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ApoA1: Apolipoprotein A1 

BIB: Born in Bradford 

DHA: Docosahexanoic Acid  

FAw3: Total Omega-3 

FAw6: Total Omega-6 

GDM: Gestational Diabetes Mellitus 

GRM: Glycolysis Related Metabolites 

HDL-C: High Density Lipoprotein Cholesterol 

HD2L-C: High Density Lipoprotein-2 Cholesterol 

IQR: Inter Quartile Range 

LDL_D: Diameter of Low Density Lipoprotein 

LPS: Lipoprotein Particle Size  

MSEP: Mean Square Error of Prediction  

MFA:  Monounsaturated Fatty Acids 

MW: Mann-Whitney 
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NHS: National Health Service 

PCA: Principal Component Analyses 

OGTT: Oral Glucose Tolerance Test 

oPLSDA: Orthogonal Partial Least Squares Discriminatory Analyses 

SAC-H: High Weight South Asian Cases 

SANC-H: High Weight South Asian Non-Cases 

SAC-N: Healthy Weight South Asian Cases 

SANC-N: Healthy Weight South Asian Non-Cases 

PLSDA: Partial Least Squares Discriminatory Analyses 

RMSEE: Root Mean Square Error of Prediction 

ROC: Receiver Operator Curve 

SA: South Asian 

SE: Standard Error 

SFA:  Saturated Fatty Acids 

sPLSDA: Sparse Partial Least Squares Discriminatory Analyses 

TCA: Tricarboxylic Acid Cycle  

VIP: Variable Importance in Projection 

VLDL_D: Diameter of Very Low Density Lipoprotein 

WEs: White Europeans 

WEC-N: Healthy Weight White European Cases 

WENC-N: Healthy Weight White European Non-Cases 

WEC-H: High Weight White European Cases 

WENC-H: High Weight White European Non-Cases
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Abstract 1 

Background: 2 

Gestational Diabetes Mellitus (GDM) is the most common global pregnancy 3 

complication; however, prevalence varies substantially between ethnicities with 4 

South Asians (SA) experiencing up to 3-times the risk of the disease compared to 5 

white Europeans (WEs). Factors driving this discrepancy are unclear, although the 6 

metabolome is of great interest as GDM is known to be characterised by metabolic 7 

dysregulation. 8 

Objective: 9 

This primary aim was to characterise and compare the metabolic profiles of GDM in 10 

SA and WE women (at < 28 weeks’ gestation) from the Born in Bradford (BIB) 11 

prospective birth cohort in the UK. 12 

Methods: 13 

146 fasting serum metabolites, from 2668 pregnant WE and 2671 pregnant South 14 

Asian (SA) women (average BMI 26.2 kg/m2, average age 27.3 years) were 15 

analysed using partial least squares discriminatory analyses to characterise GDM 16 

status. Linear associations between metabolite values and post-oral glucose 17 

tolerance test measures of dysglycemia (fasting glucose and 2-hour post glucose) 18 

were also examined. 19 

Results: 20 

Seven metabolites associated with GDM status in both ethnicities (variable 21 

importance in projection (VIP) ≥1), while 6 additional metabolites associated with 22 

GDM only in WE women. Unique metabolic profiles were observed in healthy weight 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2022. ; https://doi.org/10.1101/2022.04.11.22273658doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.11.22273658
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

5

 

women who later developed GDM, with distinct metabolite patterns identified by 24 

ethnicity and BMI status. Of the metabolite values analysed in relation to 25 

dysglycemia, lactate, histidine, apolipoprotein A1, HDL cholesterol, HDL2 cholesterol 26 

associated with decreased glucose concentration, while DHA and the diameter of 27 

very low-density lipoprotein particles (nm) associated with increased glucose 28 

concertation in WE women; while in SAs albumin alone associated with decreased 29 

glucose concentration.   30 

Conclusions 31 

This study shows that the metabolic risk profile for GDM differs between WE and SA 32 

women enrolled in BiB the UK. This suggests that aetiology of the disease differs 33 

between ethnic groups and that ethnic-appropriate prevention strategies may be 34 

beneficial. 35 

 36 

Keywords:  GDM, metabolomics, ethnicity, South Asians, pregnancy, maternal 37 

health, PLSDA, sPLSDA, personalised nutrition  38 

 39 
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 46 

Introduction 47 

During pregnancy, there is a natural increase in catabolism to ensure sufficient 48 

energy for the foetus (1, 2). This increase is governed by maternal hormones, 49 

beginning as a mild change in insulin sensitivity and progressing through 50 

hyperinsulinemia to controlled insulin resistance by the third trimester (2-5). For most 51 

pregnancies, these changes are safe and controlled, with insulin sensitivity returning 52 

to a healthy state following pregnancy. However, for approximately one in seven 53 

pregnancies, insulin resistance exceeds normal “healthy“ levels and enters a diabetic 54 

state, putting the mother and her growing offspring in danger of short- and long-term 55 

health risks (6, 7). This pregnancy-induced state of diabetes, gestational diabetes 56 

mellitus (GDM), is a major global health concern with varying prevalence between 57 

populations.  58 

In Middle Eastern, North Africa, and South Asian countries, GDM prevalence 59 

can exceed 20% of pregnancies, whereas in European countries prevalence of GDM 60 

is more commonly around 5% (5). Numerous lifestyle, biological, and genetic factors 61 

are thought to contribute to this disparity of risk (5, 8). Despite the numerous factors, 62 

diet is the mainstay of most prevention and treatment strategies because of its 63 

demonstrated efficacy for managing glucose concentrations (9-11). Nonetheless, we 64 

and others have demonstrated that the effects of dietary prevention strategies on 65 

maternal and offspring health are not generalisable across populations or ethnic 66 

groups, with dietary patterns demonstrating varied effects between ethnic groups in 67 

relation to both GDM prevention and birth weight  (12-15). These data suggest that 68 

the metabolism and pathology of GDM may differ across populations, where some 69 

ethnic groups have unique metabolic profiles that make them more susceptible to 70 
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GDM (4, 5, 16-18). Specifically, elevated concentrations of alanine, numerous fatty 71 

acids (e.g., myristic acid, palmitic acid, palmitoleic acid) and lower amounts of 72 

glutamate, proline, and phospholipids in blood have been identified as predictors of 73 

