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Abstract

Determining accurate estimates for the characteristics of the severe acute respiratory syndrome
coronavirus 2 in the upper and lower respiratory tracts, by fitting mathematical models to data,
is made difficult by the lack of measurements early in the infection. To determine the sensitivity
of viral predictions to the noise in the data, we developed a novel two-patch within-host mathe-
matical model and investigated its ability to match population level data. We proposed several
approaches that can improve practical identifiability of parameters, including an optimal experi-
mental approach, and found that availability of viral data early in the infection is of essence for
improving the accuracy of the estimates. Our findings can be useful for designing interventions.

Introduction

Understanding the upper respiratory tract (URT) kinetics of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is important for designing public health interventions such as testing,
isolation, quarantine, and drug therapies [12,13,16,17,22–25,30,35,41,42]. Similarly, understanding
the kinetics of SARS-CoV-2 in the lower respiratory tract (LRT) is important for predicting the
potential for severe disease, respiratory failure, and/or death [8, 24]. Insights into the mechanism
of SARS-CoV-2-host interactions and their role in transmission and disease have been found using
mathematical models applied to longitudinal data [16,17,21–25,30,35,41,42]. While these studies
are instrumental in determining important parameters (such as SARS-CoV-2 daily shedding and
clearance rates, basic reproduction number, the role of innate immune responses in controlling
and/or exacerbating the disease), their predictions are limited by the lack of data early in the in-
fection. As such, with few (if any) samples available before viral titers peak, the early virus kinetics
and the mechanisms for these early kinetics are uncertain. In this study, we investigate the sensi-
tivity of the predicted outcomes of a within-host model of SARS-CoV-2 infection to the availability
of data during different stages of the infection and use our findings to make recommendation.

A German study by Wolfel et al. collected data from nine patients infected early in the pandemic
through contact with the same index case [44]. The study showed independent virus replication in
upper and lower respiratory tracts [7,44] suggesting the possibility that virus kinetics, disease stages,
and host involvement in control and pathogenesis are dependent on which area of the respiratory
tract is homing SARS-CoV-2 at different stages of the disease [27, 33, 37]. One shortcoming when
evaluating the data in this study comes from the fact that viral RNA was collected only after the
patients became symptomatic, with an estimated first data point available on average 5-7 days
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after infection. Several within-host mathematical models developed and applied to the data set
in the Wolfel et al. study have evaluated SARS-CoV-2 parameters, determined the role of innate
immune responses, found connections between total RNA and infectious titers, and identified the
efficacy of drug therapies [22, 24, 42]. We are interested in determining how the lack of data early
in the infection affects these estimates.

We first developed our own within-host model that does not consider innate immunity explicitly
and used the data from Wolfel et al. to estimate pertinent parameters. We next investigated the
sensitivity of the estimated parameters to the presence of data at different stages of infection. To
accomplish this, we created virtual data sets that span various stages of the infection and determined
how our initial predictions are being influenced by the additional data. Such results may influence
our understanding of both viral expansion and the effect of inoculum dose on disease progression.

Methods

Mathematical Model

SARS-CoV-2 virus infects and replicates in epithelial cells of the upper and lower respiratory
tract [44]. We model this by developing a two patch within-host model, where the patches are
the two respiratory tracts which are linked through viral shedding. Both respiratory tract patches
assume interactions between uninfected epithelial cells, Tj ; infected epithelial cells, Ij ; and virus
homing in tract j, Vj at time t. Here, j = {u, l}, with u describing the URT patch and l describing
the LRT patch. Target cells in each patch get infected at rates βj and infected cells produce new
virions at rates pj . Infected cells die at rates δj and virus particles are cleared at a linear rate
cu in the upper respiratory tract and in a density dependent manner clVl/(Vl + K) in the lower
respiratory tract. The two patches are linked via the virus populations, with a proportion ku of Vu
migrating from URT to LRT and kl of Vl migrating from LRT to URT. The model describing these
interactions is given by

dTu
dt

= −βuTuVu,

dIu
dt

= βuTuVu,−δuIu,

dVu
dt

= puIu − cuVu + klVl,

dTl
dt

= −βlTlVl,

dIl
dt

= βlTlVl − δlIl,

dVl
dt

= plIl − cl
Vl

Vl +K
Vl + kuVu.

(1)

We model the initial conditions of the model Eq. 1 as follows. We assume that all epithelial cells
in the URT and LRT patches are susceptible to virus infection. When infection occurs, it results
in a small initial virus inoculum which homes in the URT alone. Under these assumptions, system
Eq. (1) is subject to initial conditions

Tu(0) = T 0
u , Iu(0) = 0, Vu(0) = V0,

Tl(0) = T 0
l , Il(0) = 0, Vl(0) = 0,

(2)
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where V0 is the viral inoculum. We aim to determine the dynamics of system Eq. (1) over time for
model parameters that explain URT and LRT tract data in a single patient (patient A) and in the
population data (all nine patients) from [44].

