaire of symptoms assessed whether participants were currently experiencing, had previously experienced, or had never experienced any flu-like symptoms including: fever, cough, sore throat, shortness of breath, fatigue, gastrointestinal symptoms, and/or smell/taste changes. Study staff ensured that symptoms were understood as being impairing to activities of daily living.

140	The Cognition Battery from the NIH Toolbox resulted in two age-corrected standard
141	scores (mean = 100, standard deviation = 15) of fluid and crystallized cognition. The Emotion
142	Battery resulted in three T-scores (mean = 50, standard deviation = 10) of negative affect, social
143	satisfaction, and well-being. Note that a higher T-score for negative affect reflects more
144	unpleasant moods and/or emotions. The interpretation of these scores has been previously
145	described (https://nihtoolbox.force.com/s/article/nih-toolbox-scoring-and-interpretation-guide).
146	The UPSIT was administered as reports of olfactory dysfunction are a prevalent symptom
147	of COVID-19. ^{7,8} This assessment resulted in an UPSIT score (calculated as the number of
148	odorants correctly identified) and a diagnosis of olfactory function (normosmia, mild hyposmia,
149	moderate hyposmia, severe hyposmia to total anosmia). These diagnoses were determined as a
150	function of UPSIT score and sex.

151 **2.4. MRI acquisition**

152 The MRI sequences used in this study consisted of T1-weighted and pseudo-continuous ASL 153 acquired on a 3 T MRI system (Magnetom Prisma, Siemens Healthineers, Erlangen, Germany). 154 T1-weighted images were acquired in three dimensions using an isotropic sagittal magnetization-155 prepared rapid gradient-echo sequence (TR/TE/TI = 2500/4.7/1100 ms, spatial resolution = 1 mm^3 , field-of-view = 256 mm, slices = 192, duration = 3:45 min:s). ASL images were acquired 156 157 in three dimensions using an echo-planar turbo gradient-spin echo sequence with background 158 suppression (TR/TE = 4100/36.8 ms, isotropic spatial resolution = 2.5 mm³, field-of-view = 240159 mm, label duration = 1500 ms, post-label delay = 1800 ms, 7 control-label pairs, duration = 4:27min:s).⁴² Proton-density ASL reference images were acquired with a TR of 4.1 s for CBF 160 161 calibration.

162 **2.5. MRI processing**

MRI processing was performed using tools from the FMRIB Software Library (FSL, version
6.0.3).⁴³ T1-weighted images were processed using *fsl_anat* with steps that included brain
extraction, tissue segmentation, and non-linear registration to Montreal Neurological Institute
(MNI) space.

167 ASL images were processed using oxford_asl with steps that included motion correction, spatial regularization,⁴⁴ generation of control-tag difference images, voxel-wise calibration using 168 the ASL reference image and assumed values from the literature,⁴⁵ linear registration to structural 169 space followed by non-linear registration to MNI space,⁴⁶ and spatial smoothing with a Gaussian 170 171 kernel of full-width at half maximum of 5 mm. The resulting CBF maps were then intensity-172 normalized (i.e., each CBF map was scaled to a global mean of 1) to account for betweenparticipant global CBF differences.⁴⁷ Two individuals (WSHK, BJM) visually inspected the CBF 173 174 maps for quality control.

175 **2.6. Statistical analysis**

Demographic and clinical characteristics were compared between groups using independent samples t-tests for continuous data and chi-squared tests for categorical data. In cases when continuous data were non-normal (i.e., as assessed by the Shapiro-Wilk test), Mann-Whitney Utests were used. In cases when categorical data had an expected value less than 5 (i.e., in a contingency table), Fisher's exact tests were used. The threshold for statistical significance of demographic and clinical variables was set at 0.05.

For our primary aim, we performed between-group (i.e., COVID-19 vs. control) wholebrain voxel-wise analyses of CBF using two-tailed independent samples t-tests, controlling for age and sex. We used *3dFWHMx* and *3dClustSim* from the Analysis of Functional NeuroImages

(AFNI, version 22.0.05) to estimate cluster-extent thresholds at a family-wise error rate of 0.05
with a cluster-forming threshold of 0.005. In addition, we performed one sensitivity analysis and
one exploratory analysis in support of the primary aim.

188 Sensitivity analysis – Partial volume correction: We repeated the between-group 189 comparison (i.e., COVID-19 vs. control) after including partial volume correction as an 190 additional ASL processing step. The rationale for this sensitivity analysis is that ASL images 191 were collected at a spatial resolution similar to the average thickness of the cortex, which may lead to biases in CBF estimation.⁴⁵ Thus, due diligence was required to interpret CBF estimates 192 193 and the resulting between-group differences. It is worth noting that currently available partial 194 volume correction methods are inconsistent and may hinder interpretation; thus, it is 195 recommended that partial volume correction be reported parallel to analyses using uncorrected CBF estimates.⁴⁵ This additional processing step was implemented in *oxford* asl.⁴⁸ 196 197 *Exploratory analysis – Association between fatigue and CBF within the COVID-19 group:* Given the prevalence of fatigue as a symptom of the post-COVID-19 condition,^{7,8,32,33} we 198 199 examined whether COVID-19 participants who self-reported as experiencing on-going fatigue (n 200 = 11) exhibited CBF differences compared to COVID-19 participants who previously reported 201 fatigue that had resolved by the time of the assessment or did not experience fatigue at all (n = 1)202 28). Fatigue was determined using the self-reported questionnaire of symptoms.