GDM risk in early pregnancy (i.e., before 16 weeks) (4), with recent evidence 74 

demonstrating significant differences in the abundance of these metabolites between 75 

ethnic groups (19). Notably, evidence from Born in Bradford (BiB), a prospective 76 

multi-ethnic pregnancy and birth cohort , has demonstrated the need for potentially 77 

modified GDM assessment criteria for South Asian (SA) women because of 78 

increased risks of delivery complication and newborn macrosomia at significantly 79 

lower glucose thresholds, compared to white European (WE) women (20). Indeed, 80 

currently the UK’s National Health System (NHS), routinely screens all women of 81 

South Asian ancestry for GDM while only high-risk WE women are screened (21). 82 

As a consequence of this, the Diabetic Pregnancy Study Group called for 83 

increased research into the role of the metabolome on GDM in 2018 (22). To date, 84 

however, the metabolic drivers of GDM remain unclear with numerous discrepancies 85 

within the field, likely due to small, heterogenous cohorts of heterogenous cohorts of 86 

varying populations, cultures, and ancestral groups (23). Indeed, only one study has 87 

conducted an analysis of individual metabolites and GDM in an ethnic-specific 88 

fashion (1). This work investigated univariate associations between numerous 89 

metabolites in WE (n = 4072) and SA (n = 4702) women and demonstrated that 90 

concentrations of lipoproteins and cholesterols are typically higher in WE women and 91 

are stronger predictors of GDM (ie. have a higher VIP score), compared to SA 92 

women. However, metabolite profiles are heterogenous mixtures of metabolites, 93 

many of which are strongly correlated and may depend on other metabolites to 94 

exhibit an effect. In light of this, multivariate approaches that assess all variables 95 
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simultaneously along with their inter-variable correlations (24) can be used to identify 96 

(i) patterns of uncorrelated metabolites that associate with GDM risk, and (ii) cardinal 97 

metabolites that independently associate with GDM risk. Therefore, this study aims 98 

to build upon existing work by applying multivariate statistical techniques within an 99 

ethnically diverse population to (i) determine underlining metabolite patterns that 100 

correlate with GDM, (ii) identify ethnic-specific metabolic drivers of GDM risk. 101 

Materials and Methods 102 

i. Population Characteristics 103 

The BiB cohort was established to examine determinants of health from pregnancy 104 

and childhood into adulthood in an ethnically diverse region in the north of England 105 

(25). Between 2007 and 2010, BiB recruited 12,453 women (26-28 weeks’ gestation, 106 

mean maternal age 27.8), collecting baseline data on 13,776 pregnancies and 107 

13,858 births, with 45% of the cohort of SA origin (25, 26).  BiB aimed to recruit all 108 

mothers giving birth at the Bradford Royal Infirmary, the largest hospital within 109 

Bradford. Bradford is a northern English city with high levels of deprivation and a 110 

large SA population, the majority of which have Pakistani ancestry. All women were 111 

invited to partake in an oral glucose tolerance test (OGTT) for GDM diagnosis at 112 

approximately 26-28 weeks during their standard antennal care. Almost all UK 113 

citizens utilize the NHS for antenatal care.  114 

 115 

Of these, 11,480 women provided blood samples for metabolite analyses during the 116 

same visit as their OGTT. Written consent was gained from all participants and 117 

ethical approval was granted by the Bradford Research Ethnics Committee 118 

(ref07/H1302/112)(25). 119 
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ii. Blood Metabolite Analysis 120 

Full details of venous blood sample collection, preparation, metabolite quantification 121 

and validation have previously been described in detail (1). In brief, fasted blood 122 

samples were taken at the Bradford Royal Infirmary by trained phlebotomists, 123 

processed within 2.5 hours and stored at -80℃ in the absence of freeze-thaw cycles. 124 

(27) Samples were processed using a high-throughput automated NMR platform and 125 

have previously been validated (Nightingale Health©; Helsinki, Finland). Metabolite 126 

values expressed as a percentage or ratio were excluded to minimize redundancy, 127 

resulting in a panel of 146 metabolite values expressed in absolute quantitative 128 

measures. This panel comprised measures of 97 lipoproteins, 9 amino acids, 2 129 

apolipoproteins, 9 cholesterols, 8 fatty acids, 8 glycerides and phospholipids, 4 130 

glycolysis-related metabolites, 2 ketone bodies, 3 measures of fluid balance and 131 

inflammation, and 3 measures of the mean lipoprotein particle diameter 132 

(Supplemental S1). 133 

iii. Participant Selection 134 

Of the 11,480 blood samples analyzed for metabolites, 54 samples were excluded 135 

because they failed one of five Nightingale© quality control measures (low glucose, 136 

high lactate, high pyruvate, low protein concentration and plasma samples). Of the 137 

11,426 available samples, ~3% of mothers were missing ≥1 metabolite values. The 138 

structure of missing metabolite data was assessed via the visualization and 139 

imputation of missing values (VIM) package within R (28) and multiple 140 

correspondence analysis (MCA). There was no evidence that the missing metabolite 141 

data occurred in a non-random pattern. It was therefore deemed appropriate to 142 

impute missing values. Optimized multiple imputation with iterative principal 143 

component analysis (PCA; 100 simulations, K-fold cross validation) based upon the 144 
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minimization of mean square error of prediction (MSEP) was performed using the 145 

missMDA package (29). A sensitivity analysis was performed to test the effect of 146 

mothers with higher rates of missingness (≥3% missing metabolite values) on 147 

imputation. No detectable difference in imputation quality was noticed. As such, the 148 

metabolite data of all available 11,426 maternal samples were included for 149 

imputation. 150 

Imputed metabolite data were combined with descriptive BiB reported 151 

characteristics, including participant’s ethnicity, age moved to UK (if born abroad) 152 

GDM status, gestational age at sample collection (obtained from obstetric records), 153 

history of diabetes, age, BMI, smoking status, parity and whether they were carrying 154 

a singleton/multiple pregnancy. Length of residence was calculated by subtracting 155 

the age the mother moved to the UK from maternal age. When an individual was 156 

born within the UK, length of residency was taken to be mothers age. 157 

 158 

All women were recruited prior to their scheduled GDM assessment (mean 159 

gestational age 26.1 weeks), and prior to the 28th week of pregnancy. GDM was 160 

diagnosed using a modified version of the World Health Organization criteria (1, 25).  161 

Using this criteria, a women was diagnosed with GDM if either their fasting glucose 162 

concentration exceed ≥ 6.1 mmol/L or if 2-hour post-load glucose concentrations 163 

was ≥ 7.8 mmol/L following a 75g oral glucose tolerance test (OGTT). The OGTT 164 

was completed in the morning following an overnight fast and involved the 165 

consumption of a standard solution over a 5-minute period containing the equivalent 166 

of 75g of anhydrous glucose (30).  Following a GDM diagnosis all SA and WE 167 

mothers receive the same standardised care following a GDM diagnosis. Initially 168 