Parameter Estimation

Patient Data. In January 2020, nine patients tested positive for COVID-19 in a single-source
outbreak in Bavaria, Germany [7]. Early detection allowed for rapid contact tracing, testing, and
monitoring of the affected community: young healthy professionals in their mid-thirties. A followup
study published time series for the post symptoms virus data isolated from oral-and nasopharyngeal
throat swabs (in copies per swabs) and from sputum samples (in RNA copies per mL) for the same
patient population over their entire course of disease. The patients’ throat swabs and sputum data
(Figure 2 of [44]) were obtained through personal communication with the authors. Since we know
the incubation period for each patient [7] (see Table 1), we assume time zero in our study to be the
day of infection for the patients in [44].

Identifiability Analysis. Using the URT and LRT viral load data, we aim to determine the
unknown parameters p = {βu, δu, pu, cu, kl, βl, δl, pl, cl,K, ku} of the within-host model Eq. (1).
Before attempting to estimate the within-host model parameters using noisy laboratory data, it is
crucial to analyze whether the model is structurally identifiable. Specifically, we need to know if the
within-host model Eq. (1) is structured to reveal its parameters from upper and lower viral load
observations. We approach this problem in an ideal setting where we assume that the observations
are known for every t > 0 and they are not contaminated with any noise. This analysis is called
structural identifiability [18].

The observed data in Wolfel et al. [44] is modeled in the within-host model Eq. (1) by variables
Vu and Vl, which account for the upper and lower respiratory tract viral titers. We denote these
observed variable as

y1(t) = Vu(t) and y2(t) = Vl(t).

First, we give the definition of structural identifiability in terms of the observed variables y1(t) and
y2(t) [10,18,38,39].

Definition 1 Let p and q be the two distinct vectors of within-host model Eq. (1) parameters. We
say that the within-host model is structurally (globally) identifiable if and only if

y1(t,p) = y1(t, q) and y2(t,p) = y2(t, q) =⇒ p = q.

Simply put, we say that the within-host model Eq. (1) is structurally identifiable if two identical
observation are only possible for identical parameters. We perform the structural identifiability
analysis via differential algebra approach. The first step in this approach is eliminating the un-
observed state variables from the within-host model Eq. (1). The reason for eliminating the
unobserved state variables is to obtain a system which only involves the observed states and model
parameters. Since this is a complex procedure, we use DAISY [5] and obtain the following system

d3y1
dt3

y1 −
d2y1
dt2

dy1
dt

+
d2y1
dt2

y21βu +
d2y1
dt2

y1(cu + δu)−
(
dy1
dt

)2

(cu + δu) +
dy1
dt

dy2
dt
kl+

dy1
dt
y21βu(cu + δu) +

dy1
dt
y2δukl −

d2y2
dt2

y1kl −
dy2
dt
y21βukl −

dy2
dt
y1δukl + y31βucuδu − y21y2βuδukl = 0.