203 **3. Results**

3.1. Demographic & clinical characteristics

At the time of analysis, a total of 50 participants (39 COVID-19, 11 controls) met eligibility

206 criteria and had ASL and T1-weighted images available. Demographic and clinical

207 characteristics are presented in Table 1.

208 Briefly, groups were well-matched for age and sex. COVID-19 participants were scanned

 116.5 ± 62.6 [8, 312] days after receiving a positive diagnosis. Self-reported fatigue (COVID-19,

210 28.2%; control, 36.4%) and shortness of breath (COVID-19, 20.5%; control, 27.3%) were the

211 most prevalent on-going symptoms across the cohort (Figure 1). Notably, 92.3% of COVID-19

212 participants and 72.7% of controls had experienced fatigue at some point between the PCR test

and the time of the assessment. Significantly more COVID-19 participants had previously

experienced or were currently experiencing smell/taste changes compared to controls ($X^2 = 6.04$,

p < 0.05). There were no between-group differences in fluid or crystallized cognition as assessed

216 by the NIH Toolbox Cognition Battery, negative affect, social satisfaction, or well-being as

assessed by the NIH Toolbox Emotion Battery (n.b., three COVID-19 participants did not

218 complete the Emotion Battery), or UPSIT score (n.b., 11 COVID-19 participants and two

219 controls had missing/faulty UPSIT data).

220

3.2. Differences in CBF between COVID-19 and control groups

Relative to controls, the COVID-19 group exhibited significantly decreased CBF in a large
cluster of voxels encompassing the thalamus, orbitofrontal cortex, and regions of the basal
ganglia, including the caudate, nucleus accumbens, putamen, and pallidum (Figure 2 and Table

224	2). There were no clusters in which the COVID-19 group had significantly increased CBF
225	relative to controls.

3.3. Sensitivity analysis – Differences in CBF between COVID-19 and control groups with partial volume correction

228 Our sensitivity analysis with partial volume correction resulted in a similar cluster of smaller

extent compared to the primary analysis (Figure 3 and Table 2). Again, there were no clusters in

- which the COVID-19 group had significantly increased CBF relative to controls.
- 3.4. Exploratory analysis Association between fatigue and CBF within the COVID-19
 group
- 233 Within the COVID-19 group, we observed between-subgroup CBF differences between those

with and without on-going fatigue. On-going fatigue was characterized by a cluster of increased

235 CBF in superior occipital and parietal regions (superior lateral occipital cortex, angular gyrus,

superior parietal lobule, supramarginal gyrus) and a cluster of decreased CBF in inferior occipital

regions (lingual gyrus, occipital fusiform gyrus, intracalcarine cortex, precuneous cortex) (Figure4 and Table 2).

239 **4. Discussion**

In this study, we investigated whether adults who previously self-isolated at home due to
COVID-19 would exhibit alterations in CBF when compared against controls who experienced
flu-like symptoms but tested negative for COVID-19. COVID-19 participants exhibited
significantly decreased CBF in the thalamus, orbitofrontal cortex, and regions of the basal
ganglia compared to controls. We further examined the effect of fatigue within the COVID-19
group, which revealed between-subgroup CBF differences in occipital and parietal regions.

These results provide support for long-term changes in brain physiology in adults across thepost-COVID-19 timeframe.

248 Although COVID-19 is primarily a respiratory illness, the cerebrovasculature is also susceptible to damage as endothelial cells and pericytes are prone to viral invasion.^{14,29} The 249 250 brain's vasculature interfaces with the complex neurovascular unit, for instance, in the regulation of CBF.⁴⁹ Furthermore, the location of potential brain involvement in relation to SARS-CoV-2 is 251 252 likely to vary regionally, with some evidence to suggest that relative to the rest of the brain, 253 ACE-2 receptor expression is highest in the thalamus, the paraventricular nuclei of the thalamus, and more generally in regions proximal to the ventricles.⁵⁰ Notably, we found significantly 254 255 decreased CBF in the anterior thalamus, which contains the paraventricular nuclei of the thalamus, a key region of the brain's anxiety network.⁵¹ Moreover, decreased thalamic glucose 256 257 metabolism, as measured by positron emission tomography (PET), has been observed at both acute and chronic stages of recovery from COVID-19.26,27,52 258

259 Decreased CBF was also detected in regions of the basal ganglia, including the caudate, 260 nucleus accumbens, putamen, and pallidum. In particular, the caudate has been reported in a 261 longitudinal PET study that observed decreased glucose metabolism in seven adults recovering from COVID-19, up to 6 months post-infection.²⁷ Multivariate methods have also revealed that 262 263 glucose metabolism within the caudate is a distinguishing feature between COVID-19 patients and controls.²⁴ We also observed decreased CBF within the orbitofrontal cortex, a region widely 264 reported as being associated with SARS-CoV-2 infection.^{12,21,53–56} Together with the thalamus 265 266 and regions of the basal ganglia, the orbitofrontal cortex is a key region of the cortico-basal 267 ganglia-thalamic loop, a circuit involved in complex behaviours including affect regulation and reward-based decision-making,⁵⁷ as well as in relation to neurological and psychiatric 268