GDM management involves referral to a dietitian and the management of glucose 169 
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concentration through diet and increased exercise. If unsuccessful, managed by 170 

metformin or insulin injections will be prescribed. Women with GDM will also be 171 

offered additional antenatal appointments to monitor the health of both mother and 172 

baby throughout the pregnancy. Irrespective of GDM status, basic nutritional 173 

counselling is offered to all mothers as part of standard antenatal classes offered 174 

throughout pregnancy by the UK National Health Services (NHS) (31). 175 

 176 

Ethnicity was self-reported. If ethnicity was not collected, details were obtained from 177 

primary care records along with information on parity and the number of registered 178 

births. Maternal age was recorded at pregnancy booking (ie., the first routine 179 

antenatal visit) and BMI was calculated using height measured at recruitment and 180 

maternal weight recorded at the first antenatal visit. When examined as a categorical 181 

variable, ethnic specific cut-offs were used to classify mothers into BMI groups 182 

(underweight: ≤ 18.5 kg/m2 in WE and SAs, normal/healthy weight: 18.6-25 kg/m2 in 183 

WEs or 18.6-22.9 kg/m2 in SAs, overweight: 25-29.9 kg/m2 for WE or 23-27.4 kg/m2 184 

for SA women; obese: > 30kg/m2 for WE or >27.5kg/m2 for SA women) (32). When 185 

analysed as a binary variable, women were grouped as having a ‘healthy’ or ‘high’ 186 

BMI if they were above/below the BMI cut-off for overweight status utilizing these 187 

ethnic-specific cut offs. Smoking status was self-reported at baseline and during 188 

pregnancy. Recruitment and the baseline assessment of covariates was the same in 189 

both ethnic groups. Summary statistics for each variable were presented as a mean 190 

and standard error (SE). Difference in baseline characteristics were calculated 191 

between women with and without GDM for continuous variables via a Mann-Whitney 192 

(MW) test, while differences for categorical variables were tested using Pearson’s 193 

Chi-squared test. 194 
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Participants whose samples were collected after GDM diagnosis (28th week or later) 195 

were excluded from the analysis as well as mothers with a history of diabetes. 196 

Individuals who reported being of a South Asian origin other than Pakistani (SA) 197 

were also excluded, due to the small sample size (therefore limited power) of other 198 

South Asian ancestry groups. In total, 5,339 participants, 2,671 SAs (all of Pakistani 199 

descent) and 2,688 White European (WE) women, were retained for analysis. 200 

(Figure 1)  201 

 202 

Ethnicity was self-reported and the homogeneity of the WE group has been 203 

confirmed in previous genetic analyses within BIB (33). 93.2% of the included WEs 204 

were born in the British Isles (i.e., the UK, Republic of Ireland, Channel Islands or 205 

Isle of Man), with the majority in England (91.4%). Of these women, 95.5% reported 206 

that both of their parents were also born in the British Isles. Within the group of WE 207 

women not born in the British Isles, 3.7% were born in Eastern Europe (Czech 208 

Republic, Poland, Slovakia) with the remaining proportion reporting ‘other’ or 209 

‘unknown’. Within the SA population, 43.7% were born within the UK. Of the SA 210 

women born in the UK, 93% reported that their mother was born in Pakistan (87.4%) 211 

or India (5.6%) and 95% reported that their father was born in Pakistani (88.6%) or 212 

India (6.7%). A small proportion did not know their mother’s (1.4%) or father’s (1.3%) 213 

place of birth. Of the women born outside of the UK, the average age of immigration 214 

to the UK was 18.8 yrs (IQR 18 – 23). 215 

 216 

iv. Metabolite Discriminatory Analysis 217 

Partial least squares discriminatory analysis (PLSDA) is a supervised dimensionality 218 

reduction technique that uses all included variables to discriminate group data based 219 
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upon predefined outcome groups. Included variables are then ranked by the degree 220 

to which they explain the variance between groups (i.e., GDM vs non-GDM). These 221 

are known as variable importance in projection (VIPs), where VIPs ≥1 denote a 222 

variable with good discriminatory quality and predictive ability (34, 35).  223 

PLSDA allowed an overall assessment of the predictive capacity of 224 

metabolites for GDM, in models with and without known GDM risk factors (i.e., BMI, 225 

maternal age, parity, multiple pregnancy, and smoking status), with ethnicity added 226 

to visually assess its effect on the model. Following this, both sets of PLSDA models 227 

were performed within each ethnic group. To assess bi-directionality, models 228 

predicting ethnicity were also executed within the overall population and GDM cases/ 229 

non-cases separately using the same criteria as above. 230 

The optimum number of components to include within the model was selected 231 

based upon the component’s ability to significantly predict group membership within 232 

the training (pR2Y ≤0.05) and validation (pQ2Y≤ 0.05) datasets (7-fold cross 233 

validation, ‘nipals’ algorithm). When multiple components were significantly 234 

predictive, the predictive component that best discriminated between groups (i.e. 235 

maximization of outcome variance explained, R2Y) with the minimal error (root mean 236 

squared error of estimation (RMSEE)) was selected. Data were pareto scaled and 237 

mean-centered prior to analysis. External validity was assessed via 7-fold cross 238 

validation. PLSDA models were performed via the ‘ropls’ package within R (36). 239 

When the size of the outcome groups differed by ≥ 1% the larger group was 240 

randomly sampled (n=20) to minimize error. VIPs were mean averaged and SEs 241 

calculated across all significant iterations (pR2Y ≤0.05, pQ2Y≤0.05) for each 242 

metabolite following the removal of outlier VIPs, defined as 1.5 x interquartile range 243 

of VIP values. Differences in the distribution of VIP values between both ethnicities 244 
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and case-status were assessed for significant iterations via a MW test; this was 245 

possible because all comparisons were tested against the same panel of metabolite 246 

measures. To assess the impact of smoking on PLSDA results, PLSDA models 247 

predicting smoking in the overall study population were also performed. 248 

 249 

iii. Post-Hoc multivariate analyses  250 

BMI is a suspected mediator along the casual pathway that links metabolism and 251 

GDM, was a significant driver of GDM within SA women and WE women. To explore 252 

this, the ethnic-specific impact of BMI on the metabolome and subsequent GDM 253 

diagnoses was investigated using sparse PLSDA (sPLSDA). sPLSDA is a 254 

supervised multivariate technique with the ability to predict group membership in 255 

multiclass problems (i.e., stratification by ethnicity, bodyweight, and GDM status) by 256 

simultaneously performing and balancing variable selection with group classification 257 

