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Abstract 38 

The long-term consequences of coronavirus disease 2019 (COVID-19) on brain physiology and 39 

function are not yet well understood. From the recently described NeuroCOVID-19 study, we 40 

examined cerebral blood flow (CBF) in 50 participants recruited to one of two groups: 1) adults 41 

who previously self-isolated at home due to COVID-19 (n = 39; 116.5 ± 62.2 days since positive 42 

diagnosis), or 2) controls who experienced flu-like symptoms but had a negative COVID-19 43 

diagnosis (n = 11). Participants underwent arterial spin labeling magnetic resonance imaging at 3 44 

T to yield measures of CBF. Voxel-wise analyses of CBF were performed to assess for between-45 

group differences, after controlling for age and sex. Relative to controls, the COVID-19 group 46 

exhibited decreased CBF in the thalamus, orbitofrontal cortex, and regions of the basal ganglia. 47 

Within the COVID-19 group, CBF differences in occipital and parietal regions were observed 48 

between those with (n = 11) and without (n = 28) self-reported on-going fatigue. These results 49 

suggest long-term changes in brain physiology in adults across the post-COVID-19 timeframe. 50 

Moreover, CBF may aid in understanding the heterogeneous symptoms of the post-COVID-19 51 

condition. Future longitudinal studies are needed to further characterize the consequences of 52 

COVID-19 on the brain. 53 

Keywords: cerebral blood flow; COVID-19; SARS-CoV-2; fatigue; post-COVID-19 54 
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1.  Introduction 55 

Growing evidence suggests that the consequences of severe acute respiratory syndrome 56 

coronavirus 2 (SARS-CoV-2) infection extend beyond the respiratory system.1,2 As many as two 57 

thirds of individuals suffering from coronavirus disease 2019 (COVID-19) are reported to 58 

experience neurological and/or psychiatric symptoms during acute stages of infection.3–5 In some 59 

cases, symptoms have been reported to persist or even develop in the months following 60 

infection;6 this stage of COVID-19 has been referred to as the “post-COVID-19 condition” by 61 

the World Health Organization. Symptoms such as fatigue and so-called “brain fog” prevail in 62 

the post-COVID-19 timeframe;2,7,8 however, the long-term impact of COVID-19 on the brain is 63 

not well characterized. Efforts aimed at describing the post-COVID-19 condition as it relates to 64 

the brain are needed to mitigate pressure on strained healthcare systems worldwide.9 65 

 The effects of SARS-CoV-2 infection on the central nervous system are complex and 66 

likely involve multiple potential pathways. One theorized pathway is the nasal mucosal route of 67 

entry, whereby the virus may travel from the olfactory bulb to the primary olfactory cortex, 68 

which has direct connections to several brain regions including the thalamus, orbitofrontal cortex, 69 

and other midbrain regions;10 however, conclusive evidence of this pathway remains elusive. 70 

Another potential pathway may involve SARS-CoV-2 infiltrating cells expressing the 71 

angiotensin-converting enzyme (ACE-2) receptor, notably endothelial cells of the vasculature,11 72 

and thus constituents of the neurovascular unit. For example, stroke and cerebrovascular disease 73 

secondary to COVID-19 have been reported.12,13 This notion of neurovascular involvement is 74 

further supported by a recent study demonstrating SARS-CoV-2 infection of tissue-cultured 75 

pericyte-like cells.14 In both cases, particularly the ACE-2 receptor pathway,15 SARS-CoV-2-76 

induced neuroinflammation is likely to contribute to the post-COVID-19 condition. 77 
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 Neuroimaging studies have shown that COVID-19 is associated with alterations to brain 78 

structure and/or punctate lesions (i.e., microbleeds, white matter hyperintensities), often in small 79 

samples of acutely infected individuals.12,16–20 In a unique study using pre- and post-infection 80 

data from a large UK Biobank sample, Douaud et al. observed longitudinal decreases in grey 81 

matter thickness, particularly in limbic regions, among adults who self-isolated or were 82 

hospitalized due to COVID-19.21 There are few cohort neuroimaging studies focusing on brain 83 

physiology in the post-COVID-19 timeframe;1,22–28 such imaging contrasts may be particularly 84 

relevant given the putative involvement of the vasculature in SARS-CoV-2 infection.29,30 Of the 85 

studies that exist, most involve adults who were hospitalized or in intensive care due to a more 86 

severe course of COVID-19. 87 

 As part of the Toronto-based NeuroCOVID-19 study,31 we conducted arterial spin 88 

labeling (ASL) magnetic resonance imaging (MRI) to probe cerebral blood flow (CBF), a 89 

measure of brain physiology and function, in non-hospitalized adults recovering from COVID-19. 90 