disorders.^{58,59} Moreover, the orbitofrontal cortex also plays an important role in olfaction and is 269 often referred to as the secondary olfactory cortex.⁶⁰ The results of the current study align with 270 271 previous PET studies that find decreased glucose metabolism within the orbitofrontal cortex, and 272 more generally within the frontal lobe. In an early case report of one healthy 27-year-old with 273 COVID-19 experiencing persistent anosmia, Karimi-Galougahi et al. reported decreased glucose metabolism in the left orbitofrontal cortex.⁵⁵ Hosp et al. reported frontoparietal hypometabolism 274 in 10 out of 15 adults with subacute COVID-19.²⁴ Guedj et al. reported frontal hypometabolism 275 276 in 35 adults that were 3 weeks beyond infection, and that significant clusters were correlated with higher occurrence of symptoms, such as anosmia.²⁶ Finally, Kas et al. reported a consistent 277 278 pattern of orbitofrontal, dorsolateral, and mesiofrontal hypometabolism in seven adults with 279 acute COVID-19-related encephalopathy, despite heterogenous symptomatology, and posited that COVID-19 is related to frontal lobe impairment.²⁷ Notably, the results from the latter study 280 281 persisted until 6 months following infection. Altogether, the result of decreased CBF within the 282 orbitofrontal cortex, along with the thalamus and regions of the basal ganglia, may reflect 283 COVID-19-related disturbances to brain networks, olfactory function, and emotional/cognitive 284 concerns. Future studies extending these potentially brain network-related results through 285 investigations of functional and structural connectivity are warranted.

It is important to note that participants in the current study were recruited over the course of several pandemic waves in Ontario, each being associated with a different distribution of variants of concern (Figure 1). Thus, it is probable that COVID-19 participants were infected with different strains of SARS-CoV-2, likely spanning from the Alpha variant to the Delta variant. We further note that these participants were recruited prior to the emergence of the

Omicron variant which, despite its high transmissibility, is believed to be less severe than
 previous strains.^{61,62}

293	Our comparison of COVID-19 participants with and without fatigue resulted in between-
294	subgroup CBF differences, primarily in occipital and parietal regions of the brain. There have
295	been efforts to characterize COVID-19 based on symptoms, with the hope of predicting severity
296	and likelihood of the post-COVID-19 condition. ^{32,33} Others have observed fatigue-related
297	differences in brain structure and function in those recovering from COVID-19, ³⁵ such as
298	functional connectivity alterations in parietal regions. ³⁴ Interestingly, the post-COVID-19
299	condition shares many common features with chronic fatigue syndrome (i.e., myalgic
300	encephalomyelitis), a disorder that can be triggered by viral infection, ⁶³ and that is characterized
301	by decreased CBF, such as within the lingual gyrus. ^{64,65} Therefore, these fatigue-related CBF
302	differences amongst COVID-19 participants could help guide therapeutic efforts in treating
303	fatigue as a symptom of the post-COVID-19 condition. We note that while brain-behaviour
304	investigations in the context of COVID-19 are important in understanding symptoms, this
305	fatigue-related analysis is a "scratch of the surface". Higher-order multivariate analyses (e.g.,
306	principal component analysis) with larger sample sizes will be better poised to answer such
307	questions.

These results need to be interpreted in the context of several limitations. First, although well-matched, the sample sizes of the two groups were modest and unequal; furthermore, a power analysis was not performed. To our knowledge, the current study benefits from the largest ASL dataset focusing on non-hospitalized adults in the post-COVID-19 timeframe. Moreover, recruitment for the NeuroCOVID-19 study is on-going and will address these issues in future studies. Second, our recruitment may be confounded by selection bias. For example, the current

314 study's cohort was comprised of 66% female and 72% Caucasian participants. We further note 315 that participants needed internet access to be screened for eligibility. Third, our control group 316 exhibited flu-like symptoms of unknown origin. The recruitment of this unique control group is a 317 relatively novel aspect of this study, as these participants are a de-novo sample of adults that 318 experienced non-specific flu-like symptoms during the pandemic. Fourth, ASL images were 319 acquired at a spatial resolution comparable to the average thickness of the cortex, which may be susceptible to partial volume error.⁴⁵ To address this, we included partial volume correction as an 320 321 additional ASL processing step in a sensitivity analysis, which did not drastically change the 322 results. Fifth, our fatigue-related exploratory analysis relied on self-reported symptoms. Study 323 staff ensured that on-going fatigue was understood as being impairing to activities of daily living. Finally, the data used in this study are cross-sectional and lack a pre-infection assessment.²¹ 324 325 Further investigation into longitudinal changes of these participants will be performed as part of 326 the NeuroCOVID-19 study. It may also be feasible to access pre-pandemic repository data from 327 age- and sex-matched individuals.

328 In conclusion, we observed decreased CBF in those recovering from COVID-19 relative 329 to controls. These decreases were present months after acute infection and were localized to 330 regions that have previously been highlighted as related to SARS-CoV-2 infection. We also 331 observed CBF differences in relation to fatigue within the COVID-19 group, suggesting that 332 CBF may aid in parsing the heterogeneous symptoms associated with the post-COVID-19 333 condition. In all, these results suggest that the post-COVID-19 condition may be associated with 334 long-term effects on brain physiology and function. Future studies that replicate and further 335 characterize such effects are warranted.

336 Acknowledgments

- 337 The authors wish to thank all study participants and staff (Ellen Cohen, Garry Detzler, Ruby
- 338 Endre, Haddas Grosbein, Masud Hussain, Devin Sodums) for their time and contributions to this
- 339 study. We thank Dr. Danny J.J. Wang from the University of Southern California for providing

340 the 3D pCASL sequence.

341 Funding

- 342 This study is funded in part by the Sunnybrook Foundation, the Dr. Sandra Black Centre for
- 343 Brain Resilience & Recovery, a Canadian Institutes of Health Research (CIHR) Project Grant
- 344 (165981), and a CIHR Operating Grant on Emerging COVID-19 Research Gaps and Priorities
- 345 (177756).