(37). Women were classified as ‘healthy or ‘overweight’ based upon ethnic-specific 258 

cut-offs (BMI ≥ 25kg/m2 for WE women and BMI≥ 23kg/m2 for SA women), which is 259 

the same approach used by the NHS (38). The analyses focussed on low-risk WE 260 

(n= 872) and low-risk SA women (n= 864) — i.e., only women (i) in their first 261 

pregnancy, (ii) that did not smoke during pregnancy, and (iii) were < 35 years of age 262 

were included. This was done to prevent these covariates from overpowering the 263 

models, and allowing the contributing roles of BMI on GDM to be more clearly 264 

appreciated within and between each ethnic group. 265 

 266 

Metabolites selected by sPLSDA in each comparison were fed into PLSDA models 267 

(20 iterations) alongside highly correlated metabolites (Pearsons correlation 268 

coefficient ≥0.9) in order determine metabolie values contributing to the separation of 269 
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the outcome groups whilst balancing dimensionality reduction and group 270 

discrimination. PLSDA models were adjusted for maternal age (continuous), BMI 271 

(continous), smoking status, partiy and multiple pregnancy such as before. 272 

Differences in the distributions of metabolites within each group were also compared 273 

by a MW test. 274 

iii. Linear regression analyses for identified metabolite associations 275 

Linear regression models investigating the relationship between post- oral OGTT 276 

measures (fasting glucose and 2-hour post-OGTT) were performed on all metabolite 277 

values identified as important (VIP≥1) in characterizing GDM status. Normality of 278 

glucose measures and metabolite values were assessed using histograms and Q-Q 279 

plots. Most metabolites (136/146) required normalization. Normality was most often 280 

achieved by log transformation (59 metabolite values); however, in some cases 281 

square-root and normal score transformation (NST) were implemented via the 282 

‘rcompanion’ package(39). All glucose measures were log normalized. Known GDM 283 

risk factors of maternal age (years), gestational age (days), parity, and smoking 284 

status during pregnancy (yes/no), were initially including in the models. When 285 

significant associations were observed between metabolite values and glucose in 286 

this exploratory analysis (P<0.05), BMI was added to the models (initially as a 287 

continuous and then as a binary variable utilizing ethnic-specific BMI cut-offs for 288 

overweight status) to assess the role of early pregnancy BMI as a mediator of 289 

metabolite-dysglycemia associations. Within SAs, a final additional adjustment of 290 

length of residency within the UK was made to account for any effects of 291 

acculturation. 292 
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Results 293 

i. Population Characteristics  294 

The mean age of participant was 26.7 years and had a mean BMI of 26 kg/m2.  WE 295 

women were significantly older and had higher BMIs compared to SA women (Table 296 

1). Parity was significantly higher in SA women compared to WE women (P<0.001) 297 

and parity was only significantly higher in GDM cases compared to non-cases within 298 

SA women (Table 1). Smoking during pregnancy was significantly more common in 299 

WE women compared to SA women (25% vs 3%; P<0.001). No difference in 300 

proportion of singleton pregnancies (>97%) was observed between WE women and 301 

SA women.  Alcohol intake was not assessed because it was reported by only 1% of 302 

SA women. The mean time of sample collection was 187 gestational days. 303 

ii. Primary Analysis 304 

Metabolite Characterisation of GDM  305 

In the 1st model, an overall analysis of the full cohort (i.e., both ethnic groups), 306 

PLSDA explained 21.7% of the variation between the GDM and non-GDM groups 307 

and confirmed maternal age and BMI as primary risk factors for GDM risk followed 308 

by parity, smoking status, and having a non-singleton pregnancy as the primary 309 

drivers of GDM (Table 2). In the full model, 7 metabolite values reported VIPs ≥ 1, 310 

including 4 fatty acid metabolite measures (total fatty acids, 18:2 linoleic acid, total 311 

MUFA and total SFA), and one glycolysis related metabolite (lactate) (Figure 2). 312 

Modelled independently, the PLSDA with only covariates explained 12.4% of the 313 

variation in GDM status and significantly predicted GDM status, whereas the model 314 

with only metabolites explained 13.5% of the variance in GDM but was non-315 

significant. The 2nd model, which included ethnicity as a covariate, accounted for 316 
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26.6% of the variation between the GDM and non-GDM groups. The same 6 317 

metabolites we reported as predictors of GDM with an additional cholesterol 318 

metabolite measure (total esterified cholesterol). Notably, model 2 confirmed 319 

ethnicity (SA vs WE) as a major risk factor for GDM, after age and BMI. Modelled 320 

independently, ‘ethnicity’ and other covariates explained 15.2% of the variance in 321 

GDM status; therefore, the addition of metabolites into the model increased the 322 

amount of variance explained by over 11%. 323 

 324 

Ethnically-stratified analysis of metabolites characterising GDM 325 

In an ethnically stratified analysis (20 iterations), models only including metabolites 326 

accounted for a median average of 6.5% of the variation in GDM status in SA 327 

women and 5.8% of the variation in WE women in optimised models (ie. 328 

minimisation RMSEE and maximisation of R2Y) although no model comprising 329 

metabolites alone was signficant. Conversely, models only including established 330 

clinical risk factors (age, BMI, parity, smoking status and multiple pregnancy) were 331 

significantly predictive (p- value R2 < 0.05, Q2<0.05) of GDM status and explained 332 

13.3% of the variation in SAs 12.8% of the variation in WEs.  The addition of 333 

metabolites to these covariate models also resulted in the significant prediction of 334 

GDM. These models resulted in 26% of the variance in GDM status in WE women 335 

and 20% of the variance in SA women being accounted for, an increase of 13.6% 336 

and 6.8% when compared to covariate models in WE and SA respectively. Following 337 

adjustments for maternal age, parity, BMI, and smoking status, GDM could be 338 

predicted within both ethnicites. Maternal age, parity and BMI were predictors of 339 

GDM in both ethnicities (VIP≥1), with BMI the most important predictor of GDM in SA 340 

women , while in WE women maternal age was most important predictor 341 
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(Supplementary table 1). Smoking was a predictor of GDM only in WE women. 342 

After adjustment for confounders, 7 metabolite variables characterised GDM status 343 

(VIP≥1) in both ethnicities (total fatty acids, total MUFA, total SFA, linoleic acid, 344 

glycoprotein acetyls, lactate, and  diameter of VLDL) (Figure 3, Supplementary 345 

table 2). Of these metabolites, the VIPs of three (lactate, glycoprotein acetyls, and 346 

linoleic acid) characterised GDM status comparatively well between ethnicites 347 