Our primary aim was to compare voxel-wise CBF (with and without partial volume correction) 91 

between adults who previously self-isolated at home due to COVID-19 and controls who 92 

experienced flu-like symptoms but tested negative for COVID-19. We hypothesized that the 93 

adults who previously self-isolated due to COVID-19 would exhibit altered CBF relative to 94 

controls, when assessed weeks/months beyond infection. Given the prevalence of fatigue as a 95 

symptom of the post-COVID-19 condition,7,8,32–35 we then performed an exploratory analysis of 96 

the association between self-reported fatigue and CBF among COVID-19 participants. 97 
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2. Materials and methods 98 

2.1. Participants 99 

Participants in the current study were recruited between May 2020 and September 2021 through 100 

the Department of Emergency Medicine at Sunnybrook Health Sciences Centre, physician 101 

referral, and community advertisements. Eligibility and consenting procedures were performed 102 

over phone or email. The Research Ethics Board at Sunnybrook Health Sciences Centre 103 

approved this study.  104 

 Inclusion criteria for this study included being between 20 and 75 years of age and 105 

having documented evidence of a positive or negative COVID-19 diagnosis, as determined by a 106 

provincially-approved facility through a nasopharyngeal and/or oropharyngeal swab and 107 

subsequent real-time reverse transcription polymerase chain reaction (PCR) test. Exclusion 108 

criteria for this study included previous diagnosis of dementia, an existing neurological disorder, 109 

previous traumatic brain injury, severe psychiatric illness, on-going unstable cardiovascular 110 

disease, or contraindications to MRI (e.g., ferromagnetic implants). 111 

2.2. Study setting 112 

Sunnybrook Health Sciences Centre is an academic tertiary level hospital. Prior to the pandemic, 113 

its emergency department received approximately 61,000 patients per year. Specialty services 114 

include trauma, interventional cardiology, stroke, oncology, neurosurgery, psychiatry, and high-115 

risk obstetrics and gynecology. Its catchment area includes the Greater Toronto area and nearby 116 

regions (https://sunnybrook.ca/content/?page=care-programs). 117 
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2.3. Study design 118 

The current study is an observational cohort neuroimaging study and is part of the 119 

NeuroCOVID-19 protocol, which has been previously described.31 We report on participants 120 

who were recruited to one of two groups: 1) adults who previously self-isolated at home due to 121 

COVID-19, or 2) controls who experienced flu-like symptoms but tested negative for COVID-19. 122 

Herein, we refer to the former as the COVID-19 group and the latter as the control group. The 123 

rationale for including this unique control group was that they may act as a better “baseline” 124 

against which the COVID-19 group could be compared (i.e., a group with non-specific flu-like 125 

symptoms who tested negative for COVID-19). Once non-infectious (i.e., following completion 126 

of a 14-day quarantine period and/or a negative PCR test), participants were invited for an on-127 

site visit. Study staff and participants abided by the hospital’s infection prevention and control 128 

guidelines. 129 

 The primary outcome measure of the current study is ASL-derived CBF. Other outcome 130 

measures were assessed using: 1) a self-reported questionnaire of flu-like symptoms, 2) the 131 

Cognition and Emotion Batteries from the National Institutes of Health (NIH) Toolbox,36,37 and 3) 132 

the 40-odorant University of Pennsylvania Smell Identification Test (UPSIT, Sensonics 133 