346 Authors' contributions

- 347 Study design: WSHK, XJ, ER, JJC, AG, AS, FG, ZL, AJ, MM, MG, JR, BL, IC, RF, CH, SEB,
- 348 SJG, BJM. Data collection: XJ, ER, ZL, AJ, SJG, BJM. Data analysis and interpretation: WSHK,

349 XJ, ER, JJC, AG, AS, FG, ZL, AJ, MM, MG, JR, BL, IC, RF, CH, SEB, SJG, BJM. Manuscript

writing: WSHK, XJ, ER, JJC, ZL, SJG, BJM. All authors revised and approved the final version
of this manuscript.

Declaration of conflicting interests

353 SEB reports payments for contract research to her institution from GE Healthcare, Eli Lilly and 354 Company, Biogen, Genentech, Optina Diagnostics, and Roche; consulting fees and payments 355 related to an advisory board from Roche; and payments related to an advisory board, a speaker 356 panel, talks, and an educational session from Biogen. There were peer-reviewed grants to her 357 institution from the Ontario Brain Institute, Canadian Institutes of Health Research, Leducq

- 358 Foundation, Heart and Stroke Foundation of Canada, National Institutes of Health, Alzheimer's
- 359 Drug Discovery Foundation, Brain Canada, Weston Brain Institute, Canadian Partnership for
- 360 Stroke Recovery, Canadian Foundation for Innovation, Focused Ultrasound Foundation,
- 361 Alzheimer's Association US, Department of National Defence, Montreal Medical International-
- 362 Kuwait, Queen's University, Compute Canada Resources for Research Groups, CANARIE, and
- 363 Networks of Centres of Excellence of Canada. She has participated on a data safety monitoring
- 364 board or advisory board for the Conference Board of Canada, World Dementia Council, and
- 365 University of Rochester. She has contributed to the mission and scientific leadership of the Small
- 366 Vessel VCID Biomarker Validation Consortium, National Institute of Neurological Disorders
- and Stroke. No other conflicting interests were declared.

368 5. References

- 369 1. Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of SARS-CoV-2
- infection on multiple vital organs, exercise capacity, cognition, quality of life and mental
- health, post-hospital discharge. *EClinicalMedicine*. 2021;31.
- doi:10.1016/j.eclinm.2020.100683
- 2. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. *Nat Med.*
- 374 2021;27(4):601-615. doi:10.1038/s41591-021-01283-z
- 375 3. Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric
- 376 complications of COVID-19 in 153 patients: a UK-wide surveillance study. *The Lancet*
- 377 *Psychiatry*. 2020;7(10):875-882. doi:10.1016/S2215-0366(20)30287-X
- 4. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients with
- 379 Coronavirus Disease 2019 in Wuhan, China. *JAMA Neurol*. Published online 2020.
- 380 doi:10.1001/jamaneurol.2020.1127
- 381 5. Helms J, Kremer S, Merdji H, et al. Neurologic Features in Severe SARS-CoV-2 Infection.
- 382 *N Engl J Med.* 2020;382(23):2268-2270. doi:10.1056/nejmc2008597
- 383 6. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and
- 384 psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study
- using electronic health records. *The Lancet Psychiatry*. 2021;8(5):416-427.
- 386 doi:10.1016/S2215-0366(21)00084-5
- 387 7. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of
- 388 COVID-19: a systematic review and meta-analysis. *Sci Rep.* 2021;11(1):1-12.
- 389 doi:10.1038/s41598-021-95565-8
- 390 8. Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat

391 *Med.* 2021;27(4):626-631. doi:10.1038/s41591-021-01292-y

- 392 9. Menges D, Ballouz T, Anagnostopoulos A, et al. Burden of post-COVID-19 syndrome
- 393 and implications for healthcare service planning: A population-based cohort study. *PLoS*
- *One*. 2021;16(7 July):e0254523. doi:10.1371/journal.pone.0254523
- 395 10. Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion
- as a port of central nervous system entry in individuals with COVID-19. *Nat Neurosci*.
- 397 2021;24(2):168-175. doi:10.1038/s41593-020-00758-5
- 11. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. *Eur Heart J*.
- 399 2020;41(32):3038-3044. doi:10.1093/eurheartj/ehaa623
- 400 12. Manca R, De Marco M, Ince PG, Venneri A. Heterogeneity in Regional Damage Detected
- 401 by Neuroimaging and Neuropathological Studies in Older Adults With COVID-19: A
- 402 Cognitive-Neuroscience Systematic Review to Inform the Long-Term Impact of the Virus
- 403 on Neurocognitive Trajectories. *Front Aging Neurosci*. 2021;13:646908.
- 404 doi:10.3389/fnagi.2021.646908
- 405 13. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. *Lancet* 406 *Neurol.* 2020;19(9):767-783. doi:10.1016/S1474-4422(20)30221-0
- 407 14. Wang L, Sievert D, Clark AE, et al. A human three-dimensional neural-perivascular
- 408 'assembloid' promotes astrocytic development and enables modeling of SARS-CoV-2
- 409 neuropathology. *Nat Med.* 2021;27(9):1600-1606. doi:10.1038/s41591-021-01443-1
- 410 15. Boldrini M, Canoll PD, Klein RS. How COVID-19 Affects the Brain. JAMA Psychiatry.
- 411 2021;78(6):682-683. doi:10.1001/jamapsychiatry.2021.0500
- 412 16. Chougar L, Shor N, Weiss N, et al. Retrospective Observational Study of Brain Magnetic
- 413 Resonance Imaging Findings in Patients with Acute SARS-CoV-2 Infection and