(3)
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and

−d
2y1
dt2

y52ku − 4
d2y1
dt2

y42Kku − 6
d2y1
dt2

y32K
2ku − 4

d2y1
dt2

y22K
3ku −

d2y1
dt2

y2K
4ku +

dy1
dt

dy2
dt
y42ku+

4
dy1
dt

dy2
dt
y32Kku + 6

dy1
dt

dy2
dt
y22K

2ku + 4
dy1
dt

dy2
dt
y2K

3ku +
dy1
dt

dy2
dt
K4ku−

dy1
dt
y62βlku +

dy1
dt
y52ku(−4βlK − δl) + 2

dy1
dt
y42Kku(−3βlK − 2δl) + 2

dy1
dt
y32K

2ku(−2βlK − 3δl)+

dy1
dt
y22K

3ku(−βlK − 4δl)−
dy1
dt
y2δlK

4ku +
d3y2
dt3

y52 + 4
d3y2
dt3

y42K + 6
d3y2
dt3

y32K
2 + 4

d3y2
dt3

y22K
3+

d3y2
dt3

y2K
4 − d2y2

dt2
dy2
dt
y42 − 4

d2y2
dt2

dy2
dt
y32K − 6

d2y2
dt2

dy2
dt
y22K

2 − 4
d2y2
dt2

dy2
dt
y2K

3 − d2y2
dt2

dy2
dt
K4+

d2y2
dt2

y62βl +
d2y2
dt2

y52(4βlK + δl) + 2
d2y2
dt2

y42K(3βlK + 2δl) +
d2y2
dt2

y32K(4βlK
2 + cl + 6δlK)+

d2y2
dt2

y22K
2(βlK

2 + 2cl + 4δlK) +
d2y2
dt2

y2K
3(cl + δlK)− dy2

dt

2

y42δl − 4
dy2
dt

2

y32δlK+

3
dy2
dt

2

y22K(−cl − 2δlK)− 4
dy2
dt

2

y2K
2(cl + δlK)− dy2

dt

2

K3(cl + δlK) +
dy2
dt
y1y

4
2δlku+

4
dy2
dt
y1y

3
2δlKku + 6

dy2
dt
y1y

2
2δlK

2ku + 4
dy2
dt
y1y2δlK

3ku +
dy2
dt
y1δlK

4ku+

dy2
dt
y62βlδl + 4

dy2
dt
y52βlδlK +

dy2
dt
y42(βlclK + 6βlδlK

2 − clδl) + 2
dy2
dt
y32K(βlclK + 2βlδlK

2 − clδl)+

dy2
dt
y22K

2(βlclK + βlδlK
2 − clδl)− y1y62βlδlku − 4y1y

5
2βlδlKku − 6y1y

4
2βlδlK

2ku−

4y1y
3
2βlδlK

3ku − y1y22βlδlK4ku + y62βlclδl + 3y52βlclδlK + 3y42βlclδlK
2 + y32βlclδlK

3 = 0.
(4)

Eq. (3) and Eq. (4) are called input-output equations of within-host model Eq. (1), which are
differential polynomials involving the observed state variables y1 = Vu(t) and y2 = Vl(t) and the
within-host model parameters. Note that solving input-output equations Eq. (3) and Eq. (4) is
equivalent to solving the within-host model Eq. (1) for the state variables Vu(t) and Vl(t). For
identifiability analysis, it is crucial that the input-output equations are monic, i.e. the leading
coefficient is 1. It is clear that the input-output equation Eq. (3) is monic, and the input-output
equation Eq. (4) can be made monic by dividing the coefficients with the coefficient of the leading
term, which is ku. As a result, the definition of the structural identifiability within differential
algebra approach which involves input-output equations takes the following form [10,18,38,39].

Definition 2 Let c(p) denote the coefficients of the input-output equations, (3) and (4) where p is
the vector of model parameters. We say that the within-host model Eq. (1) is structured to reveal
its parameters from the observations if and only if

c(p) = c(q) =⇒ p = q.

Suppose p = {βu, δu, pu, cu, kl, βl, δl, pl, cl,K, ku} and q = {β̂u, δ̂u, p̂u, ĉu, k̂l, β̂l, δ̂l, p̂l, ĉl, K̂, k̂u}
are two parameter sets of the within-host model which produced the same observations. This
can only happen if the coefficients of the input-output equations Eq. (3) and Eq. (4) are the
same. Hence, if c(p) denote the coefficients of the corresponding monic polynomial of input-output
equations, we solve c(p) = c(q) to obtain

βu = β̂u, δu = δ̂u, cu = ĉu, ku = k̂u, βl = β̂l, δl = δ̂l, cl = ĉl, K = K̂, kl = k̂l. (5)
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The solution set (5) means that the parameters, βu, δu, cu, ku, βl, δl, cl,K and kl can be identified
uniquely. However, parameters pu and pl both disappear from the input-output equations Eq. (3)
and Eq. (4). It is easier to see the reason behind this by scaling the unobserved state variables
of the within-host model Eq. (1) with a postive scalar σ > 0. Hence, (σTu, σIu, Vu, σTl, σIl, Vl) =
(T̂u, Îu, Vu, T̂l, Îl, Vl) will solve the following system

dT̂u
dt

= −βuTuVu,

dÎu
dt

= βuTuVu,−δuIu,

dVu
dt

= p̂uIu − cuVu + klVl,

dT̂l
dt

= −βlTlVl,

dÎl
dt

= βlTlVl − δlIl,

dVl
dt

= p̂lIl − cl
Vl

Vl +K
Vl + kuVu,

(6)

where p̂u = pu
σ and p̂l = pl

σ . Since σ > 0 was arbitrary and the observations do not give information
about the scaling parameter σ, the parameters pu and pl can not be identified from the viral load
in the URT and LRT tracts. We conclude that the within-host model Eq. (1) is not identifiable.
We summarize the structural identifiability result in the following Proposition 1.

Proposition 1 The within-host model Eq. (1) is not structured to reveal its parameters from the
observations of viral load in upper and lower respiratory tracts. The parameters pu and pl are not
identifiable and only the parameters βu, δu, cu, ku, βl, δl, cl,K, kl can be identified.

