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Abstract 

Mendelian Randomization (MR) uses genetic instrumental variables to make causal 

inferences. Whilst sometimes referred to as “nature’s randomized trial”, it has distinct 

assumptions that make comparisons between the results of MR studies with those of actual 

randomized controlled trials (RCTs) invaluable. To scope the potential for (semi-)-automated 

triangulation of MR and RCT evidence, we mined ClinicalTrials.Gov, PubMed and 

EpigraphDB databases and carried out a series of 26 manual literature comparisons among 

54 MR and 77 RCT publications. We found that only 11% of completed RCTs identified in 

ClinicalTrials.Gov submitted their results to the database. Similarly low coverage was 

revealed for Semantic Medline (SemMedDB) semantic triples derived from MR and RCT 

publications –25% and 12%, respectively. Among intervention types that can be mimicked 

by MR, only trials of pharmaceutical interventions could be automatically matched to MR 

results due to insufficient annotation with MeSH ontology. A manual survey of the literature 

highlighted the potential for triangulation across a number of exposure/outcome pairs if 

these challenges can be addressed.  We conclude that careful triangulation of MR with RCT 

evidence should involve consideration of similarity of phenotypes across study designs, 

intervention intensity and duration, study population demography and health status, 

comparator group, intervention goal and quality of evidence.  
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Introduction 

Randomized controlled trials (RCTs) are deemed the “gold standard” in evaluating the 

efficacy of interventions and guiding practice in clinical research, with well-established 

methodology1. In RCTs, a selection of individuals intended to represent the target 

population is randomly assigned to a treatment or control group, allowing estimation of the 

intervention’s effectiveness in the absence of confounding variables and reverse causality 

that are present in observational studies. In the past two decades an approach to causal 

inference using natural genetic variation, known as Mendelian Randomization (MR) – 

usually implemented as an instrumental variable (IV) analyses – has gained popularity2,3. 

This approach has been referred to as “nature’s randomized trials”4, and is based on the 

randomization from parents to offspring of genetic variants encapsulated in Mendel’s laws 

of segregation and independent assortment2,5. At a population level the randomization is 

approximate, but still allows genetic variants that are robustly associated with the measured 

exposure to be used to estimate the unbiased causal effect of an exposure (generally acting 

across life) on health outcomes, as long as certain assumptions, discussed in detail 

elsewhere2,3,6, are met.  

Despite drawing on observational data, the MR approach broadly aligns with that of a 

randomized controlled trial, where the goal is to estimate the causal effect of an 

intervention on the given endpoint based on groups (arms) which do not differ with respect 

to confounding variables (Figure 1). However, since in MR randomization takes place at 

conception, the time lag to the start of outcome recoding is longer7 compared to RCTs, 

where median duration of phase 3 trials is 40 months8. Similarly to RCTs, most MR analyses 

should be free of confounding and reverse causation bias due to variants being allocated 

randomly before birth and outcome condition onset.  

Previous research has shown examples of evidence triangulation where MR results 

predicted the overall RCT results based on totally orthogonal data with an unrelated set of 

systematic errors and biases9. For instance, MR demonstrated the lack of effect of 

genetically-predicted concentrations of HDL-C on cardiovascular events10–12  as well as 

selenium in prostate cancer prevention trials13,14. On the other hand, MR showed the 

beneficial effect of lifelong endogenous low LDL-C levels15, HMG-CoA reductase inhibition 

(statin drug target) and PCSK9 inhibition on cardiovascular disease15,16, while predicting also 

the increased risk of type 2 diabetes (T2D) as a side-effect of statin usage. However, three 

independent MR studies were at odds with later RCTs by predicting increased risk of T2D 

also as a side-effect of PCK9 inhibition17.  

There are several possible explanations for apparent or real discordance in the results of 

RCT and MR studies. These range from different durations, magnitude and time-varying 

nature of the exposure, origin of the study populations, and natural genetic variation 

imperfectly mimicking the molecular action of the drug, some of which we explore. The 

direct comparison of MR and RCT findings is facilitated by the use of a precisely-defined 

estimand18, for example, the effect on incident coronary heart disease risk of lowering LDL 

cholesterol by 1 mmol/l for 5 years. Whilst RCTs will estimate something close to this, and 

be scalable to it, with MR studies the exposure difference associated with the genetic 
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instruments will often exist from birth (or before) and may change in magnitude over 

time19. This is discussed further in the Supplementary Box. 

Whilst RCTs can provide the highest-quality evidence, they may have limitations. They are 

often expensive to carry out, can be of small size and lack external validity20, have short 

follow-up and typically take place after disease onset21,22. As in other study types, RCT 

results may be flawed due to poor design and execution, e.g. imperfect randomization, 

unblinding and differential loss to follow-up between study arms.  