(VIP≥1; MW P>0.05), whereas four metabolite measures (total fatty acids, total 348 

MUFA, total SFA, and VLDL_D) characterised GDM in both ethnic groups, but were 349 

significantly stronger markers of GDM in WE women (VIP≥1; MW P<0.05 between 350 

ethnicites). Additionally, alanine, glutamine, total cholesterol, total n-6 PUFA, total 351 

PUFA, and citrate were markers (VIP≥1) of GDM status in WE women only. No 352 

markers of GDM were specific to SA women. On average, the optimised models 353 

explained 26% of the variance of GDM in WE women, and 20% of the variance in 354 

SA, women (Supplementary table 3). 355 

Metabolites characterised by ethnicity  356 

To explore underlying metabolic profiles within each ethnic group, we identified 357 

metabolites that most strongly distinguished WE women and SA women. In a  358 

PLSDA including known GDM risk factors as covariates (maternal age, smoking 359 

status, parity, BMI, and GDM status), 12 metabolic measures VIP≥1 in statistically 360 

significant models (models p- values R2 > 0.05 and  Q2>0.05) and therefore were 361 

believed to have characterised ethnicity in GDM and non-GDM women: total fatty 362 

acids,  serum cholesterol, SFA, MUFA, FAw6, esterified cholesterol, LA, LDL 363 

cholesterol, remnant cholesterol, phosphatidylcholine and total cholesterol. 364 

(Supplementary table 4). 365 

 366 
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Additionally, ethnicity was characterised by 6 metabolites values exclusivley in 367 

women diagnosed with GDM [i.e alanine, total fatty acids, linoleic acid (LA), 368 

glycoprotein acetyls, lactate and diameter of VLDL] whilst 5 metabolites values were 369 

exclusive in those not diagnosed with GDM [i.e., apolipoprotein A1, remnant 370 

choelsterol, docosahexanoic acid (DHA), and phosphatidylcholine]. An additional 9 371 

metabolite values [ie., total serum cholesterol, LDL cholesterol, total esterfied 372 

cholesterol, n-3 fatty acids, PUFA, MUFA, SFA, phosphatidylcholine and total 373 

cholines] were predictive of ethnicity in both GDM cases and non-cases 374 

(Supplementary figure 1). 375 

iv. Post-Hoc Analyses  376 

Characterisation of GDM in Low-Risk Women 377 

BMI was classifed as an important variable (VIP ≥ 1) in the overall analysis and in 378 

both ethnic subgroup analyses.  However, a greater mean VIP (± SE) was observed 379 

in SA women compared to WE women (VIPSA = 7.06 ± 0.22 vs. VIPWE = 4.33 ± 0.22; 380 

P<0.001) (Supplementary table 1) indicating that BMI may be a more important 381 

predictor of GDM status within WEs. Indeed, healthy weight SA women who 382 

developed GDM (SAHealthy-GDM) presented the most distinct metabolic profile 383 

(Receiver Operator Curve; ROC = 0.783), but were most similar to healthy WE 384 

women who developed GDM (WEHealthy-GDM; ROC = 0.691) (Supplementary figure 385 

2). The reason for this shared and distinct pattern of metabolites in ‘healthy’ weight 386 

women who developed GDM is unclear and many hypotheses are possible. One 387 

hypothesis may be that the pattern is an artifact of their fetal programming. Adult 388 

offspring from GDM pregnancies are at increased risk of dysglycemia, diabetes, and 389 
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GDM that has been attributed to metabolic dysregulation, and early dysglycemia that 390 

progresses in later life (40-43). 391 

Future work in established cohorts that investigate trans-generational pregnancy 392 

risks (such as Born in Bradford, Generation R, and Nutrigen) are integral to unravel 393 

the source of this unique metabolic profile which distinguishes healthy weight GDM 394 

cases of SA ancestry from non-cases, overweight SA cases, and WE cases (25, 44, 395 

45). Due to the higher proportion of underweight mothers of SA ancestry, a 396 

sensitivity analysis was performed where underweight mothers were removed 397 

(nremoved = 93, BMI≤18.5 kg/m2) to determine if their profiles were unique.  No 398 

difference in the outcome was observed following the removal of these individuals. 399 

 Metabolites selected by sPLSDA in each comparison were fed into PLSDA 400 

models (20 iterations) alongside highly correlated metabolites (Pearsons correlation 401 

coefficient ≥0.9) to identify key metabolic drivers of this separation (Supplementary 402 

figure 3). Alanine, glutamine, and glycerol were important to distinguish healthy 403 

weight SA women who developed GDM (SAC-N) from all others, whereas fatty acids 404 

were important to distinguish SAC-N from other GDM cases. Interestingly, in healthy 405 

women, aromatic and branched chain amino acids distinguished GDM and non-GDM 406 

women between (but not within) ethnic groups. Glycerol distributions were 407 

significantly different in all comparisons (MW <0.05). 408 

Characterisation of GDM in low-risk women by BMI and ethnicity 409 

Orthogonal partial least squares discriminant analysis (oPLSDA) is a supervised 410 

multivariate technique that separates variation within each predictor variables based 411 

upon its linear (correlated) and orthogonal (uncorrelated) association with the 412 

outcome variable (46, 47). This can provide better separation along fewer 413 

components when a large proportion of variance within the dataset does not directly 414 
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correlate with the outcome variable. Furthermore, through the creation of Shared and 415 

Unique Structure (SUS) plots it is possible to determine shared and unique factors 416 

separating the main group of interest (healthy weight SA cases, SAC-N)  with the 417 

two most relevant biological comparisons (healthy weight SA non-cases, SANC-N 418 

and healthy weight WE cases, WEC-N). 419 

No significant separation of the SAC-N vs SANC-N, SAC-N vs SAC-H and SAC-420 

N vs WEC-N groups were identified via SUS plots with oPLSDA. Following the 421 

inclusion of BMI and age within the models the SAC-N group was found to separate 422 

from all other groups (Supplementary figure 4).  BMI was the only variable found to 423 

be responsible for this separation with a high magnitude and reliability. Pyruvate, L-424 

HDL and XL-HDL had a small impact on the separation of the SAC-N group but with 425 

a low reliability, as shown within SUS-plots. 426 

Association between important metabolites and gestational dysglycemia  427 

Overall, 8 of 146 metabolite measures were associated with fasting glucose or 2-428 

hour post glucose (Table 3), all of which were identified as GDM predictors via 429 