- 414 Neurological Manifestations. *Radiology*. Published online 2020.
- 415 17. Kremer S, Lersy F, De Sèze J, et al. Brain MRI findings in severe COVID-19: A
- 416 retrospective observational study. *Radiology*. 2020;297(2):E242-E251.
- 417 doi:10.1148/RADIOL.2020202222
- 418 18. Kremer S, Lersy F, Anheim M, et al. Neurologic and neuroimaging findings in patients
- 419 with COVID-19: A retrospective multicenter study. *Neurology*. 2020;95(13):e1868-e1882.
- 420 doi:10.1212/WNL.000000000010112
- 421 19. Gulko E, Oleksk ML, Gomes W, et al. MRI brain findings in 126 patients with COVID-19:
- 422 Initial observations from a descriptive literature review. *Am J Neuroradiol*.
- 423 2020;41(12):2199-2203. doi:10.3174/ajnr.A6805
- 424 20. Kandemirli SG, Dogan L, Sarikaya ZT, et al. Brain MRI findings in patients in the
- 425 intensive care unit with COVID-19 infection. *Radiology*. 2020;297(1):E232-E235.
- 426 doi:10.1148/radiol.2020201697
- 427 21. Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in
- 428 brain structure in UK Biobank. *Nature*. Published online March 7, 2022:1-17.
- 429 doi:10.1038/s41586-022-04569-5
- 430 22. Griffanti L, Raman B, Alfaro-Almagro F, et al. Adapting the UK Biobank Brain Imaging
- 431 Protocol and Analysis Pipeline for the C-MORE Multi-Organ Study of COVID-19
- 432 Survivors. Front Neurol. 2021;12:753284. doi:10.3389/fneur.2021.753284
- 433 23. Qin Y, Wu J, Chen T, et al. Long-term microstructure and cerebral blood flow changes in
- 434 patients recovered from COVID-19 without neurological manifestations. *J Clin Invest*.
- 435 2021;131(8). doi:10.1172/JCI147329
- 436 24. Hosp JA, Dressing A, Blazhenets G, et al. Cognitive impairment and altered cerebral

- 437 glucose metabolism in the subacute stage of COVID-19. *Brain*. 2021;144(4):1263-1276.
- 438 doi:10.1093/brain/awab009
- 439 25. Sollini M, Morbelli S, Ciccarelli M, et al. Long COVID hallmarks on [18F]FDG-PET/CT:
- 440 a case-control study. *Eur J Nucl Med Mol Imaging*. 2021;48(10):3187-3197.
- 441 doi:10.1007/s00259-021-05294-3
- 442 26. Guedj E, Campion JY, Dudouet P, et al. 18F-FDG brain PET hypometabolism in patients
- 443 with long COVID. *Eur J Nucl Med Mol Imaging*. 2021;48(9):2823-2833.
- 444 doi:10.1007/s00259-021-05215-4
- 445 27. Kas A, Soret M, Pyatigoskaya N, et al. The cerebral network of COVID-19-related
- 446 encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. *Eur J Nucl Med Mol*

447 *Imaging*. Published online 2021. doi:10.1007/s00259-020-05178-y

- 448 28. Niesen M, Trotta N, Noel A, et al. Structural and metabolic brain abnormalities in
- 449 COVID-19 patients with sudden loss of smell. *Eur J Nucl Med Mol Imaging*.
- 450 2021;48(6):1890-1901. doi:10.1007/s00259-020-05154-6
- 451 29. Whitmore HAB, Kim LA. Understanding the Role of Blood Vessels in the Neurological
- 452 Manifestations of COVID-19. *Am J Pathol*. Published online June 2021.
- 453 doi:10.1016/j.ajpath.2021.04.017
- 454 30. Sashindranath M, Nandurkar HH. Endothelial dysfunction in the brain: Setting the stage
- 455 for stroke and other cerebrovascular complications of covid-19. *Stroke*. 2021;52(5).
- 456 doi:10.1161/STROKEAHA.120.032711
- 457 31. MacIntosh BJ, Ji X, Chen JJ, et al. Brain structure and function in people recovering from
- 458 COVID-19 after hospital discharge or self-isolation: a longitudinal observational study
- 459 protocol. *C open*. 2021;9(4):E1114-E1119. doi:10.9778/cmajo.20210023

460	32.	Yelin D, Margalit I, Nehme M, et al. Patterns of Long COVID Symptoms: A Multi-Center
461		Cross Sectional Study. J Clin Med. 2022;11(4). doi:10.3390/jcm11040898
462	33.	Sudre CH, Lee KA, Lochlainn MN, et al. Symptom clusters in COVID-19: A potential
463		clinical prediction tool from the COVID symptom study app. Sci Adv. 2021;7(12):4177.
464		doi:10.1126/sciadv.abd4177
465	34.	Hafiz R, Gandhi TK, Mishra S, et al. Assessing functional connectivity differences and
466		work-related fatigue in surviving COVID-negative patients. bioRxiv Prepr Serv Biol.
467		Published online February 1, 2022. doi:10.1101/2022.02.01.478677
468	35.	Hafiz R, Gandhi TK, Mishra S, et al. Higher Limbic and Basal Ganglia volumes in
469		surviving COVID-negative patients and the relations to fatigue. medRxiv. Published online
470		November 24, 2021. doi:10.1101/2021.11.23.21266761
471	36.	Gershon RC, Wagster M V., Hendrie HC, Fox NA, Cook KF, Nowinski CJ. NIH toolbox
472		for assessment of neurological and behavioral function. Neurology. 2013;80(11 Suppl
473		3):S2. doi:10.1212/wnl.0b013e3182872e5f
474	37.	Hodes RJ, Insel TR, Landis SC, NIH Blueprint for Neuroscience Research. The NIH
475		toolbox: setting a standard for biomedical research. Neurology. 2013;80(11 Suppl 3):S1.
476		doi:10.1212/wnl.0b013e3182872e90
477	38.	Doty RL, Shaman P, Dann M. Development of the University of Pennsylvania smell
478		identification test: A standardized microencapsulated test of olfactory function. Physiol
479		Behav. 1984;32(3):489-502. doi:10.1016/0031-9384(84)90269-5
480	39.	Weintraub S, Dikmen SS, Heaton RK, et al. Cognition assessment using the NIH Toolbox.
481		Neurology. 2013;80(11 Suppl 3). doi:10.1212/wnl.0b013e3182872ded
482	40.	Salsman JM, Butt Z, Pilkonis PA, et al. Emotion assessment using the NIH Toolbox.