International).38 The latter two assessments have been well-validated.39–41 134 

 The self-reported questionnaire of symptoms assessed whether participants were 135 

currently experiencing, had previously experienced, or had never experienced any flu-like 136 

symptoms including: fever, cough, sore throat, shortness of breath, fatigue, gastrointestinal 137 

symptoms, and/or smell/taste changes. Study staff ensured that symptoms were understood as 138 

being impairing to activities of daily living.  139 
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 The Cognition Battery from the NIH Toolbox resulted in two age-corrected standard 140 

scores (mean = 100, standard deviation = 15) of fluid and crystallized cognition. The Emotion 141 

Battery resulted in three T-scores (mean = 50, standard deviation = 10) of negative affect, social 142 

satisfaction, and well-being. Note that a higher T-score for negative affect reflects more 143 

unpleasant moods and/or emotions. The interpretation of these scores has been previously 144 

described (https://nihtoolbox.force.com/s/article/nih-toolbox-scoring-and-interpretation-guide). 145 

 The UPSIT was administered as reports of olfactory dysfunction are a prevalent symptom 146 

of COVID-19.7,8 This assessment resulted in an UPSIT score (calculated as the number of 147 

odorants correctly identified) and a diagnosis of olfactory function (normosmia, mild hyposmia, 148 

moderate hyposmia, severe hyposmia to total anosmia). These diagnoses were determined as a 149 

function of UPSIT score and sex. 150 

2.4. MRI acquisition 151 

The MRI sequences used in this study consisted of T1-weighted and pseudo-continuous ASL 152 

acquired on a 3 T MRI system (Magnetom Prisma, Siemens Healthineers, Erlangen, Germany). 153 

T1-weighted images were acquired in three dimensions using an isotropic sagittal magnetization-154 

prepared rapid gradient-echo sequence (TR/TE/TI = 2500/4.7/1100 ms, spatial resolution = 1 155 

mm3, field-of-view = 256 mm, slices = 192, duration = 3:45 min:s). ASL images were acquired 156 

in three dimensions using an echo-planar turbo gradient-spin echo sequence with background 157 

suppression (TR/TE = 4100/36.8 ms, isotropic spatial resolution = 2.5 mm3, field-of-view = 240 158 

mm, label duration = 1500 ms, post-label delay = 1800 ms, 7 control-label pairs, duration = 4:27 159 

min:s).42 Proton-density ASL reference images were acquired with a TR of 4.1 s for CBF 160 

calibration. 161 
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2.5. MRI processing 162 

MRI processing was performed using tools from the FMRIB Software Library (FSL, version 163 

6.0.3).43 T1-weighted images were processed using fsl_anat with steps that included brain 164 

extraction, tissue segmentation, and non-linear registration to Montreal Neurological Institute 165 

(MNI) space. 166 

 ASL images were processed using oxford_asl with steps that included motion correction, 167 

spatial regularization,44 generation of control-tag difference images, voxel-wise calibration using 168 

the ASL reference image and assumed values from the literature,45 linear registration to structural 169 

space followed by non-linear registration to MNI space,46 and spatial smoothing with a Gaussian 170 

kernel of full-width at half maximum of 5 mm. The resulting CBF maps were then intensity-171 

normalized (i.e., each CBF map was scaled to a global mean of 1) to account for between-172 

participant global CBF differences.47 Two individuals (WSHK, BJM) visually inspected the CBF 173 

maps for quality control. 174 

2.6. Statistical analysis 175 

Demographic and clinical characteristics were compared between groups using independent 176 

samples t-tests for continuous data and chi-squared tests for categorical data. In cases when 177 

continuous data were non-normal (i.e., as assessed by the Shapiro-Wilk test), Mann-Whitney U-178 

tests were used. In cases when categorical data had an expected value less than 5 (i.e., in a 179 

contingency table), Fisher’s exact tests were used. The threshold for statistical significance of 180 

demographic and clinical variables was set at 0.05. 181 

 For our primary aim, we performed between-group (i.e., COVID-19 vs. control) whole-182 

brain voxel-wise analyses of CBF using two-tailed independent samples t-tests, controlling for 183 

age and sex. We used 3dFWHMx and 3dClustSim from the Analysis of Functional NeuroImages 184 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.04.22274208doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.04.22274208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

