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Summary:  
 
We previously interrogated the relationship between SARS-CoV-2 genetic mutations and 
associated patient outcomes using publicly available data downloaded from GISAID in October 
2020 [1]. Using high-level patient data included in some GISAID submissions, we were able to 
aggregate patient status values and differentiate between severe and mild COVID-19 outcomes. 
In our previous publication, we utilized a logistic regression model with an L1 penalty (Lasso 
regularization) and found several statistically significant associations between genetic mutations 
and COVID-19 severity. In this work, we explore the applicability of our October 2020 findings to 
a more current phase of the COVID-19 pandemic.  
 
Here we first test our previous models on newer GISAID data downloaded in October 2021 to 
evaluate the classification ability of each model on expanded datasets. The October 2021 
dataset (n=53,787 samples) is approximately 15 times larger than our October 2020 dataset 
(n=3,637 samples). We show limitations in using a supervised learning approach and a need for 
expansion of the feature sets based on progression of the COVID-19 pandemic, such as 
vaccination status. We then re-train on the newer GISAID data and compare the performance of 
our two logistic regression models. Based on accuracy and Area Under the Curve (AUC) 
metrics, we find that the AUC of the re-trained October 2021 model is modestly decreased as 
compared to the October 2020 model. These results are consistent with the increased 
emergence of multiple mutations, each with a potentially smaller impact on COVID-19 patient 
outcomes. Bioinformatics scripts used in this study are available at https://github.com/JPEO-
CBRND/opendata-variant-analysis. As described in Voss et al. 2021, machine learning scripts 
are available at https://github.com/Digital-Biobank/covid_variant_severity. 
 
Introduction: 
 
The Global Initiative on Sharing Avian Influenza Data (GISAID) is a popular and publicly 
available repository that houses SARS-CoV-2 sequencing data from the global community. 
GISAID stores SARS-CoV-2 genomic data and sequencing metadata—including sequencing 
technology and assembly method—as well as some patient metadata, including high-level 
patient outcomes, region of origin, age, gender and date of collection.  
 
We have previously used the high-level patient metadata submitted by GISAID users to 
differentiate between severe and mild patient outcomes. Briefly, we aggregated patient 



outcomes into “Mild” outcomes (e.g., Outpatient, Asymptomatic, Mild, 
Home/Isolated/Quarantined, Not Hospitalized) or “Severe” outcomes (e.g., Hospitalized 
(including severe, moderate, and stable) and Deceased (Death)). We excluded entries whereby 
the severity of the condition could not readily be discerned, (e.g., retesting, screened for travel, 
not vaccinated, moderate covid, and live). Following this approach, in Voss et al., 2021, of 3,637 
SARS-CoV-2 samples from GISAID with patient outcome metadata, 2,870 were classified as 
severe patient outcomes and 767 as mild.  
 
Using this patient outcome classification described previously (Voss et al., 2021), we showed 
logistic regression models that included viral genomic mutations outperformed other models that 
used only patient age, gender, sample region, and viral clade as features. Among individual 
mutations, we found 16 SARS-CoV-2 mutations that have ≥ 2-fold odds of being associated with 
more severe outcomes, and 68 mutations associated with mild outcomes (odds ratio ≤ 0.5). 
While most assessed SARS-CoV-2 mutations are rare, 85% of genomes had at least one 
mutation associated with patient outcomes. 
 
Methods: 
 
Metadata preprocessing, cohort building, mutation and metadata modeling, data visualization, 
and statistical analyses were all done according to procedures in Voss et al., 2021 and are 
diagramed in Figure 1. Briefly, an export of raw GISAID SARS-CoV-2 data was curated using 
Nexstrain’s ncov-ingest shell scripts [2] and FASTA sequences were parsed from the data 
export using Python (version 3.8.10). Of the 4,646,285 samples available in GISAID through 
ncov-ingest on October 26th 2021, we used a subset of 53,787 samples with patient outcome 
metadata for our analyses. We utilized a total of 29,359 severe and 24,428 mild samples for our 
analyses. FASTA sequences were aligned to the reference sequence, Wuhan-Hu-1 (NCBI: 
NC_045512.2; GISAID: EPI_ISL_402125) using Minimap2. Resulting VCF (Variant Call Format) 
files were merged using bcftools and annotated using SnpEff and filtered using SnpSift. We 
applied a similar bioinformatics analysis pipeline to Rayko et al [7] and is available under the 
scripts directory at https://github.com/JPEO-CBRND/opendata-variant-analysis.  
 