- 483 *Neurology*. 2013;80(11 Suppl 3). doi:10.1212/wnl.0b013e3182872e11
- 484 41. Doty RL, Frye RE, Agrawal U. Internal consistency reliability of the fractionated and
- 485 whole University of Pennsylvania Smell Identification Test. *Percept Psychophys.*
- 486 1989;45(5):381-384. doi:10.3758/BF03210709
- 487 42. Kilroy E, Apostolova L, Liu C, Yan L, Ringman J, Wang DJJ. Reliability of two-
- 488 dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion
- 489 MRI in elderly populations: Comparison with 15o-water positron emission tomography. J
- 490 *Magn Reson Imaging*. 2014;39(4):931-939. doi:10.1002/jmri.24246
- 491 43. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. *Neuroimage*.
- 492 2012;62(2):782-790. doi:10.1016/J.NEUROIMAGE.2011.09.015
- 493 44. Groves AR, Chappell MA, Woolrich MW. Combined spatial and non-spatial prior for
 494 inference on MRI time-series. *Neuroimage*. 2009:45(3):795-809.
- 495 doi:10.1016/j.neuroimage.2008.12.027
- 496 45. Chappell MA, McConnell FAK, Golay X, et al. Partial volume correction in arterial spin
- 497 labeling perfusion MRI: A method to disentangle anatomy from physiology or an analysis
- 498 step too far? *Neuroimage*. 2021;238. doi:10.1016/j.neuroimage.2021.118236
- 499 46. Chappell MA, Groves AR, Whitcher B, Woolrich MW. Variational Bayesian inference for
- 500 a nonlinear forward model. *IEEE Trans Signal Process*. Published online 2009.
- 501 doi:10.1109/TSP.2008.2005752
- 502 47. Yoshiura T, Hiwatashi A, Noguchi T, et al. Arterial spin labelling at 3-T MR imaging for
- 503 detection of individuals with Alzheimer's disease. *Eur Radiol.* 2009;19(12):2819-2825.
- 504 doi:10.1007/s00330-009-1511-6
- 505 48. Chappell MA, Groves AR, MacIntosh BJ, Donahue MJ, Jezzard P, Woolrich MW. Partial

- 506 volume correction of multiple inversion time arterial spin labeling MRI data. *Magn Reson*
- 507 *Med.* 2011;65(4):1173-1183. doi:10.1002/mrm.22641
- 508 49. Winkler EA, Bell RD, Zlokovic B V. Central nervous system pericytes in health and
- 509 disease. *Nat Neurosci*. 2011;14(11):1398-1405. doi:10.1038/nn.2946
- 510 50. Chen R, Wang K, Yu J, et al. The Spatial and Cell-Type Distribution of SARS-CoV-2
- 511 Receptor ACE2 in the Human and Mouse Brains. *Front Neurol*. 2021;11.
- 512 doi:10.3389/fneur.2020.573095
- 513 51. Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay
- 514 Node in the Brain Anxiety Network. *Front Behav Neurosci.* 2021;15.
- 515 doi:10.3389/fnbeh.2021.627633
- 516 52. Guedj E, Million M, Dudouet P, et al. 18F-FDG brain PET hypometabolism in post-
- 517 SARS-CoV-2 infection: substrate for persistent/delayed disorders? *Eur J Nucl Med Mol*

518 *Imaging*. 2021;48(2):592-595. doi:10.1007/s00259-020-04973-x

- 519 53. Meyer PT, Hellwig S, Blazhenets G, Hosp JA. Molecular imaging findings on acute and
- 520 long-term effects of COVID-19 on the brain: A systematic review. *J Nucl Med.* Published
- 521 online February 17, 2022:jnumed.121.263085. doi:10.2967/jnumed.121.263085
- 522 54. Ismail II, Gad KA. Absent Blood Oxygen Level-Dependent Functional Magnetic
- 523 Resonance Imaging Activation of the Orbitofrontal Cortex in a Patient with Persistent
- 524 Cacosmia and Cacogeusia after COVID-19 Infection. *JAMA Neurol*. 2021;78(5):609-610.
- 525 doi:10.1001/jamaneurol.2021.0009
- 526 55. Karimi-Galougahi M, Yousefi-Koma A, Bakhshayeshkaram M, Raad N, Haseli S. 18FDG
- 527 PET/CT Scan Reveals Hypoactive Orbitofrontal Cortex in Anosmia of COVID-19. Acad
- 528 *Radiol.* 2020;27(7):1042-1043. doi:10.1016/j.acra.2020.04.030