(AFNI, version 22.0.05) to estimate cluster-extent thresholds at a family-wise error rate of 0.05 185 

with a cluster-forming threshold of 0.005. In addition, we performed one sensitivity analysis and 186 

one exploratory analysis in support of the primary aim. 187 

 Sensitivity analysis – Partial volume correction: We repeated the between-group 188 

comparison (i.e., COVID-19 vs. control) after including partial volume correction as an 189 

additional ASL processing step. The rationale for this sensitivity analysis is that ASL images 190 

were collected at a spatial resolution similar to the average thickness of the cortex, which may 191 

lead to biases in CBF estimation.45 Thus, due diligence was required to interpret CBF estimates 192 

and the resulting between-group differences. It is worth noting that currently available partial 193 

volume correction methods are inconsistent and may hinder interpretation; thus, it is 194 

recommended that partial volume correction be reported parallel to analyses using uncorrected 195 

CBF estimates.45 This additional processing step was implemented in oxford_asl.48 196 

 Exploratory analysis – Association between fatigue and CBF within the COVID-19 group: 197 

Given the prevalence of fatigue as a symptom of the post-COVID-19 condition,7,8,32,33 we 198 

examined whether COVID-19 participants who self-reported as experiencing on-going fatigue (n 199 

= 11) exhibited CBF differences compared to COVID-19 participants who previously reported 200 

fatigue that had resolved by the time of the assessment or did not experience fatigue at all (n = 201 

28). Fatigue was determined using the self-reported questionnaire of symptoms. 202 
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3.  Results 203 

3.1. Demographic & clinical characteristics 204 

At the time of analysis, a total of 50 participants (39 COVID-19, 11 controls) met eligibility 205 

criteria and had ASL and T1-weighted images available. Demographic and clinical 206 

characteristics are presented in Table 1.  207 

 Briefly, groups were well-matched for age and sex. COVID-19 participants were scanned 208 

116.5 ± 62.6 [8, 312] days after receiving a positive diagnosis. Self-reported fatigue (COVID-19, 209 

28.2%; control, 36.4%) and shortness of breath (COVID-19, 20.5%; control, 27.3%) were the 210 

most prevalent on-going symptoms across the cohort (Figure 1). Notably, 92.3% of COVID-19 211 

participants and 72.7% of controls had experienced fatigue at some point between the PCR test 212 

and the time of the assessment. Significantly more COVID-19 participants had previously 213 

experienced or were currently experiencing smell/taste changes compared to controls (X2 = 6.04, 214 

p < 0.05). There were no between-group differences in fluid or crystallized cognition as assessed 215 

by the NIH Toolbox Cognition Battery, negative affect, social satisfaction, or well-being as 216 

assessed by the NIH Toolbox Emotion Battery (n.b., three COVID-19 participants did not 217 

complete the Emotion Battery), or UPSIT score (n.b., 11 COVID-19 participants and two 218 

controls had missing/faulty UPSIT data). 219 

3.2. Differences in CBF between COVID-19 and control groups  220 

Relative to controls, the COVID-19 group exhibited significantly decreased CBF in a large 221 

cluster of voxels encompassing the thalamus, orbitofrontal cortex, and regions of the basal 222 

ganglia, including the caudate, nucleus accumbens, putamen, and pallidum (Figure 2 and Table 223 
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2). There were no clusters in which the COVID-19 group had significantly increased CBF 224 

relative to controls. 225 

3.3. Sensitivity analysis – Differences in CBF between COVID-19 and control groups 226 

with partial volume correction 227 

Our sensitivity analysis with partial volume correction resulted in a similar cluster of smaller 228 

extent compared to the primary analysis (Figure 3 and Table 2). Again, there were no clusters in 229 

which the COVID-19 group had significantly increased CBF relative to controls. 230 

3.4. Exploratory analysis – Association between fatigue and CBF within the COVID-19 231 

group 232 

Within the COVID-19 group, we observed between-subgroup CBF differences between those 233 

with and without on-going fatigue. On-going fatigue was characterized by a cluster of increased 234 

CBF in superior occipital and parietal regions (superior lateral occipital cortex, angular gyrus, 235 

superior parietal lobule, supramarginal gyrus) and a cluster of decreased CBF in inferior occipital 236 

regions (lingual gyrus, occipital fusiform gyrus, intracalcarine cortex, precuneous cortex) (Figure 237 