To obtain a structurally identifiable model from the Vu and Vl observations, we scale the un-
observed state variables with T̂u = puTu, Îu = puIu, T̂l = plTl, Îl = plIl and obtain the following
scaled within-host model

dT̂u
dt

= −βuT̂uVu,

dÎu
dt

= βuT̂uVu,−δuÎu,

dVu
dt

= Îu − cuVu + klVl,

dT̂l
dt

= −βlT̂lVl,

dÎl
dt

= βlT̂lVl − δlÎl,

dVl
dt

= Îl − cl
Vl

Vl +K
Vl + kuVu.

(7)

Proposition 2 The scaled within-host model Eq. (7) is structured to reveal its parameters from
the observations of viral load in upper and lower respiratory tracts. All the parameters

βu, δu, cu, ku, βl, δl, cl,K, kl

can be identified, hence the within-host model Eq. (7) is globally identifiable.
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Data fitting

Parameter values. We assume that the upper respiratory tract susceptible population is T u0 =
4× 108 epithelial cells, as in influenza studies [2]. This estimate was obtained by assuming a URT
surface in adults of 160cm2 [28] and an epithelial cell’s surface area of 2×10−11−4×10−11m2 [11].
We use a similar method to estimate the target cell population in the LRT. The lung’s surface area
is 70m2 (with range between 35m2 and 180m2) [15] is composed of gas exchange regions (aveoli),
and of conducting airways (trachea, bronchi, bronchioles). Since the gas exchange region is affected
by SARS-Cov-2 only in severe cases [27] we ignore it, and restrict the LRT compartment to the
conducting airways whose surface area is 2471 ± 320cm2 [29]. Therefore, we obtain an initial ep-
ithelial cell target population in the LRT of T 0

l = 6.25 × 109 epithelial cells. If we assume that
viral production rates are pu = 50 and pl = 32 per day then, after scaling, we have initial target
cell populations in the URT and LRT of T̂ 0

u = 2 × 1010 epithelial cells and T̂ 0
l = 2 × 1011 epithe-

lial cells. The other initial conditions are unaffected by scaling and Î0u = Î0L = 0, V̂ 0
u = 0.1 and

V̂ 0
L = 0, where the virus inoculum of V̂ 0

u = 0.1 cp/ml is set below the reported limit of quantifica-
tion of 102 cp/ml [44]. Lastly, the incubation periods were estimated in [7] and are listed in Table 1.

Bayesian parameter estimation. During the data collection process, observations are perturbed
with noise. Hence, the URT and LRT viral load deviates from the smooth trajectory of the
observations y1(t) and y2(t) at measurement times. We represent measurement error using the
following statistical model

V data
u (ti) = y1(ti, p̂) + εi i = 1, 2, . . . , nu ;

V data
l (tj) = y2(tj , p̂) + εj j = 1, 2, . . . , nl;

(8)

where p̂ is the true parameter vector assumed to generate the data, and the random variables εi
and εj are assumed to be Gaussian with mean zero and standard deviation σ.

We use Bayesian inference and Markov Chain Monte Carlo (MCMC) to determine the remaining
nine parameters of the model Eq. (7)

p = {βu, βl, δu, cu, ku, βl, δl, cl,K, kl}.

Bayesian inference treats model parameters as random variables and seeks to determine the pa-
rameters’ posterior distribution, where the term “posterior” refers to data-informed distributions.
The posterior densities are determined using Bayes’ theorem, which defines them as the normalised
product of the prior density and the likelihood. Let π(p|D) denote the probability distribution of

the parameter p given the data D =
(
Vu(ti), Vl(tj)

)
, then the Bayes theorem states that

π(p|D) =
π(D|p)π(p)

π(D)
,

where π(p) is the prior parameter distribution and π(D) is a constant which is usually considered
to be a normalization constant so that the posterior distribution is indeed a probability density
function (pdf), i.e. its integral equals to 1. The likelihood function π(D|p) gives the probability of
observing the measurements D given that the parameter values is p. In terms of the within-host
model Eq. (7) and the laboratory data Eq. (8), the likelihood function π(D|p) takes the following
form

6

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.26.22274345doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.26.22274345


π(D|p) =

nu∏
i=1

1√
2πσ2

e
−

1

σ2

(
log10(Vu(ti))− log10(V

data
u (ti)

)2
×

nl∏
j=1

1√
2πσ2

e
−

1

σ2

(
log10(Vl(tj))− log10(V

data
l (tj)

)2
.