Unlike RCTs, MR studies are inexpensive and quick to perform when suitable genetic 

instruments are available. Therefore, they can potentially prioritize intervention-condition 

pairs to assess in RCTs. Moreover, it has been proposed that MR also guide the design of 

RCTs, improving eligibility criteria to prioritise groups most likely to benefit, suggesting 

diseases for composite endpoint construction, and alerting to potential side-effects1,23. 

Since MR analyses suffer a different set of biases than RCTs, MR evidence can be used to 

complement RCTs and other study designs in the triangulation framework to guide 

therapeutic development and clinical practice24–26. Finally, the extensive use of existing 

observational data for MR enables intervention targets to be evaluated in a wider range of 

sub-populations than is feasible for RCTs (improving generalizability), and allows 

comparisons to be made that might be unethical in experimental studies, for example when 

there is strong evidence in favour of a particular treatment.   

The goal of this research is to survey the extent of concordance between MR and RCT 

studies to date and identify possible factors for disparities in the direction of effect, which 

limit the ability to extrapolate from MR results to RCTs and increase the complexity of the 

triangulation process. In this study, we aimed to carry out a systematic analysis of MR and 

RCT results using automated mining of data in the public domain, including the 

ClinicalTrials.Gov27, EpigraphDB28 and PubMed databases. We evaluate the 

comprehensiveness and scope of the data available and potential for comparative analyses 

between MR and RCTs. We then go on to develop a series of case-studies looking in detail at 

MR and RCT comparisons across 26 exposure-outcome pairs. Throughout, we use the term 

“intervention” as synonymous with “exposure” and “condition” as synonymous with 

“outcome”. 

Results 

ClinicalTrials.Gov data overview 

In total, we found 379,094 individual studies were registered with a unique ClinicalTrials.gov 

identifier. We filtered them using a number of steps to identify RCTs and facilitate 

comparison with MR (Figure 2). In our analysis, we identified 166,954 RCT studies (44% of 

the total). To allow semi-automated comparison with MR studies, we focussed on the study 

subset which submitted their statistical analysis results to the database (referred to as the 

main dataset, Supplementary Dataset 1). However, we found that only 4% of studies – 

13,807 met this criterion, along with including background information on the trial. To 

expand that number, we also considered an additional 23,080 RCT studies which did not 
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publish their results in ClinicalTrials.gov but instead linked to a peer-reviewed publication 

(referred to as the literature dataset, Supplementary Dataset 2).   

The majority of RCTs in the main dataset followed parallel assignment of participants to 

treatment (Figure S1a), most were designed for treatment (n=10,812, Figure S1b), rather 

than prevention (n=1,422) and the vast majority of them had been completed (Figure S1c). 

More trials were observed to be in phase 3 than 4 (Figure S1d), most trials included both 

males and females (Figure S1e), and a great majority had 2 arms (Figure S1f). The median 

number of primary outcomes was 1 (Figure S2a), with a median of 5 secondary outcomes 

(Figure S2b). Over half of studies report at least 1 result with p-value less than 0.05 (Figure 

S2c). Comparison with features of all RCTs in the database showed that our selection was 

broadly representative (Supplementary Dataset 3), although our dataset was enriched for 

completed and late-phase trials. 

Suitability of MeSH annotation  

In order to attempt automated matching of RCTs and MRs involving similar interventions 

and outcomes for RCTs and MR, we needed to first establish the quality of annotation of 

RCTs with MeSH (Medical Subject Headings) in ClinicalTrials.Gov. The most common 

intervention was Drug (Table S1). Since we were only interested in the intervention types 

which can be instrumented by MR, we also focussed on the 4th and 7th most popular types 

of interventions: Behavioral and Dietary Supplement. We found that MeSH intervention 

annotations were missing for only 19% and 16% of Drug interventions in the Main and 

Literature datasets, accordingly (Table 1). However, the overwhelming majority of RCTs in 

the Behavioral and Dietary Supplement category did not contain a MeSH intervention term. 

Due to well standardised disease taxonomy, a much lower level of missing data was found 

for MeSH condition terms. This allowed us to proceed with automated analysis of Drug RCT 

data, however, for Behavioral and Dietary Supplement we were only able to do a manual 

screening for RCTs with corresponding MR studies.  