4 and Table 2). 238 

4. Discussion 239 

In this study, we investigated whether adults who previously self-isolated at home due to 240 

COVID-19 would exhibit alterations in CBF when compared against controls who experienced 241 

flu-like symptoms but tested negative for COVID-19. COVID-19 participants exhibited 242 

significantly decreased CBF in the thalamus, orbitofrontal cortex, and regions of the basal 243 

ganglia compared to controls. We further examined the effect of fatigue within the COVID-19 244 

group, which revealed between-subgroup CBF differences in occipital and parietal regions. 245 
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These results provide support for long-term changes in brain physiology in adults across the 246 

post-COVID-19 timeframe. 247 

 Although COVID-19 is primarily a respiratory illness, the cerebrovasculature is also 248 

susceptible to damage as endothelial cells and pericytes are prone to viral invasion.14,29 The 249 

brain’s vasculature interfaces with the complex neurovascular unit, for instance, in the regulation 250 

of CBF.49 Furthermore, the location of potential brain involvement in relation to SARS-CoV-2 is 251 

likely to vary regionally, with some evidence to suggest that relative to the rest of the brain, 252 

ACE-2 receptor expression is highest in the thalamus, the paraventricular nuclei of the thalamus, 253 

and more generally in regions proximal to the ventricles.50 Notably, we found significantly 254 

decreased CBF in the anterior thalamus, which contains the paraventricular nuclei of the 255 

thalamus, a key region of the brain’s anxiety network.51 Moreover, decreased thalamic glucose 256 

metabolism, as measured by positron emission tomography (PET), has been observed at both 257 

acute and chronic stages of recovery from COVID-19.26,27,52  258 

 Decreased CBF was also detected in regions of the basal ganglia, including the caudate, 259 

nucleus accumbens, putamen, and pallidum. In particular, the caudate has been reported in a 260 

longitudinal PET study that observed decreased glucose metabolism in seven adults recovering 261 

from COVID-19, up to 6 months post-infection.27 Multivariate methods have also revealed that 262 

glucose metabolism within the caudate is a distinguishing feature between COVID-19 patients 263 

and controls.24 We also observed decreased CBF within the orbitofrontal cortex, a region widely 264 

reported as being associated with SARS-CoV-2 infection.12,21,53–56 Together with the thalamus 265 

and regions of the basal ganglia, the orbitofrontal cortex is a key region of the cortico-basal 266 

ganglia-thalamic loop, a circuit involved in complex behaviours including affect regulation and 267 

reward-based decision-making,57 as well as in relation to neurological and psychiatric 268 
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disorders.58,59 Moreover, the orbitofrontal cortex also plays an important role in olfaction and is 269 

often referred to as the secondary olfactory cortex.60 The results of the current study align with 270 

previous PET studies that find decreased glucose metabolism within the orbitofrontal cortex, and 271 

more generally within the frontal lobe. In an early case report of one healthy 27-year-old with 272 

COVID-19 experiencing persistent anosmia, Karimi-Galougahi et al. reported decreased glucose 273 

metabolism in the left orbitofrontal cortex.55 Hosp et al. reported frontoparietal hypometabolism 274 

in 10 out of 15 adults with subacute COVID-19.24 Guedj et al. reported frontal hypometabolism 275 

in 35 adults that were 3 weeks beyond infection, and that significant clusters were correlated 276 

with higher occurrence of symptoms, such as anosmia.26 Finally, Kas et al. reported a consistent 277 

pattern of orbitofrontal, dorsolateral, and mesiofrontal hypometabolism in seven adults with 278 

acute COVID-19-related encephalopathy, despite heterogenous symptomatology, and posited 279 

that COVID-19 is related to frontal lobe impairment.27 Notably, the results from the latter study 280 

persisted until 6 months following infection. Altogether, the result of decreased CBF within the 281 

orbitofrontal cortex, along with the thalamus and regions of the basal ganglia, may reflect 282 