(9)

The ultimate goal is to determine the posterior distributions of the parameters in the light of
laboratory data. To approximate the posterior distributions, we use the MCMC method introduced
in [19,20]. MCMC methods generate a sequence of random samples p1, p2, . . . ,pN whose distribu-
tion asymptotically approaches the posterior distribution for size N . The random walk Metropolis
algorithm is one of the most extensively used MCMC algorithms. The Metropolis algorithm starts
at position pi, then the Markov chain generates a candidate parameter value p∗ from the proposal
distribution, and the algorithm accepts or rejects the proposed value based on probability α given
by

α = min

(
1,
π(p∗)

π(pi)

)
.

As with the Metropolis algorithm, the essential feature of MCMC approaches is the formulation
of a proposal distribution and an accept-reject criteria. In this paper, we employ the Delayed
Rejection Adaptive Metropolis, (DRAM [19]) and use the MATLAB toolbox provided by the same
authors [26]. In comparison to other Metropolis algorithms, the Markov chain constructed with
DRAM is robust and converges rapidly (see Figure 1).

The two patch within-host model Eq. (7) is novel, hence we do not have any prior informa-
tion regarding model parameters. We determine the prior distributions by fitting the structurally
identifiable within-host model Eq. (7) to patient A’s data and to the population data (all nine
patients). The prior distributions π(p) are then defined as a normal distribution with a mean equal
to the fitted value and variance equal to σ2, π(p) ∼ N(µ,σ). Table 2 shows the obtained prior
distribution of each parameter for patient A and population data, together with the lower and
upper bounds of the prior π(p).

Results

Viral dynamics

To study the kinetics of SARS-CoV-2 in the upper and lower respiratory tracts we developed a two
patch within-host model Eq. (1) that assumed viral shedding between the two patches. To ensure
structural identifiability, we rescaled our equations by removing the non-identifiable parameters pu
and pl (see Identifiability Analysis section in Material and Methods). The resulting model Eq. (7)
was validated against SARS-CoV-2 RNA data from throat swabs and sputum samples collected
from an infectious event with the same index case early in the pandemic [44]. We used Bayesian
parameter estimation with the viral samples in URT and LRT from a single individual (patient A)
and the entire population (nine individuals) and approximated posterior distributions with N = 106

Markov chain iterations (see Data fitting section in Material and Methods).
We generated prediction graphs of the within-host model Eq. (7) by sampling parameter re-

alizations from posterior distributions. The model’s predictive posterior distribution for single
patient URT-LRT viral data and population URT-LRT viral data are presented in Figure 2. The
resulting dynamics show viral expansion to peak values at days 2.1 in URT and 2.9 in LRT followed
by decline in both tracts (see Figure 2). The grey areas in the graph represent the 50% and 95%
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posterior regions. The fewer data points in patient A results in wider model prediction range (gray
regions) compared to the population predictions, especially for the LRT viral load.

While the viral titers decay to low levels (below 102 cp/ml) three weeks after infection in the
URT, they stay elevated (to above 5.4 × 103 cp/ml at week four) in the LRT. To model viral
RNA persistence in the LRT we included a density dependent term for the loss of LRT virus,
clVl/(Vl + K), and estimated parameter K where Vl loss is half-maximal, together with the other
viral specific terms.

We found similar mean infectivity rates in the URT for both the individual patient considered
(patient A) and the entire population, βu = 1.4 × 10−8 ml/(vir× day). By contrast, the mean
infectivity rates in the LRT for patient A is 3.2-times higher than the LRT infectivity rate of the
total population, βl = 3.9×10−10 ml/(vir× day) versus βl = 1.2×10−10 ml/(vir× day). The mean
infected cells death rates are similar in URT and LRT, δu = 4.9, δu = 4.6 per day and δl = 5.7, δl = 3
per day for patient A and for the total population, respectively. The mean viral clearance rates are
higher in LRT compared to URT, cl = 11.5, cl = 9.2 per day compared to cu = 2.8, cu = 4.2 per
day, for patient A and for the total population, respectively. This may indicate increased immune
responses occurring in LRT. The mean URT to LRT shedding rates are higher than the mean LRT
to URT shedding rates, ku = 0.24, ku = 0.63 (swab/ml) per day compared to kl = 7.9 × 10−4,
kl = 0.04 (ml/swab) per day for patient A and for the total population, respectively. This one way
shedding was observed by other studies that investigated the Wofle et al. data [24]. Lastly, the
mean LRT viral load where viral clearance is half-maximal is K = 910 RNA per ml for patient A
and K = 1841 RNA per ml for the total population.