The machine learning classification workflow, available at https://github.com/Digital-
Biobank/covid_variant_severity, first runs 00_long.py to join and converts annotated VCF files to 
a single parquet file. Next, 00_red.py is run against GISAID metadata and aggregates patient 
outcomes into positive (‘Mild’), or negative (‘Severe’) outcomes and stores the classification into 
a recode dictionary. 01_wide.py, 02_var-freq.py, 02_join.py, and 03_clean.py are consecutively 
run for pivoting to wide format, deriving mutation frequencies per sample, joining the VCF 
parquet file with GISAID patient data, and further parsing. 04_logit.py runs training and testing 
for the logistic regression models. Finally, 05_plot-variants.py is run to derive a table of highest 
and lowest odds of mutations being classified into mild or severe outcomes.  
 

 



Figure 1. Bioinformatics and Machine Learning Classification workflows used for SARS-CoV-2 genetic variant calling and 
annotation, and mutation and metadata modeling based on procedures used in Voss et al., 2021. 

 
 

Analysis Tools Version 
Python 3.8.10 

Minimap2 2.22 
Bcftools 1.13 
SnpEff 5.0 
Pandas 1.3.3 

Matplotlib 3.4.3 
Seaborn 0.11.2 

Scikit-learn 1.0 
NumPy 1.21.2 

Statsmodels 0.12.2 
SciPy 1.7.1 
Joblib 0.14.1 

Table 1. Versioning for Python utilities and third-party software tools used in shell scripts for machine learning classification and 
bioinformatics workflows. 

 
Scikit-learn [4] was used to fit logistic regression models with the L1 penalty (Lasso 
regularization) and the default regularization strength (C�=�1) to the patient (rows) and 
mutation (columns). A train/test split was created on the data (67% train, 33% test). The training 
data were split into five cross-validation folds using the Scikit-learn stratified K-fold cross-
validation generator. Test data was only used for evaluating the performance of trained models. 
Models were persisted as pickle files using joblib. Scatter and bar plots were created using 
Pandas [3], Matplotlib [5] and Seaborn [6]. ROC curves were plotted using Scikit-learn [4], and 
Matplotlib [5]. The versions of all tools used for bioinformatics and machine learning analysis are 
shown in Table 1. 
 
Similar to previous work (Voss et al., 2021), we trained a total of five logistic regression models 
using different input features. For each model, Scikit-learn [4] was used to calculate the area 
under the curve (AUC), a measure of goodness of fit of a binary classification model. AUC 
confidence intervals, P-values, and diagnostic odds ratios (OR) were calculated using NumPy 
[9] for each of the five logistic regression models.  The Scikit-learn implementation of logistic 
regression does not provide ORs or P-values for individual variables. ORs and Chi-square 
test P-values for the association of mutations with Severe and Mild outcomes (Figure 5) were 
calculated from mutation count data using Statsmodels and SciPy respectively [8]. Mutation 
frequency was calculated using Pandas [3]. 
 
Results: 
 
I. Validation of Previous Methods 
 
Before testing and retraining the logistic regression models on newer data downloaded in 
October 2021, we first reproduced the previous results using the same dataset (Voss et al., 
2021). Reassessing the previous results, the model using age, gender, region, and variants as 
features had the highest AUC (0.91) and accuracy (91%), followed by models that use fewer 
features (age/gender/region/clade, age/gender/region, age/gender, and age). The SARS-CoV-2 
mutations significantly associated with disease severity identified previously, were also 
replicated in this reanalysis (Voss et al., 2021).   
 



II. Evaluation of Model Performance on the Expanded GISAID Dataset 
 
Next, we evaluated the classification performance of the previous logistic regression models 
(Voss et al., 2021) on the newer, expanded October 26th, 2021 GISAID dataset. For this 
evaluation, the genetic mutations included in the expanded October 2021 dataset was limited to 
match the feature space of the trained previous logistic regression models (Voss et al., 2021). 
Therefore, mutations observed in the October 2021 dataset, but not the October 2020 dataset, 
were not included in this test dataset. The performance of the trained Voss et al., 2021 logistic 
regression models was evaluated on the test split (67% train, 33% test) of the expanded 
October 2021 dataset. 
 
Figures 2 and 3 below show comparisons of ROC curves and model performance statistics for 
the Voss et al., 2021 logistic regression models on the original October 2020 dataset and the 
expanded October 2021 dataset. An overall decline in performance is observed for the previous 
models when applied to the expanded October 2021 dataset. Notably, testing the original 
models on the October 2021 dataset reveals a decrease in performance for models that include 
the region feature (AGRV AUC: 0.911 vs. 0.580; AGRC AUC: 0.818 vs. 0.571; AGR AUC: 0.817 
vs. 0.564).  
 

 
Figure 2. Comparison of ROC curves for the previous (Voss et al.,2021) logistic regression models tested on the October 2020 
dataset (left) and the expanded October 2021 dataset (right). A decrease in model performance is observed on the expanded 

October 2021 dataset. 