- 529 56. Hua J, Liu P, Kim T, et al. MRI techniques to measure arterial and venous cerebral blood
 530 volume. *Neuroimage*. 2019;187:17-31. doi:10.1016/j.neuroimage.2018.02.027
- 531 57. Draganski B, Kherif F, Klöppel S, et al. Evidence for segregated and integrative
- 532 connectivity patterns in the human basal ganglia. *J Neurosci*. 2008;28(28):7143-7152.
- 533 doi:10.1523/JNEUROSCI.1486-08.2008
- 534 58. Fettes P, Schulze L, Downar J. Cortico-striatal-thalamic loop circuits of the orbitofrontal
- 535 cortex: Promising therapeutic targets in psychiatric illness. *Front Syst Neurosci.* 2017;11.
- 536 doi:10.3389/fnsys.2017.00025
- 537 59. Maia T V., Frank MJ. From reinforcement learning models to psychiatric and neurological
- 538 disorders. In: *Nature Neuroscience*. Vol 14. NIH Public Access; 2011:154-162.
- 539 doi:10.1038/nn.2723
- 540 60. Gottfried JA, Zald DH. On the scent of human olfactory orbitofrontal cortex: Meta-
- 541 analysis and comparison to non-human primates. *Brain Res Rev.* 2005;50(2):287-304.
- 542 doi:10.1016/j.brainresrev.2005.08.004
- 543 61. Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the
- 544 SARS-CoV-2 omicron variant in South Africa: a data linkage study. *Lancet*.
- 545 2022;399(10323):437-446. doi:10.1016/S0140-6736(22)00017-4
- 546 62. Halfmann PJ, Iida S, Iwatsuki-Horimoto K, et al. SARS-CoV-2 Omicron virus causes
- 547 attenuated disease in mice and hamsters. *Nature*. 2022;603(7902). doi:10.1038/s41586548 022-04441-6
- 549 63. Bornstein SR, Voit-Bak K, Donate T, et al. Chronic post-COVID-19 syndrome and
- 550 chronic fatigue syndrome: Is there a role for extracorporeal apheresis? *Mol Psychiatry*.
- 551 2022;27(1):34-37. doi:10.1038/s41380-021-01148-4

552	64.	Shungu DC, Weiduschat N, Murrough JW, et al. Increased ventricular lactate in chronic
553		fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms
554		implicate oxidative stress in disorder pathophysiology. NMR Biomed. 2012;25(9):1073-
555		1087. doi:10.1002/nbm.2772
556	65.	Biswal B, Kunwar P, Natelson BH. Cerebral blood flow is reduced in chronic fatigue
557		syndrome as assessed by arterial spin labeling. J Neurol Sci. 2011;301(1-2):9-11.
558		doi:10.1016/j.jns.2010.11.018

560 **6. Figure legends**

562 Figure 1. a) Timing of PCR test (left marker) and assessment (right marker) for COVID-19 563 (orange squares) participants and controls (green circle). Confirmed cases in Ontario are shown 564 in grey. b) Number of days between PCR test and assessment. The black dotted line indicates 28 565 days, an established threshold beyond which symptoms can be considered part of the post-566 COVID-19 condition. c) Proportion of participants who self-reported flu-like symptoms. Faint 567 bars indicate participants whose symptoms had resolved by the time of the assessment while dark 568 bars indicate participants with on-going symptoms. d) Representative and group-averaged CBF 569 maps from both groups.

570

571 **Figure 2.** Cluster exhibiting significantly decreased CBF in the COVID-19 group (n = 39)

relative to controls (n = 11), after controlling for age and sex. No clusters were found where the

- 573 COVID-19 group had higher CBF compared to controls. Statistical maps are presented in
- 574 radiological convention. Montreal Neurological Institute coordinates are denoted by z-values.
- 575 Abbreviations: R, right; L, left.

577 Figure 3. Cluster exhibiting significantly decreased partial volume-corrected CBF in the

- 578 COVID-19 group (n = 39) relative to controls (n = 11), after adjusting for age and sex. No
- 579 clusters were found where the COVID-19 group had higher CBF compared to controls.
- 580 Statistical maps are presented in radiological convention. Montreal Neurological Institute
- 581 coordinates are denoted by z-values. Abbreviations: R, right; L, left.

583 **Figure 4.** Clusters exhibiting significantly increased (red-yellow) and decreased (blue-green)

- 584 CBF in the COVID-19 with fatigue group (n = 11) relative to the COVID-19 without fatigue
- 585 group (n = 28), after controlling for age and sex. Statistical maps are presented in radiological
- 586 convention. Montreal Neurological Institute coordinates are denoted by z-values. Abbreviations:
- 587 R, right; L, left.