PLSDA or sPLSDA. The analysis in WE women demonstrated the greatest number 430 

of associations between metabolite and glucose measures. Six metabolites 431 

positively associated fasting glucose concentration (albumin, lactate, histidine, 432 

apolipoprotein A1, HDLC and HDL2C), while one negatively associated with fasting 433 

glucose (mean density of LDL) (Supplementary table 5, Supplementary table 6). 434 

Only DHA associated with 2-hr post OGTT in WEs, where a 1 mmol/L increase in 435 

DHA associated with a 0.20 mmol/L increase in 2-hour post glucose. In the analysis 436 

of SA women, only albumin was associated with dysglycemia, where higher albumin 437 

associated with lower concentration of fasting glucose and 2-hr post OGTT. In an 438 

additional analysis, length of residency within the UK was added to the fully-adjusted 439 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2022. ; https://doi.org/10.1101/2022.04.11.22273658doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.11.22273658
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

22

 

model to evaluate the role of UK acculturation as a modifier of the association 440 

between albumin and postprandial glucose measures. In both models significant 441 

associations were identified with albumin (P-valuefasting =0.031, β= -0.79, SE=0.37, P-442 

value2-hour =0.028 β=-1.75 ,SE=0.80). Length of residency was not found to be a 443 

significant variable in the model, but the magnitude of associations decreased 444 

slightly following its inclusion (Supplementary table 5, Supplementary table 6). In 445 

the ethnic-combined analysis, associations between albumin, lactate, and mean 446 

diameter of LDL with fasting glucose retained significance. Adjusting for BMI as a 447 

continuous or binary variable had no impact on the associations.  448 

 449 

Discussion 450 

Using a prospective birth cohort with an equal proportion of WE and  SA women, we 451 

identified 7 metabolite measures that characterized GDM in both WE and SA women 452 

— 4 of which were more predictive in WE women. These results agree with the 453 

Omega cohort (78.5% non-Hispanic white; nested case-control; 46 cases, 47 454 

controls) that highlighted a distinct metabolic profile at 16-weeks’ gestation 455 

(comprised of fatty acids, sugars, alcohols, amino acids and organic acids), 456 

associated with future GDM diagnosis (48). Although the metabolite patterns 457 

identified by the Omega study were not predictive, our predictive multivariate 458 

analysis (and a previous univariate analyses) (1) found similar associations between 459 

GDM and many of these metabolites (i.e., amino acids, glycolysis related 460 

metabolites, and fatty acids), and offers further evidence of ethnic-specific 461 

associations. 462 
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Given the overall elevated risk of GDM observed in SA women compared to 463 

WE women, even at a healthy BMI (i.e., OR≈3) (49), and the role of ethnicity in 464 

predicting GDM, in the present study, we sought to characterize distinct metabolic 465 

profiles of SA and WE women. Of the 146 metabolite values tested, 7 were important 466 

for stratifying GDM and non-GDM women in the overall population (lactate, mean 467 

density of VLDL particles, total fatty acids, total MUFAs, 18:2 linoleic acid, total SFA 468 

and esterified cholesterol). Following stratification by ethnicity, alanine, glutamine, 469 

total serum cholesterol, n-6 fatty acids, PUFAs, and citrate distinguished GDM and 470 

non-GDM in WE women whereas no metabolite values were predictive solely within 471 

SA women.  472 

Although no metabolite value identified solely within WE women was 473 

associated with post-OGTT measures of glucose in post-hoc analyses, our evidence 474 

agrees with previous work from (i) a small case-control study (26 T2Ds vs 7 controls) 475 

that reported alanine, glutamine, and citrate to characterize GDM and controls, with 476 

citrate being a key marker of diabetics with underlying complications (e.g., CVD) 477 

(50), and (ii) a cohort study of 431 pregnant Chinese women (12-16 weeks’ 478 

gestation), where alanine and glutamine were associated with GDM (51). 479 

Biologically, alanine, glutamine, and citrate are connected and could moderate 480 

dysglycemia through their interaction with the tricarboxylic acid cycle (TCA) to 481 

promote the formation of TCA intermediates, fatty acid synthesis, and modulate 482 

glucagon and insulin secretion (52, 53). Taken together, it may be that alanine and 483 

glutamine are more robust markers of dysglycemia, whereas citrate is a marker of 484 

metabolic or physiologic stress in diabetic individuals — such as pregnancy. The role 485 

of total cholesterol is uncertain as it is not convincingly associated with dysglycemia 486 

(a meta-analysis of 73 observational studies found no association)(54), suggesting 487 
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that associations between total cholesterol and GDM are complex and/or subject to 488 

confounding.  489 

In the ethnic subgroup analyses, fatty acids were identified as the most 490 

important family (ie. VIP ≥ 1) to characterize GDM status. In WE women and SA 491 

women respectively, 75% and 50% of the fatty acids included within the metabolite 492 

panel were considered ‘important’ to characterize GDM within WE women. 493 

Furthermore, in SA women fatty acids constituted more than half of all metabolites 494 

with a VIP ≥ 1. 495 

 This reflects earlier work by Taylor et al. [1], which identified some evidence 496 

of ethnic specific associations between fatty acids and GDM, and agrees with 497 

molecular analyses that demonstrate that fatty acids alter insulin resistance and 498 

insulin secretion during pregnancy (55, 56). 499 

 Furthermore, fatty acids (total MUFAs, total n-3 PUFAs, total n-6 PUFAs, total 500 

PUFAs, and DHA) were identified as key metabolic factors to distinguish healthy-501 

weight SA and WE women who developed GDM. Interestingly, we highlighted 502 

associations between n-6 PUFA and total PUFAs with GDM that were specific to WE 503 

women. Given the equal sample sizes between groups, and that fatty acids were 504 

important to characterize ethnicity, it is suggestive of ethnic differences in PUFA 505 

metabolism (57-59) and a role in ethnic-associated GDM risk (57, 60, 61). Indeed, n6 506 

PUFA-derived eicosanoids show discriminatory qualities between type-2 diabetics 507 

and controls with good accuracy (R2X = 0.824, R2Y = 0.995, Q2 = 0.779) and were 508 

identified as proposed mediators of dysglycemia within a Chinese population (62). 509 

Longitudinal analyses to evaluate the association between changes in PUFA and 510 
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eicosanoids concentrations on dysglycemia during pregnancy are required to better 511 

understand this association. 512 

The association between VLDL diameter and dysglycemia is supported by a 513 

recent hypothesis linking insulin resistance, triglyceride synthesis, and increased 514 