COVID-19-related disturbances to brain networks, olfactory function, and emotional/cognitive 283 

concerns. Future studies extending these potentially brain network-related results through 284 

investigations of functional and structural connectivity are warranted. 285 

 It is important to note that participants in the current study were recruited over the course 286 

of several pandemic waves in Ontario, each being associated with a different distribution of 287 

variants of concern (Figure 1). Thus, it is probable that COVID-19 participants were infected 288 

with different strains of SARS-CoV-2, likely spanning from the Alpha variant to the Delta 289 

variant. We further note that these participants were recruited prior to the emergence of the 290 
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Omicron variant which, despite its high transmissibility, is believed to be less severe than 291 

previous strains.61,62 292 

 Our comparison of COVID-19 participants with and without fatigue resulted in between-293 

subgroup CBF differences, primarily in occipital and parietal regions of the brain. There have 294 

been efforts to characterize COVID-19 based on symptoms, with the hope of predicting severity 295 

and likelihood of the post-COVID-19 condition.32,33 Others have observed fatigue-related 296 

differences in brain structure and function in those recovering from COVID-19,35 such as 297 

functional connectivity alterations in parietal regions.34 Interestingly, the post-COVID-19 298 

condition shares many common features with chronic fatigue syndrome (i.e., myalgic 299 

encephalomyelitis), a disorder that can be triggered by viral infection,63 and that is characterized 300 

by decreased CBF, such as within the lingual gyrus.64,65 Therefore, these fatigue-related CBF 301 

differences amongst COVID-19 participants could help guide therapeutic efforts in treating 302 

fatigue as a symptom of the post-COVID-19 condition. We note that while brain-behaviour 303 

investigations in the context of COVID-19 are important in understanding symptoms, this 304 

fatigue-related analysis is a “scratch of the surface”. Higher-order multivariate analyses (e.g., 305 

principal component analysis) with larger sample sizes will be better poised to answer such 306 

questions. 307 

 These results need to be interpreted in the context of several limitations. First, although 308 

well-matched, the sample sizes of the two groups were modest and unequal; furthermore, a 309 

power analysis was not performed. To our knowledge, the current study benefits from the largest 310 

ASL dataset focusing on non-hospitalized adults in the post-COVID-19 timeframe. Moreover, 311 

recruitment for the NeuroCOVID-19 study is on-going and will address these issues in future 312 

studies. Second, our recruitment may be confounded by selection bias. For example, the current 313 
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study’s cohort was comprised of 66% female and 72% Caucasian participants. We further note 314 

that participants needed internet access to be screened for eligibility. Third, our control group 315 

exhibited flu-like symptoms of unknown origin. The recruitment of this unique control group is a 316 

relatively novel aspect of this study, as these participants are a de-novo sample of adults that 317 

experienced non-specific flu-like symptoms during the pandemic. Fourth, ASL images were 318 

acquired at a spatial resolution comparable to the average thickness of the cortex, which may be 319 

susceptible to partial volume error.45 To address this, we included partial volume correction as an 320 

additional ASL processing step in a sensitivity analysis, which did not drastically change the 321 

results. Fifth, our fatigue-related exploratory analysis relied on self-reported symptoms. Study 322 

staff ensured that on-going fatigue was understood as being impairing to activities of daily living. 323 

Finally, the data used in this study are cross-sectional and lack a pre-infection assessment.21 324 

Further investigation into longitudinal changes of these participants will be performed as part of 325 

the NeuroCOVID-19 study. It may also be feasible to access pre-pandemic repository data from 326 

age- and sex-matched individuals. 327 

 In conclusion, we observed decreased CBF in those recovering from COVID-19 relative 328 

to controls. These decreases were present months after acute infection and were localized to 329 

regions that have previously been highlighted as related to SARS-CoV-2 infection. We also 330 

observed CBF differences in relation to fatigue within the COVID-19 group, suggesting that 331 

CBF may aid in parsing the heterogeneous symptoms associated with the post-COVID-19 332 

condition. In all, these results suggest that the post-COVID-19 condition may be associated with 333 

long-term effects on brain physiology and function. Future studies that replicate and further 334 

characterize such effects are warranted.  335 
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6. Figure legends 560 

 561 

Figure 1. a) Timing of PCR test (left marker) and assessment (right marker) for COVID-19 562 