7. Tables

	Controls	COVID-19	Test		
	(n = 11)	(n = 39)	Statistic	р	
Age (years)	41.5 ± 13.4 [26, 70]	41.9 ± 12.6 [19, 63]	t = 0.10	0.92	
Female	6 (54.5%)	27 (69.2%)	$X^2 = 0.82$	0.36	
Caucasian	7 (63.6%)	29 (74.4%)	$X^2 = 0.49$	0.48	
Education (years)	17.0 ± 2.8 [12, 22]	16.0 ± 2.0 [12, 20]	U = 253.0	0.35	
Days between PCR test and time of	112.1 ± 59.5 [25,	116.5 ± 62.2 [8,	t = 0.21	0.84	
assessment	206]	312]	t = 0.21	0.84	
Received first dose of vaccine prior to	0/3(27.3%)/8	2 (5.1%) / 23	x ² 4 07	0.10	
time of assessment (yes / no / did not answer)	(72.7%)	(35.9%) / 14	$X^{2} = 4.87$	0.12	
Days between receiving first dose of vaccine and time of assessment	_	[5, 6]	-	-	
Self-reported symptoms at time of asse	ssment (current / res	olved / did not experi	ience)	L.	
	4 (36.4%) / 4	11 (29 20()) / 25	,		
Fatigue	(36.4%)/3	11(28.2%)/25 (64.1%)/3(7.7%)	$X^2 = 4.07$	0.11	
	(27.3%)	(04.170)7 5 (7.770)			
	3 (27.3%) / 2	8 (20.5%) / 12	$X^2 = 0.72$	0.74	
Shortness of Breath	(18.2%) / 6 (54.5%)	(30.8%) / 19 (48.7%)	X = 0.72	0.74	
	(54.570)	(+0.770) 7 (17 9%) / 19			
Smell/Taste Changes	0/3(27.3%)/8	(48.7%) / 13	$X^2 = 6.04$	0.05 *	
	(72.7%)	(33.3%)			
	1 (9.0%) / 5	5 (12.8%) / 24		0.40	
Cough	(45.5%) / 5	(61.5%) / 10	$X^2 = 1.61$	0.49	
	(43.3%) 2 (18.2%) / A	(23.0%) 5 (12.8%) / 16			
Gastrointestinal Symptoms	(36.4%)/5	(41.0%) / 18	$X^2 = 0.22$	0.90	
Gusti onnestnar Symptoms	(45.5%)	(46.2%)		0.50	
	0/6(54.5%)/5	1 (2.6%) / 27	2		
Sore Throat	(45.5%)	(69.2%) / 11	$X^2 = 1.36$	0.58	
	(100,0,0)	(28.2%)			
Fever	(27.3%)	(30.8%)	$X^2 = 0.05$	-	
NIH Toolbox Cognition Battery (age-co	orrected standard sco	(ee.e,e)			
	102.8 ± 15.2 [77.	104.1 ± 16.5 [72,			
Fluid Cognition	120]	142]	t = 0.22	0.82	
Crystallized Cognition	107.5 ± 12.9 [83,	100.2 ± 12.7 [67,	t – 1.69	0.10	
Crystanized Cognition	124]	127]	ι = 1.09	0.10	
NIH Toolbox Emotion Battery (T-scores)					
Negative Affect	53.5 ± 10.9 [38, 71]	59.0 ± 8.5 [45, 78]	t = 1.78	0.08	
Social Satisfaction	44.2 ± 10.4 [23,	46.6 ± 9.5 [27, 66]	t = 0.71	0.48	
Social Sausiacuon	61]	{3}	t = 0.71	0.40	
Well-Being	45.9 ± 8.1 [35, 55]	$ \begin{array}{c} 44.7 \pm 6.4 [32, 54] \\ \{3\} \end{array} $	U = 229.0	0.44	
UPSIT					
UPSIT Score	$32.7 \pm 5.3 [21, 38]$	$33.4 \pm 5.4 [17, 40]$	U = 95.0	0.28	

Normosmia	5 (55.6%)	13 (46.4%)		
Mild Microsmia	2 (22.2%) 11 (39.3%)			
Moderate Microsmia	1 (11.1%)	1 (3.6%)	$X^2 = 1.85$	0.64
Severe Microsmia	1 (11.1%)	2 (7.1%)		
Total Anosmia	0	1 (3.6%)		

589

590**Table 1. Demographic and clinical characteristics.** Data are presented as mean \pm standard591deviation [minimum, maximum], or count (%). Between-group comparisons were performed592using independent samples t-tests or Mann-Whitney U-tests for continuous data and chi-squared593tests or Fisher's exact tests for categorical data. Significant differences at p < 0.05 are indicated</td>594by an asterisk. Numbers in braces indicate participants with missing/faulty data. Abbreviations:595PCR, polymerase chain reaction; NIH, National Institutes of Health; UPSIT, University of

596 Pennsylvania Smell Identification Test.

Comparison	Direction	Size	t-statistic	x	у	Z	Description
COVID-19 (n = 39) vs. Controls (n = 11)	COVID-19 < Controls	4,431	5.94	4	14	2	Thalamus, Orbitofrontal Cortex, Caudate, Nucleus Accumbens, Putamen, Pallidum
Sensitivity Analy	sis – Partial Volui	me Correct	ion				
COVID-19 (n = 39) vs. Controls (n = 11) with partial volume correction	COVID-19 < Controls	2,251	4.83	-4	8	6	Thalamus, Orbitofrontal Cortex, Caudate, Nucleus Accumbens, Putamen, Pallidum
Exploratory Analysis – Effects of Fatigue on CBF within the COVID-19 group							
COVID-19 with fatigue (n = 11) vs.	COVID-19 with fatigue > COVID-19 without fatigue	464	4.40	32	-60	50	Superior Lateral Occipital Cortex, Angular Gyrus, Superior Parietal Lobule, Supramarginal Gyrus
COVID-19 without fatigue (n = 28)	COVID-19 with fatigue < COVID-19 without fatigue	758	4.75	10	-66	-4	Lingual Gyrus, Occipital Fusiform Gyrus, Intracalcarine Cortex, Precuneous Cortex

597

598 Table 2. Summary of voxel-wise analyses of CBF. The primary (top row) and secondary

analyses (bottom rows) show results of the two-tailed independent samples t-tests that were used

600 to test for between-(sub)group differences, controlling for age and sex. Coordinates indicate

601 location of peak t-statistic.