Practical identifiability

During MCMC data fitting, we used parameters limits predetermined to range around a single
point estimation obtained using the ’fminsearch’ algorithm in Matlab (see Table 2). Parameter
distributions for the nine parameter considered p = {βu, βl, δu, cu, ku, βl, δl, cl,K, kl} were obtained
using an MCMC Bayesian approach that sampled the parameter space N = 106 times. We apply
DRAM MCMC algorithm and observe fast convergence of the chains (see Figure 1). The resulting
distributions, together with the prior probability density functions (pdf) are presented in Figure 3.
We observe good agreement between the prior pdf and the posterior distributions for all parameters
with the exception of infectivity rates βu and βl. Moreover, while all parameters follow normal
distributions for patient A (Figure 3A), the LRT infectivity rate βl follows a bimodal distribution
in the fit to the total population data (Figure 3B).

Figure 4 shows the scatter plots of for paired (βl, kl), (βl,K), (βl, δl) and (βl, cl) parameter
distributions obtained when the within-host model Eq. (7) is fitted to patient A’s data (panel A) and
population data (panel B) (see also Figure S2 for the scatter plots of all parameter distributions).
In the scatter plots for the population data containing parameter βl we observe bimodal clustering.
In joint density plots, bimodal clustering may suggest practical unidentifiability [36]. This suggests
that, despite the fact that we have shown that the within-host model Eq. (7) is structurally
identifiable, it may in fact not be practically unidentifiable. It is well understood that a structurally
identifiable model may be practically unidentifiable [10,38–40]. Many variables can lead to practical
unidentifiability, such as considerable noise in the data, a lack of enough data points, or timing of
data collection.
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Optimal experimental design

The possible lack of practical identifiability for the total population may be due to (1) restrictions
on the parameter space and the types of distributions we are imposing on the parameters, or (2)
the limited data points early in the infection.

To investigate the first hypothesis, we collected samples in the parameter space of

{lnβu, lnβl, ln ku, ln kl},

rather than {βu, βl, ku, kl} and the assumed that either {lnβu, lnβl, ln ku, ln kl} are normally dis-
tributed, or that {βu, βl, ku, kl} are lognormally distributed. We set the limits of logarithmic pa-
rameter priors as in Table 3 while keeping the limits of the other parameters as before (see Table
2). We sampled the new parameter space N = 106 times and reapplied the MCMC Bayesian
approach. The resulting estimates for parameters p = {βu, βl, δu, cu, ku, βl, δl, cl,K, kl} no longer
show bimodal results regardless on whether we assume that {lnβu, lnβl, ln ku, ln kl} are normally
distributed (see Figure 5A) or that {βu, βl, ku, kl} are lognormally distributed (see Figure 5B).

To investigate the second hypothesis, we created synthetic data and used it to further examine
how the timing of the data collection in the population correlates to the structure of the resulting
parameter estimations. We assumed that the real data corresponds to the solution of model Eq.
(7) with parameters in Tables 2 and 3 which are randomly perturbed according to Eq. (8) with
errors εi and εj assumed to be uniformly distributed with mean 0 and standard deviation 0.5. We
produced two data sets. The first data set, which assumes data has been is collected daily from
day 0 to day 12 post infection is

Experiment 1:
(
V data
u (tj), V

data
l (tj)

)
for tj = {1, ..., 12}.

The second data set, which assumes data is collected from day 7 to day 27 post infection is

Experiment 2:
(
V data
u (tj), V

data
l (tj)

)
for tj = {7, ..., 27}.

Since the practical identifiability is a local property of the parameters, we used the priors for

p = {lnβu, lnβl, ln ku, ln kl}

given in Table 3 and the priors for the rest of the parameters as in Table 2, to generate prediction
graphs of the within-host model Eq. (7). The model’s predictive posterior distribution for all
patients’ URT- LRT viral data for Experiments 1 and 2 are presented in Figure 6 together with
grey areas for the 50% and 95% posterior regions (see also Figure S4). As expected, we observe
wider model prediction ranges (gray regions) in the second phase decay for experiment 1 and in
the expansion and peak areas for experiment 2, where data is scarce.

To determine whether practical identifiability is lost in each experiment we created parameter
histograms for each parameters (see Figure 7 and supplementary Figure S3). When data samples
at the expansion stages of the infection are collected (as in Experiment 1), the LRT infectivity
parameter βl follows a normal distribution (see Figure 7A, left panel, blue bars). This results are
validated by the corresponding dual parameter scatter plots (see Figure 8A). In contrast, when the
data at the expansion stages of the infection is sparse (as in Experiment 2), the LRT infectivity
parameter βl follows a bimodal distribution (see Figure 7A, right panel, blue bars). This results
are observed in the corresponding scatter plots, where we see bimodal clustering involving not just
parameter βl, but involving parameter βu as well (see Figure 8B). These results can be slightly
improved when we consider that βu and βl follow lognormal distributions (see Figure 7B, right
panel, blue bars). This suggests that the practical unidentifiability that appeared in the population
data might be fixed by collecting data at the early stages of infection.
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Discussion