Pharmaceutical interventions in RCTs and MR 

Genetic instrumental variables in MR can be used as proxies for pharmaceutical 

interventions in RCTs. Protein (pQTL) or expression (eQTL) quantitative trait loci (QTL), i.e. 

variants associated with expression of protein drug targets are used to directly proxy the 

action of a drug. Here we use the biggest MR dataset for drug target protein-disease 

associations, examined in whole blood, from Zheng et al. (2020)29. We focussed on cis-acting 

instruments as a more specific marker for drug efficacy as trans- instruments are more likely 

to be pleiotropic, potentially leading to spurious results23. 

We matched the drug target proteins in Zheng et al. (2020) with drug-gene associations 

sourced from EpigraphDB28. This allowed us to merge the Zheng et al. (2020) dataset with 

the main and literature RCT dataset via the drug listed in EpigraphDB and MeSH drug 

intervention term, accordingly. For the outcome, we were then able to match RCTs and MR 

manually due to the reasonably low number of hits. The results, displayed in Table 2 show 

overlap of the RCT and MR datasets. We found 4 drugs: evolocumab/alirocumab, 

ustekinumab and mipomersen that share support from both MR and RCT studies. 
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evolocumab/alirocumab and mipomersen inhibit key players (PCSK9 and apoB) in lipid 

transport helping to lower plasma LDL-C levels30. The Zheng et al. (2020) MR study showed a 

negative effect of reduced PCSK9 levels on high cholesterol in the UK Biobank, while in 25 

RCT studies drug-induced abrogation of PCSK9 activity led to positive outcomes in the 

treatment of hyperlipidemia, hypercholesterolemia and dyslipidemias in general. Similarly, 

reduced expression/activity of apoB in MR and 6 RCT studies resulted in genetically 

predicted lower levels of LDL cholesterol and total cholesterol in the UK Biobank as well as 

improved outcomes in the treatment of dyslipidemias, respectively. The third example of a 

good match between RCT and MR studies concerns inhibition of the p40 subunit of 

interleukin 12 and 23 (IL12B)31.  Both MR and 21 RCTs show benefit of inhibition of p40 on 

immune-mediated disease: psoriasis and inflammatory bowel disease. 

In general, pQTL MR-based prediction of drug target-condition pairs offered good recall 

when compared with the pairs in the Open Targets Platform for the proteins with MR 

evidence. The only drug target indications missing included conditions not analysed in the 

MR study, such as CD33 protein being the drug target for treatment of leukemia, with the 

exception of ACHE (acetylocholinoesterase) whose inhibitors (galantamine, donepezil, 

rivastigmine) are used for treatment of cognitive decline in Alzheimer’s disease32.  

We also compared the RCT dataset with Zheng et al. blood transcript expression (eQTL)-

derived MR analysis (available in EpigraphDB: https://epigraphdb.org/xqtl). In total, we 

identified 15 drug target-disease matches in the eQTL dataset (Table S2), although unlike in 

the pQTL matches, the direction of effect in MR was incorrect in 8 cases. Nevertheless, the 

eQTL MR results agreed with some well-known drug effects: HDL-C and LDL-C lowering 

action of CETP and HMGCR inhibitors33, respectively, and blood pressure-lowering action of 

ACE inhibitors34. 

PubMed-sourced MR and RCT studies 

In addition to searching through the ClincalTrials.Gov database, we also queried PubMed for 

RCT and MR publications. In total, we found 3,538 MR studies published since mid-2000s 

and 63,187 RCTs published since 1970 until 2020 (Figure 3).  

Semantic analysis with SemMedDB 

We subsequently wanted to establish the thematic overlap between MR and RCT studies 

using an alternative method involving semantic analysis. SemMedDB35 provides a vast 

repository of semantic predications (subject-predicate-object triple, e.g. LDL-C causes 

ischemic heart disease). We linked the MR and RCT publications identified by our PubMed 

search to their corresponding SemMed triples in EpigraphDB using PubMed ID. Overall, only 

12% and 25% of RCT and MR papers, respectively, had a semantic triple associated with 

them (Figure 3). When ignoring the predicate, and focusing only on the subject and object, 

we found a total of 10,875 unique exposure-outcome pairs, discussed in detail in the 

Supplementary Note. However, only 125 of these were found to be shared across MR and 

RCT studies.  

https://epigraphdb.org/xqtl


 

6 
 

We then investigated the 125 matching subject-object pairs between MR and RCT studies 

(Table S3), as well as individual top counts among subjects (Table S4) and objects (Table S5). 

T2D, insulin and obesity were found among the top shared risk factors, along with lipids and 

vitamin D. Top outcomes included T2D, cardiovascular disease, asthma and Alzheimer’s 

disease. 