VLDL diameter (63, 64). Although we cannot disregard that VLDLs are sensitive to 515 

level of fasting (65) (as our participants were subjected to prior to blood collection), 516 

evidence also suggests that ethnic-specific genetic variants associate with ethnic-517 

specific differences in VLDL diameter (66). Although there has been less work on the 518 

possible association between glycoprotein acetyls (a marker of systemic 519 

inflammation) and GDM, and future work is required in this area  520 

Lactate was one of the strongest predictors of GDM within both groups, in 521 

agreement with evidence from a case-control study in China (n=12 GDM; n=10 522 

controls) (67) and pathway analyses that propose lactate as a regulator of insulin 523 

resistance and a marker metabolic syndrome severity (68, 69). Post-hoc analysis 524 

demonstrated no association between glycoprotein acetyls and glucose 525 

concerntrations, while lactate and mean diameter of VLDL were associated with 526 

fasting glucose in WE women but not SA women. The multi-ethnic HAPO cohort 527 

demonstrated a similar ethnic-specific association between lactate and fasting 528 

glucose within individuals of Northern European ancestry but not minority ethnic 529 

groups (48, 70, 71).  530 

 Of the numerous fatty acid measures that were associated with GDM, only 531 

DHA was associated with a post-OGTT measures of glucose and only in WE 532 

women. Overall, DHA is considered a protective metabolite against insulin resistance 533 

(e.g., HOMA-IR); however, recent evidence suggests high heterogeneity (56, 72, 73). 534 
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As we did, researchers investigating the Camden pregnancy cohort (n=1,368) 535 

reported a significant positive linear association between DHA and HOMA-IR (0.303 536 

± 0.152 per unit DHA %; P<0.05) (56), while conversely, the DOMINO trial (n=1990 537 

pregnant women) reported no difference in 1-hr post-OGTT glucose concentrations 538 

between DHA supplemented mothers and controls (74).  The reason for such 539 

discrepancies is unclear but may be that n-3 PUFAs (such as DHA) require 540 

interactions with other metabolites (e.g., Vitamin D) (75) to impart an effect, 541 

concentrations of which vary considerably between populations, seasons, and 542 

geographic region (76-78). 543 

The study aimed to increase and test generalizability of results within a 544 

diverse population; however, our results may not be generalizable across other 545 

ethnic groups or geographic regions. Nonetheless, this study has four main 546 

limitations. Firstly, samples were taken at a single time point before 28 weeks 547 

gestation, therefore (i) we were unable to account for differences in fasting duration 548 

and diurnal variation; and (ii) our results are not generalizable across the full-term of 549 

pregnancy. Secondly, as with all observational studies, the effect of confounding 550 

cannot be disregarded and causality cannot be inferred. Despite this, this is the first 551 

study to use a panel of multivariate statistical techniques to characterize GDM within 552 

a large prospective cohort with an equal representation of WE women and women 553 

from a non-WE population, meaning that statistical power to measure the same 554 

effect size is comparable between groups. Thirdly, the biological validity of the 555 

identified metabolites was tested and many correlated with postprandial glucose 556 

measures; and although confounding cannot be eliminated, all models included 557 

known GDM confounders and modelling characterizing the overall metabolic 558 

differences between ethnicities were also performed to test whether differences in 559 
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metabolite profiles were found between ethnicities in relation to GDM status. Finally, 560 

diet is a contributor to metabolite concentrations, but comprehensive dietary data 561 

was not available for our analysis. Future work with comprehensive dietary records 562 

are needed evaluate the presence of a moderating effect of diet on metabolism and 563 

GDM risk. 564 

Conclusion 565 

In conclusion, this study has identified unique and shared metabolic profiles 566 

that characterize GDM in WE and SA women. Future work exploring the moderating 567 

role of lifestyle on the metabolome and the underlying biological mechanisms driving 568 

the identified associations will provide a better understanding of the etiological 569 

factors responsible for the heightened level of GDM risk experienced by SA women 570 

and shed light on improved prevention strategies 571 
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Table 1: Population Characteristics at < 28 weeks’ gestation (mean gestational age 26.7 weeks) from the Born in Bradford 

                                                       
1
 Summary table of population characteristics, expressed as a mean (SE) for continuous variables and counts (%) for categorical variables. Differences 

between women with and without GDM for continuous variables were tested using a Mann-Whitney test, while differences for categorical variables were 
tested using Pearson’s Chi-squared test. 

 
 
 

Overall White European  South Asian  White European vs South Asian  
 P-values 

 Total 
(n=5339) 

Total 
(n=2668) 

GDM 

(n=128) 
Non-GDM 
(n=2540) 

P-
value 

Total 
(n=2,671) 

GDM 
(n=286) 

Non-GDM 
(n=2385) 

P-
value 

Overall 
(n=5339) 

GDM 
(n=414) 

Non-GDM 
(n=4925) 

Age (years) 27.3 (0.08) 26.7 (0.1) 30 (0.5) 26.5 (0.1) < 0.001 25.7 (0.1) 30.6 (0.3) 27.6 (0.1) < 0.001 < 0.001 0.29 < 0.001 
Mothers weight 
at baseline 
assessment (kg) 

68.8 (0.2) 72.0 (0.3) 76.8 (1.6) 71.8 (0.3) 0.002 65.5 (0.3) 72.3 (0.9) 64.7 (0.3) < 0.001 < 0.001 0.03 < 0.001 

Mothers’ height 
(cm) 

162 (0.09) 164.3 
(0.1) 

163.8 
(0.5) 

164.3 (0.1) 0.47 159.7 (0.1) 158.1 
(0.3) 

159.9 (0.1) < 0.001 < 0.001 < 0.001 < 0.001 

BMI1             
mean (kg/m2) 26.2 (0.08) 26.7 (0.1) 28.5 (0.5) 26.6 (0.1) < 0.001 25.7 (0.1) 28.9 (0.4) 25.3 (0.1) < 0.001 < 0.001 0.49 < 0.001 

underweight or 
normal 

2198 
(41.2) 

1254 (47) 47 
(36.7%) 

1207 
(47.5%) 

0.02 944 (35.3) 46 (16.1) 898 (37.7) < 0.001 < 0.001 < 0.001 < 0.001 

overweight or 
obese 

3141 
(58.8) 

1414 (53) 81 
(63.3%) 

1333 
(52.5%) 

1727 
(64.7) 

240 
(83.9) 

1487 
(62.3) 

Parity       0.47    < 0.001 < 0.001 < 0.001 < 0.001 
0 2311 

(43.2) 
1394 
(52.2) 

73 (57) 1321 (52) 917 (34.3) 82 (28.7) 835 (36.5) 

                    1 1508 
(28.2) 