(orange squares) participants and controls (green circle). Confirmed cases in Ontario are shown 563 

in grey. b) Number of days between PCR test and assessment. The black dotted line indicates 28 564 

days, an established threshold beyond which symptoms can be considered part of the post-565 

COVID-19 condition. c) Proportion of participants who self-reported flu-like symptoms. Faint 566 

bars indicate participants whose symptoms had resolved by the time of the assessment while dark 567 

bars indicate participants with on-going symptoms. d) Representative and group-averaged CBF 568 

maps from both groups.  569 
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 570 

Figure 2. Cluster exhibiting significantly decreased CBF in the COVID-19 group (n = 39) 571 

relative to controls (n = 11), after controlling for age and sex. No clusters were found where the 572 

COVID-19 group had higher CBF compared to controls. Statistical maps are presented in 573 

radiological convention. Montreal Neurological Institute coordinates are denoted by z-values. 574 

Abbreviations: R, right; L, left.  575 
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 576 

Figure 3. Cluster exhibiting significantly decreased partial volume-corrected CBF in the 577 

COVID-19 group (n = 39) relative to controls (n = 11), after adjusting for age and sex. No 578 

clusters were found where the COVID-19 group had higher CBF compared to controls. 579 

Statistical maps are presented in radiological convention. Montreal Neurological Institute 580 

coordinates are denoted by z-values. Abbreviations: R, right; L, left.  581 
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 582 

Figure 4. Clusters exhibiting significantly increased (red-yellow) and decreased (blue-green) 583 

CBF in the COVID-19 with fatigue group (n = 11) relative to the COVID-19 without fatigue 584 

group (n = 28), after controlling for age and sex. Statistical maps are presented in radiological 585 

convention. Montreal Neurological Institute coordinates are denoted by z-values. Abbreviations: 586 

R, right; L, left.  587 
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7. Tables 588 

 Controls  
(n = 11) 

COVID-19 
(n = 39) 

Test 
Statistic p 

Age (years) 
41.5 ± 13.4 [26, 
70] 

41.9 ± 12.6 [19, 
63] 

t = 0.10 0.92 

Female 6 (54.5%) 27 (69.2%) X2 = 0.82 0.36 

Caucasian 7 (63.6%) 29 (74.4%) X2 = 0.49 0.48 

Education (years) 17.0 ± 2.8 [12, 22] 16.0 ± 2.0 [12, 20] U = 253.0 0.35 
Days between PCR test and time of 
assessment 

112.1 ± 59.5 [25, 
206] 

116.5 ± 62.2 [8, 
312] 

t = 0.21 0.84 

Received first dose of vaccine prior to 
time of assessment (yes / no / did not 
answer) 

0 / 3 (27.3%) / 8 
(72.7%) 

2 (5.1%) / 23 
(59.0%) / 14 
(35.9%) 

X2 = 4.87 0.12 

Days between receiving first dose of 
vaccine and time of assessment 

– [5, 6] – – 

Self-reported symptoms at time of assessment (current / resolved / did not experience) 

Fatigue 
4 (36.4%) / 4 
(36.4%) / 3 
(27.3%) 

11 (28.2%) / 25 
(64.1%) / 3 (7.7%) 

X2 = 4.07 0.11 

Shortness of Breath 
3 (27.3%) / 2 
(18.2%) / 6 
(54.5%) 

8 (20.5%) / 12 
(30.8%) / 19 
(48.7%) 

X2 = 0.72 0.74 

Smell/Taste Changes 
0 / 3 (27.3%) / 8 
(72.7%) 

7 (17.9%) / 19 
(48.7%) / 13 
(33.3%) 

X2 = 6.04 0.05 * 

Cough 
1 (9.0%) / 5 
(45.5%) / 5 
(45.5%) 

5 (12.8%) / 24 
(61.5%) / 10 
(25.6%) 

X2 = 1.61 0.49 

Gastrointestinal Symptoms 
2 (18.2%) / 4 
(36.4%) / 5 
(45.5%) 

5 (12.8%) / 16 
(41.0%) / 18 
(46.2%) 