Case studies of matching MR and RCTs 

Since our semi-automatic mining of MR and RCT literature brought limited results for 

behavioural and nutritional interventions, we selected 26 intervention-outcome case-

studies by manual mining of the literature representing common lifestyle risk factors, 

dietary and behavioural exposures, paired with common cardiovascular, glycemic, 

neuropsychiatric, musculoskeletal, autoimmune and cancer outcome phenotypes. In total, 

we surveyed 54 MR and 77 randomized controlled trial publications (RCTs and meta-analysis 

of RCTs, Supplementary Dataset 4, Figure 4) which were systematically compared across 

several criteria shown in sample Table S6, and encompass those in the popular PICO 

(Population, Intervention, Comparison, and Outcome) framework36.  

There, we compare an MR study and two RCT meta-analyses on the effect of vitamin D 

supplementation in multiple sclerosis (MS)37–39.  Whilst the RCTs looked at potential 

therapeutic effect of vitamin D in diagnosed MS patients over 6 months-2 years: measured 

disability (EDSS score) and recorded relapses as outcomes, the MR study took place in the 

general population and measured the causal effect of genetically predicted lifetime 

circulating vitamin D concentrations on prevention of MS. The conclusions of MR and RCT 

studies did not align well, with MR analyses providing evidence for reduced risk of MS 

conferred by higher vitamin D levels, but no significant therapeutic effect of vitamin D in 

existing MS was found in the 5 small meta-analyzed trials. Differences which may impact on 

the ability for MR to complement RCT studies are summarised in Table 3 and discussed 

below based on this series of case-studies. 

1) Exposure/Intervention 

We found that overlapping MR and RCT interventions are often not perfectly identical which 

may impact on the estimated direction of effect. For example, MR exercise exposures are 

based on genetic variants associated with self-reported physical activity (moderate-to-

vigorous and vigorous)40,41 in studies assessing the effect on both lipids and bone mineral 

density (BMD). However, the corresponding RCTs used particular types of exercise, such as 

walking42, aerobic exercise43,44, progressive resistance training45 and maximal strength 

training46 as interventions. While a MR study41 and two trials46,47 showed concordant (Figure 

4), positive effect of exercise on BMD, we found that the effect of exercise on lipids did not 

match between MR and RCTs, with MR study40 reporting null effect and trials generally 

finding positive effects on HDL-C concentration and negative on LDL-C, total cholesterol and 

triglycerides blood levels43–45,48. 

Furthermore, intensity of intervention can affect the comparative value of MR and RCT 

study conclusions. The MR study of vitamin D levels on bone fractures49 was only able to 

assess linear effects of the normal range of circulating 25-hydroxyvitamin D concentrations. 
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Consequently, the positive effect of high-concentration vitamin D (≥700 IU daily) on bone 

fractures in the elderly seen in RCTs50–52 may not have been accessible in the MR study. 

2) Intervention goal 

The intervention goal between MR and RCT studies can match (both prevention or 

treatment) or be misaligned which can potentially impact the ultimate conclusions of the 

study. We found the latter to be the case for the effect of exercise on schizophrenia. Two 

MR studies found a null preventative effect of exercise on schizophrenia53,54, while 3 meta-

analyses of RCTs found a consistent effect of a variety of exercise types on improving total 

and negative symptoms of schizophrenia55–57 (Figure 4).  

3) Outcome 

The short duration of RCTs mean some outcomes (e.g. myocardial infarction) do not 

accumulate enough events to detect a significant effect, therefore composite measures 

grouping related diseases are often used. When comparing the effect of systolic blood 

pressure (SBP) on cardiovascular disease (CVD) outcomes, we found matching conclusions 

with elevated SBP increasing the risk of CVD both in RCT58–60 and MR61–63 studies (Figure 4), 

with MR studies using both single disease outcomes and a composite outcome. However, 

MR studies analysing the impact of BMI on cardiovascular disease found reduced adiposity 

led to reduction in arterial hypertension, CVD and stroke64,65, which contrasted with the 

results of one of the biggest RCTs to date. The Look AHEAD RCT in older type 2 diabetics 

found no preventative effect of weight loss on a composite outcome relating to mortality 

from cardiovascular causes, non-fatal myocardial infarction, non-fatal stroke or 

hospitalization for angina66.  

Secondly, RCT outcomes, are often on a quantitative scale measuring symptom strength 

according to established metrics, (e.g. depressive symptoms on Hamilton Depression Rating 

Scale67). However, the best disease GWAS used to identify MR instruments often represent 

binary disease outcomes, which could potentially lead to differential conclusions due to 

reduced power to detect subtler therapeutic effects. While exercise is causally associated 

with reduced depression and depressive symptoms both in MR68,69 and RCTs55,67,70–73, the 

differences in outcome phenotypes could potentially contribute to null MR results74,75 and 

positive effect of vitamin D on attenuating eczema symptoms in RCTs76–79.  