813 (30) 39 (30.5) 774 (30.5) 695 (26) 49 (17.1) 646 (28.3) 

                 2   813 (15.2) 293 (11) 11 (8.6) 282 (11.1) 520 (19.5) 57 (19.9) 463 (20.3) 
                     ≥ 3  707 (13.2) 168 (6.3) 5 (3.9) 163 (10.4) 539 (20.2) 98 (34.3) 441 (14.9) 

Singleton 
pregnancy (%) 

5274 
(98.8) 

2634 
(98.7) 

123 
(96.1) 

2511 
(98.9) 

 0.01 2640 
(98.8) 

280 
(97.9) 

2360 (99) 0.12 0.70 0.29 0.75 

Smoked during 
pregnancy (%) 

958 (17.9) 870 
(32.6) 

25 (19.5) 845 (33.3) 0.001 88 (3.3) 12 (4.2) 76 (3.2) 0.37 < 0.001   <0.001 < 0.001 
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(BiB) cohort.2 

                                                       
2
  Body Mass Index (BMI) cut-offs: underweight, ≤ 18.5 kg/m2 in WE and SAs; normal weight, 18.6-25 kg/m2 in WEs or 18.6-22.9 kg/m2 in SAs; overweight, 

25-29.9 kg/m2 for WE or 23-27.4 kg/m2 for SA women; obese, ≥ 30kg/m2 for WE or ≥27.5kg/m2 for SA women. SA, South Asian; WE, white European. 
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Table 2: Key metabolite measures (VIP ≥1) that discriminate women diagnosed 
as GDM from non-GDM women in Partial Least Squares Discriminatory 
Analysis (PLSDA).1 

 

 

 

 

 

 

 

 

                                                       
1
 Variables of Importance in Projection (VIPs) scores [mean and (standard error)] across 20 PLSDA 

iterations discriminating between GDM (n=414) and non-GDM women (n=414). Model 1: Includes all 
metabolite measures plus BMI (continuous), maternal age (years), smoking status, parity and multiple 
pregnancy status. Model 2: Model 1 + ethnicity. GDM, Gestational Diabetes Mellitus; MUFA, total 
monounsaturated fatty acids; SFA, total saturated fatty acids; VLDL_D, mean diameter of very-low 
density lipoproteins. 

 

Variable Model 1 Model 2 

Age 6.4 (0.03) 5.9 (0.03) 

BMI 5.4 (0.04) 5.1 (0.02) 

Ethnicity - 2.9 (0.02) 

Parity 2.4 (0.01) 2.3 (0.01) 

Smoking Status 1.9 (0.02) 1.7 (0.01) 

Multiple Pregnancy 1.5 (0.01) 1.3 (0.009) 

Lactate 1.5 (0.01) 1.2 (0.008) 

VLDL_D  1.3 (0.01) 1.3 (0.01) 

Total Fatty Acids 1.2 (0.01) 1.5 (0.01) 

Total MUFA 1.2 (0.001) 1.2 (0.008) 

18:2 Linoleic Acid 1.1 (0.01) 1.1 (0.004) 

Total SFA 1.1 (0.01) 1.2 (0.007) 

Esterified Cholesterol - 1.0 (0.008) 
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Table 3: Metabolite measures associated with dysglycemia in South Asian and 

white European pregnant women before 28 weeks’ gestation (mean gestational 

age 26.7 weeks)1
 

 

 

  

                                                       
1

 Multivariable linear regression analysis was undertaken in the overall population of pregnant women 
of 2671 South Asians and 2667 White Europeans. Metabolites associated (P<0.05) with measures of 
fasting glucose or 2-hr post oral glucose tolerance test (OGTT) in the overall population or in ethnic-
specific analyses are presented. All models included maternal age (years), gestational age (days), 
parity, BMI (continuous), and smoking status during pregnancy. No differences in association were 
identified when BMI was included within the model as a categorical variable. 
2
 Direction of associations are presented in brackets — i.e. positive (+) or negative (-). ApoA1, 

Apolipoprotein A1; DHA, Docosahexaenoic acid; HDL-C, High-density lipoprotein cholesterol; HDL2-
C, High-density lipoprotein-2 cholesterol; LDL_D, mean diameter of low-density lipoprotein. 
 

 

Dysglycemia 

(mmol/L) 

Combined analyses of 
South Asian and White 

Europeans 

(n=5538) 

South Asian 

(n=2671) 

White European 

(n=2267) 

Fasting 

glucose  

Albumin (-)2 

Lactate (-) 

LDL_D (+)  

 

 Lactate (-) 

Histidine (-) 

ApoA1 (-)  

HDL-C (-)  

HDL2-C (-)  

LDL_D (+)  

2-hour post 
glucose  

 Albumin (-) DHA (+)  
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Figure 1: Flow chart of study participants from the Born in Bradford (BiB) 

cohort included within this study. 

 

Figure 2: Circular bar plot identifying key metabolites (VIP ≥ 1) that 

distinguished 414 women with gestational diabetes mellitus (GDM) from 414 

women without GDM.  

Mean average VIP scores across 20 PLSDA model iterations (ncases = 414). Bars 

represent standard errors (SEs). The PLSDA included maternal age (years), BMI 

(continuous), smoking status, parity, and multiple pregnancy status, and ethnicity. 

Red line denotes VIP cut-off of 1. Units mmol/L unless stated. GRM, Glycolysis 

Related Metabolites; LPS, Lipoprotein Particle Size; MUFA, total monounsaturated 

fatty acids; SFA, total saturated fatty acids; VLDL_D, mean diameter of very-low 

density lipoproteins. 

 

Figure 3: Circular bar plot of ethnically stratified analyses identifying key 

metabolites (VIP ≥ 1) that distinguished GDM women from non GDM women in 

South Asians (ncases=286) 2and white Europeans (ncases=128). 

Mean average VIP scores across 20 PLSDA model iterations (ncasesSA = 286, 

ncasesWE=128). Bars represent standard errors (SEs). The PLSDA was run separately 

for SA (blue) and WE (red) women and included maternal age (years), BMI 

(continuous), smoking status, parity, and multiple pregnancy status. Red circular line 

denotes VIP cut-off of 1. No lipoproteins demonstrated a VIP >1 and were not 

included in the figure to preserve space. Units mmol/L unless stated. 18.2 LA, 18.2 

Linoleic acid; GRM, Glycolysis Related Metabolites; LPS, Lipoprotein Particle Size; 
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MUFA, total monounsaturated fatty acids; SFA, total saturated fatty acids; Tot FA, 

Total fatty acids; VLDL_D, mean diameter of very-low density lipoproteins. 
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