In this study, we developed a within-host mathematical model of SARS-CoV-2 infection that con-
nected the virus kinetics in the upper and lower respiratory tracts of infected individuals and used
it to determine the tract specific viral parameters. We removed viral production rates, to ensure
structural identifiability, and fitted the rescaled model Eq. (7) to published longitudinal throat
swabs and sputum titers in a single individual and in the entire population from SARS-CoV-2
infection study [44]. We estimated nine unknown parameters using an MCMC Bayesian fitting
approach [19]. To avoid over fitting, we determined best estimates in a single patient (for which we
have 26 data points) and in the entire population (for which we have 201 data points). We found
shorter virus life-spans in LRT compared to viral URT, 2-3 hours compared to 5.7-8.5 hours. Our
LRT estimates are similar to the fixed (and non-tract specific) virus life-span of 2.4 hours used by
Ke et al. [24] and the estimated (and tract specific) life-span of 1.2 hours in Wang et al. [42], but
longer than the 10 hours seen in influenza and used by Hernandez et al. [22]. The between tracts
differences may suggest the presence of additional immune mediated viral clearance in the LRT. We
found similar infected cells life-span between the two tracts, with a range of 4.2-8 hours, shorter
than in other studies [22, 24]. Lastly, the mean URT basic reproductive number for the entire

population, R0 = βT̂0
cδ , equals 17.4, higher than in [24]. While we assumed two-way viral shedding

between tracts, data fitting suggested higher virus shedding from upper and lower respiratory tracts
than the other way around, consistent with other studies [24].

Interestingly, we found that the estimated LRT infectivity rate parameter follows a bimodal
distribution when the model was fitted to the entire population data. We attributed this behav-
ior to practical non-identifiability. Practical identifiability is observed when the measured data is
contaminated with noise. We have inherently accounted for noisy data by combining viral measure-
ments from nine patients with different viral profiles. We investigated several ways for improving
practical identifiability of this parameter and found that both estimating the logaritmic value of this
parameter lnβl and assuming log-normal distributions for some parameters improves the accuracy
of our estimates.

Most importantly, it has been reported that practical identifiability can be achieved by adding
pertinent data measurements that can help improve the identity of unknown parameters [14, 43].
Such a process, known as optimal experimental design, aims to obtain additional information about
a system through the addition of new measurements. Since in system Eq. (7) the non-practically
identifiable infectivity parameter βl is responsible for the LRT dynamics early in the infection,
we investigated whether the addition of early data contains the maximal information needed for
improving its estimate. We created two virtual data sets, one in which data is collected daily for the
first 12 days and one in which data is collected daily for 20 days, starting at day 7. We found that
the infectivity rate βl is bimodal and, hence, non-practically identifiable when data is missing during
the first seven days of infection. The absence of early data leads to an underestimation of overall
LRT viral titer in the first 14 days following infection (see Fig. S4). This may affect one’s ability
for determining the best window for antiviral and immune modulation interventions [9]. Moreover,
it will provide a underestimate for the period of maximum infectiousness [21], which may affect
recommendations for quarantine and isolation [13]. Hence, the existence of data measurements
before and/or at symptoms onset is crucial for best parameter estimation and model prediction
when considering noisy population data.

Our study has several limitations. First, we considered a density dependent clearance term for
the URT virus that saturates at around 1-2×103 RNA copies per ml, in order to explain the viral
RNA persistence in the LRT at 30 days following infection reported in the Wolfle et al. [44]. While
in public health setting a SARS-CoV-2 diagnostic is determined by PCR assays, long-term RNA
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levels are not a reliable measurement of infectiousness, with the measured RNA values indicating
the presence of genomic fragments, immune-complexed or neutralised virus, rather than replication-
competent virus [1,21,34]. Further work is needed to separate the presence of infectious versus non-
infectious viral RNA in the lower respiratory tract. Secondly, we did not consider an eclipse phase
in the virus infectiousness (usually assumed to be around 6 hours [21,24]). This simplification may
be the leading reason for larger estimates for the death rate of infected cell in our study compared
to other studies [22, 24]. Thirdly, due to the novelty of the model, we have no information on
parameter priors. Therefore, we fitted the within-host model to the patient A and population data,
and used those estimates as a mean in the prior distributions. However, since the resulting means
fall within ranges observed for other acute infections [2–4, 6, 31, 32], and since we consider large
standard deviations around the prior means, we are confident that we are covering a large search
space that does not exclude viable outcomes.