X2 = 0.22 0.90 

Sore Throat 
0 / 6 (54.5%) / 5 
(45.5%)  

1 (2.6%) / 27 
(69.2%) / 11 
(28.2%) 

X2 = 1.36 0.58 

Fever 
0 / 8 (72.7%) / 3 
(27.3%) 

0 / 27 (69.2%) / 12 
(30.8%) 

X2 = 0.05 – 

NIH Toolbox Cognition Battery (age-corrected standard scores) 

Fluid Cognition 
102.8 ± 15.2 [77, 
120] 

104.1 ± 16.5 [72, 
142] 

t = 0.22 0.82 

Crystallized Cognition 
107.5 ± 12.9 [83, 
124] 

100.2 ± 12.7 [67, 
127] 

t = 1.69 0.10 

NIH Toolbox Emotion Battery (T-scores) 

Negative Affect 
53.5 ± 10.9 [38, 
71] 

59.0 ± 8.5 [45, 78] 
{3} 

t = 1.78 0.08 

Social Satisfaction 
44.2 ± 10.4 [23, 
61] 

46.6 ± 9.5 [27, 66] 
{3} 

t = 0.71 0.48 

Well-Being 45.9 ± 8.1 [35, 55] 
44.7 ± 6.4 [32, 54] 
{3} 

U = 229.0 0.44 

UPSIT 

UPSIT Score 
32.7 ± 5.3 [21, 38] 
{2} 

33.4 ± 5.4 [17, 40] 
{11} 

U = 95.0 0.28 
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Normosmia 5 (55.6%) 13 (46.4%) 

X2 = 1.85 0.64 

Mild Microsmia 2 (22.2%) 11 (39.3%) 

Moderate Microsmia 1 (11.1%) 1 (3.6%) 

Severe Microsmia 1 (11.1%) 2 (7.1%) 

Total Anosmia 0 1 (3.6%) 

 589 

Table 1. Demographic and clinical characteristics. Data are presented as mean ± standard 590 

deviation [minimum, maximum], or count (%). Between-group comparisons were performed 591 

using independent samples t-tests or Mann-Whitney U-tests for continuous data and chi-squared 592 

tests or Fisher’s exact tests for categorical data. Significant differences at p < 0.05 are indicated 593 

by an asterisk. Numbers in braces indicate participants with missing/faulty data. Abbreviations: 594 

PCR, polymerase chain reaction; NIH, National Institutes of Health; UPSIT, University of 595 

Pennsylvania Smell Identification Test.  596 
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Comparison Direction Size t-statistic x y z Description 
COVID-19 (n 
= 39) vs. 
Controls (n = 
11) 

COVID-19 < 
Controls 

4,431 5.94 4 14 2 
Thalamus, Orbitofrontal Cortex, 
Caudate, Nucleus Accumbens, 
Putamen, Pallidum 

Sensitivity Analysis – Partial Volume Correction 
COVID-19 (n 
= 39) vs. 
Controls (n = 
11) with partial 
volume 
correction 

COVID-19 < 
Controls 

2,251 4.83 −4 8 6 
Thalamus, Orbitofrontal Cortex, 
Caudate, Nucleus Accumbens, 
Putamen, Pallidum 

Exploratory Analysis – Effects of Fatigue on CBF within the COVID-19 group 

COVID-19 
with fatigue (n 
= 11) vs. 
COVID-19 
without fatigue 
(n = 28) 

COVID-19 
with fatigue > 
COVID-19 
without fatigue 

464 4.40 32 −60 50 

Superior Lateral Occipital 
Cortex, Angular Gyrus, Superior 
Parietal Lobule, Supramarginal 
Gyrus 

COVID-19 
with fatigue < 
COVID-19 
without fatigue 

758 4.75 10 −66 −4 
Lingual Gyrus, Occipital 
Fusiform Gyrus, Intracalcarine 
Cortex, Precuneous Cortex 

 597 

Table 2. Summary of voxel-wise analyses of CBF. The primary (top row) and secondary 598 

analyses (bottom rows) show results of the two-tailed independent samples t-tests that were used 599 

to test for between-(sub)group differences, controlling for age and sex. Coordinates indicate 600 

location of peak t-statistic. 601 
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