 

 
Figure 3. Comparison of previous (Voss et al.,2021) model performance statistics (left) and the previous models run on the 

expanded October 2021 dataset (right) 

 
III. Re-Analysis on Expanded GISAID Dataset  



 
To further investigate our previous findings [1], the nested logistic regression models were 
retrained on the larger October 26th, 2021 GISAID SARS-CoV-2 dataset. Model retraining was 
done using the train split of the expanded October 2021 dataset, while performance was 
evaluated using the test split (67% train, 33% test). The performance of the retrained models 
was then compared to the logistic regression models trained on the October 20th, 2020 GISAID 
SARS-CoV-2 dataset. ROC curves for the retrained models are shown in Figure 4A (left). The 
model using age, gender, region, and variants (AGRV) as features continues to show the best 
performance, as observed previously (Voss et al, 2021). The retrained AGRV model metrics, 
shown in Figure 4B (right), have an overall decrease in model accuracy (from 0.913 to 0.810) 
and AUC (from 0.911 to 0.885) as compared to previously published data (Voss et al., 2021) 
shown in Figure 3A (left). This decrease in retrained AGRV model performance may indicate a 
modest reduction in power to distinguish between severe and mild outcomes in the expanded 
October 2021 dataset, or may be explained by inconsistent case severity definitions between 
the 2020 and 2021 datasets. SARS-CoV-2 mutations most associated with severe and mild 
outcomes, as measured by odds ratio, from the previous study (Voss et al., 2021) and the 
expanded October 26th, 2021 GISAID dataset are shown in Figure 5. None of the mutations with 
the highest (n=20) and lowest (n=20) odds of being associated with severe or mild outcomes 
from earlier findings (Voss et al., 2021) are also identified in the top 40 mutations of the larger 
October 2021 dataset analysis. While there is no overlap in the mutations with the highest and 
lowest mutations between earlier and the expanded October 26th, 2021 GISAID dataset, 10 of 
the top 20 mutations most associated with severe outcomes from the earlier study (Voss et al., 
2021) are also significantly associated with severe outcomes (OR ≥ 2, P-value ≤ 0.05) in the 
expanded October 2021 dataset. Similarly, 14 of the top 20 mutations most associated with mild 
outcomes (OR ≤ 0.5, P-value ≤ 0.05) from Voss et al., 2021 are also significantly associated 
with mild outcomes in the expanded October 2021 dataset. 

 
 

 
 

Figure 4. ROC curves after retraining on the expanded October 26th, 2021 GISAID dataset (left) and updated model performance 
metrics (right). Previous (Voss et al., 2021) and retrained model performance is superior when genomic mutations are included as 

features. A general decrease in model performance was observed for the retrained models on the October 2021 dataset in 
comparison to the previous models, which used the October 20th, 2020 dataset.  

 
 

 
 



 
Figure 5. The 40 SARS-CoV-2 mutations with the highest (n=20) and lowest (n=20) odds of being associated with severe or mild 
outcomes from the previous study (Voss et al., 2021) on the left, and this updated analysis using a GISAID dataset from October 

2021 (right). Mutations are ordered by odds ratio, and amino acid change, variant frequency, confidence intervals, and P-values are 
provided. 

 
IV. Expansion of Analytical Models on Original Dataset 
 
We explored additional machine learning binary classifiers, including Random Forest, Naïve 
Bayes, and Neural Network algorithms, and compared their performance to the logistic 
regression model. Similar to our previous study (Voss et al., 2021), 3,386 samples were used 
for this analysis, with 2,694 associated with severe outcomes and 692 with mild patient 
outcomes. Age, gender, region, and variants (AGRV) were used as features for each model. A 
stratified 67% train and 33% test data split was created using Sci-kit learn model selection 
module [4], and a 5-fold cross-validation was performed to select the best parameters for each 
model. Random Forest, Naïve Bayes, and Neural Network algorithms were run using Sci-kit 
learn ensemble, naïve_bayes, and neural_network modules respectively. As shown in Figure 6, 
the random forest model outperformed the other models, including the logistic regression model, 
with an AUC of 0.936, accuracy of 0.918 and odds ratio of 116.7.  
 



 

 
Figure 6. Comparison of alternative machine learning algorithms for binary classification (Random Forest, Neural Network, and 
Naïve Bayes) to Logistic Regression using October 20th, 2020 dataset and AGRV feature set (age/gender/region/variant). The 

random forest model had the highest performance and the naïve bayes model had the lowest performance.  