In conclusion, we have developed a within-host model of SARS-CoV-2 infection in the upper
and lower respiratory tracts, used it to determine pertinent viral parameters, and suggested the
optimal experimental designs that can help improve the model predictions. These techniques may
inform interventions.
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patient id A B C D E F G H I

incubation period (days) 2.5 4 1 4 4 4 2 4.5 7

Table 1: Incubation periods estimated in [7].

Parameter Description Prior π(p) Patient A Population
Min-Max π(p) ∼ N (µ,σ) π(p) ∼ N (µ,σ)

βu viral infectivity in URT (10−12, 10−7) N (1.1× 10−8, 10−8) N (8.9× 10−9, 10−8)
βl viral infectivity in LRT (10−12, 10−7) N (3.9× 10−8, 10−10) N (9.3× 10−11, 10−10)
δu infected cell decay rate in URT (0, 50) N (4.88, 0.5) N (4.64, 0.5)
δl infected cell decay rate in LRT (0, 50) N (5.59, 0.5) N (2.99, 0.5)
cu viral decay rate in URT (0, 30) N (2.88, 0.5) N (4.27, 0.5)
cl viral decay rate in LRT (0, 30) N (11.43, 0.5) N (9.21, 0.5)
K Vu half-maximal viral loss (0, 3000) N (910, 100) N (1840, 100)
ku shedding into LRT (10−6, 1) N (0.24, 0.1) N (0.62, 0.1)
kl shedding into URT (10−6, 1) N (0.0008, 0.0001) N (0.036, 0.01)

Table 2: Parameters for the within-host model Eq. (7) are listed together with their lower and
upper bounds for the priors. Prior distributions are normally distributed with mean equal to the
fitted value and variance, σ2.

Parameter Description Prior π(p) Population
Min-Max π(p) ∼ N (µ,σ)

lnβu viral infectivity in URT (log scale) (−25,−14) N (−18.5, 1)
lnβl viral infectivity in LRT (log scale) (−30,−15) N (−23, 1)
ln ku shedding into LRT (log scale) (−11, 0) N (−0.5, 1)
ln kl shedding into URT (log scale) (−7, 4) N (−3.3, 1)

Table 3: Adjusted parameters for the within-host model Eq. (7) are listed together with their lower
and upper bounds for the priors which are normally distributed with mean equal to the fitted value
and variance, σ2.
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Figure 1: The Markov chain of the within-host model Eq. (7)’s parameters obtained when the
model is fitted to the population data. Every 1000th point of 106 iterations are shown. The black
line shows the mean of the chain.
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Figure 2: Virus dynamics obtained from fitting within-host model Eq. (7) to URT virus titer (left)
and LRT virus titer (right) in patient A and in the entire population. The grey bars represent 50%
and 95% posterior regions.
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Figure 3: Histogram of estimated parameter distributions from fitting within-host model Eq. (7) to
URT virus titer and LRT virus titer in: (A.) patient A and (B.) entire population. All parameters
were considered normally distributed.
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Figure 4: Scatter plots showing correlation among relevant parameters for (A.) patient A and (B.)
total population.
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Figure 5: Histogram of estimated parameter distributions from fitting model Eq. (7) to URT virus
titer and LRT virus titer in total populations. (A) Parameters lnβu, lnβl, ln ku, ln kl were consid-
ered normally distributed. (B.) Parameters βu, βl, ku, kl were considered lognormally distributed.
All other parameters were considered normally distributed.
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Figure 6: Virus dynamics obtained from fitting within-host model Eq. (7) to URT virus titer and
LRT virus titer in (A.) Experiment 1 and (B.) Experiment 2. The grey bars represent 50% and
95% posterior regions.

Figure 7: Histograms for βu and βl for Experiment 1 (yellow) and Experiment 2 (blue) when (A.)
lnβu and lnβl are assumed to be normally distributed; and (B) βu and βl are assumed to be
lognormally distributed.
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Figure 8: Scatter plots for (A.) Experiment 1 and (B.) Experiment 2. Parameters lnβu and lnβl
are assumed to be normally distributed.

Figure S1: Two-parameter scatter plots for patient A. We sampled the parameter space N = 106

times.
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Figure S2: Two-parameter scatter plots for the total population. We sampled the parameter space
N = 106 times.
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Figure S3: Histogram of estimated parameter distributions from fitting model Eq. (7) to virtual
URT virus titer and LRT virus titer data in: (A.) Experiment 1 and (B.) Experiment 2. Parameters
βu, βl, ku, kl were considered lognormal distributed. All other parameters were considered normally
distributed.

Figure S4: Virus dynamics obtained from fitting within-host model Eq. (7) to (left panel) URT
virus titer and (right panel) LRT virus titer in Experiment 1 (magenta) and Experiment 2 (black).
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