 
Discussion: 
 
Herein we further investigated the results published earlier (Voss et al., 2021) by evaluating the 
performance of the logistic model for classifying COVID-19 severity on a larger SARS-CoV-2 
dataset curated from GISAID on October 26th, 2021. Testing the previous (Voss et al. 2021) and 
retrained logistic regression models on the expanded October 2021 GISAID dataset revealed a 
general reduction in model performance. Previous results (Voss et al., 2021) indicated that 
using age, gender, region, and variant (AGRV) features enabled the best performance for 
COVID-19 patient outcome classification. The performance of the retrained logistic regression 
models on the October 2021 GISAID dataset continues to demonstrate that inclusion of 
genomic mutation features improves classification of COVID-19 patient outcomes. A modest 
2.7% reduction in AUC was observed for the AGRV logistic regression models re-trained on the 
October 2021 dataset in comparison to the AGRV logistic regression model from the previous 
study. 
 
The performance of the previously (Voss et al. 2021) trained AGR (age/gender/region), AGRC 
(age/gender/region/clade), and AGRV (age/gender/region/variant) models was severely 
degraded when tested on the expanded October 2021 dataset. This diminished performance 
could be the result of new individual mutations and SARS-CoV-2 variants that weren’t observed 
in the October 2020 dataset, and vaccination and treatment advances from October 2020 to 
October 2021. Notably, the AGR, AGRC, and AGRV models all included region in their feature 
set, and the differential availability of vaccination and treatment advances would be expected to 
impact region features. We further investigated the potential deleterious impact of the region 
feature on the previous (Voss et al. 2021) models when applied to the expanded October 2021 
dataset by testing an AGV (age/gender/variant) model and comparing its performance to the AG 
and AGRV models. We find that the AGV model has an AUC and accuracy that is similar to the 
AG model, rather than the AGRV model (AUC: AG=0.705, AGV=0.709, AGRV=0.580; 
Accuracy: AG=0.552, AGV=0.550, AGRV=0.505). 
 
Figure 5 lists the top twenty mutations with highest and lowest odds ratios for association with 
severe and mild outcomes from the October 2020 and expanded October 2021 datasets. The 
top three mutations most associated with severe outcomes in the October 2021 dataset are 



T20391G (ORF1ab: R6709R), G2150A (ORF1ab: D629N), and A25336C (S: E1258D). 
E1258D, a missense mutation located at the cytoplasmic tail of the spike protein [10] that is 
observed with a frequency of 0.7%, has the highest odds (OR=637.23) for association with 
severe outcomes. Interestingly, an independent study using machine learning approaches to 
model COVID-19 disease outcomes also identified E1258D as a key predictor of disease 
severity [11]. This linage independent mutation is recurrent and arises independently in samples 
taken from donors and cell lines, indicating potential selection in host environments [12]. The 
three mutations most associated with mild outcomes include C26885A (M: N121K; OR=0.0030), 
T14654C (ORF1ab: V4797A), and C12194G (ORF1ab: L3977V). N121K, a missense mutation 
in the membrane protein observed with frequency of 0.3%, is most associated (OR = 0.0025) 
with mild outcomes. The presence of this mutation was identified as a key predictor of 
asymptomatic outcomes in previous machine learning modeling of COVID-19 disease outcomes 
[13].  
 
In a comparison of machine learning algorithms, we found Random Forest to be the best 
performing algorithm for classification. The superior performance of the random forest model 
over the logistic regression and naïve bayes models may indicate the presence of nonlinear 
interactions between features (e.g., SARS-CoV-2 mutations). Indeed, Random Forest is a well 
utilized machine learning method for genomic data analysis because this algorithm applies well 
to problems with many more features than observations and accounts for interactions between 
features [14][15]. In addition to exploring machine learning algorithm options, the space of 
outcome variables can also be explored. For example, a promising direction for future modeling 
is the investigation of mutations associated with transmissibility. 
 
The utilization of supervised learning machine learning poses a limitation in our analysis. Since  
labeled outcomes are required to train these models, the number of samples available for 
training is reduced by 99% (53,787 of 4,646,285). In addition, machine learning models trained 
on older samples may not be sufficiently exposed to new mutations. For example, while many of 
the more than 50 mutations present in Omicron were observed previously in other variants of 
concern, some Omicron mutations were rare or previously unobserved and many previously 
observed mutations hadn’t co-occurred in the same samples [16]. Supervised machine learning 
models cannot effectively utilize previously unobserved mutations and mutations combinations 
because parameters have not been fit for these features. A promising approach for addressing 
these limitations is semi-supervised learning. This machine learning approach uses both labeled 
data and unlabeled data for model training. Semi-supervised learning may outperform 
supervised learning approaches when the amount of unlabeled data is much larger than labeled 
data [17]. Within the field of genomics, recent example uses of semi-supervised learning include 
microRNA classification [18], somatic genomic variant classification [19], and identify disease 
associated genes [20]. 
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