4) Source population 

MR studies are likely to draw from a wider demographic than RCTs due to use of biobanks 

and GWAS consortia, while RCTs focus on high risk groups23. For example, while in the MR 

study conducted in general population, there was no strong significant effect of exercise on 

glycemic markers: HbA1c, fasting glucose and HOMA-IR80, a significant reduction was found 

in the meta-analysis of 32 RCTs involving patients with T2D81.  

On the other hand, 5 Mendelian randomization82–86 studies along with 3 large RCTs87–89 

consistently provide evidence that weight loss is causally associated with reduced risk of 

T2D (Figure 4), despite MR including the general population and RCTs focussing on at-risk 

individuals with impaired glucose tolerance.   
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As another example of possible demographics-driven differences in trial and MR results, MR 

studies on the relationship between vitamin D levels and atopic dermatitis were conducted 

in the general population74,75, while RCTs were conducted separately in children in 

Mongolia76 and Boston, USA77 with winter atopic dermatitis and in adolescent and adult 

Iranians78,79.  

5) Comparator group 

Firstly, due to ethical considerations, trials of harmful behaviours such as alcohol drinking 

and smoking focus on cessation or reduction in existing users, and do not include never-

smokers or never-drinkers as controls, unlike MR studies, which can potentially lead to 

differences in effect23. Nevertheless, the two outcomes analysed here: hypertension for 

alcohol intake and lipids for smoking showed generally congruent results across study types 

(Supplementary Dataset 4). 

Secondly, where it would be unethical to withhold already available efficacious treatments, 

trials will often include another active intervention in the comparator group23, for example 

statins in the trials of effect of PCSK9 inhibitors90,91 on LDL-C and cardiovascular events. Such 

RCT design can be mimicked by factorial MR estimating the interaction of multiple 

exposures, as shown in matching results of the equivalent MR study16. 

6) Duration of intervention 

While the magnitude of effect seen in trials with long (> 3 years: weight loss to treat 

hypertension92,93/type 2 diabetes87–89, blood pressure reduction to lower cardiovascular 

disease risk58–60) and short (< 6 months: alcohol intake reduction to lower blood pressure94–

97, exercise to benefit bone mineral density46/depression55,67,71–73,98) intervention may vary, 

we find both can result in directional effects consistent with MR results (Figure 4), although 

with exceptions66,99.  

Triangulation of MR and RCT results 

Combining RCT and MR results can offer complimentary evidence on the effectiveness of 

interventions. Powerful examples include congruence of positive effect of high BMI on 

hypertension across MR100–103 and RCT92,93 studies, high BMI on T2D risk in MR82–86,104 and 

RCTs87–89, and the null effect of vitamin D on various glycemic markers in diverse 

populations in MR105, RCTs106,107 and RCT systematic review108. 

We also found cases, where the majority of studies pointed to one direction of effect, with 

one MR or RCT identified as an outlier study. In these cases, having a wide array of MR and 

RCT studies (ideally meta-analysed) can be helpful in establishing the likely true causal 

direction of effect. For instance, 2 MR studies109,110, a meta-analysis of 5 RCT studies111 and 

two RCTs112,113 indicate no effect of vitamin E on prostate cancer incidence with one outlier 

RCT114 showing benefit of vitamin E supplementation in older smokers. Similar contrary 

findings were found for 1 RCT115 showing beneficial effect of vitamin D on preventing 

depressive symptoms, as opposed to null effect in 4 MR studies116–119 and 2 RCTs120,121. 
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On the other hand, MR analyses can show spurious disagreement with the rest of the 

evidence base. For instance, 2 MR papers122,123 and a meta-analysis of 16 RCT123 studies 

reveal no significant effect of vitamin D on blood pressure in the general population, with 

the exception of one MR study124 that indicated a blood pressure-lowering effect of higher 

vitamin D status. Similarly, a range of study types: one MR analysis125, one RCT126 and a 

meta-analysis of 27 prospective cohorts127  (only some of them RCTs) confirm a negative 

impact of smoking on HDL-C levels, bar one MR study showing no significant effect128.  A 

series of RCT meta-analyses129–131 support an effect of coffee consumption (especially 

unfiltered) on unfavourable blood profile, although this is likely explained by 

diterpenes132,133 rather than caffeine, as the latter shows evidence of cardioprotective 

effects134. However, only the recent biggest MR study133 to date found a significant effect of 

coffee consumption on LDL-C and total-C levels, unlike two previous smaller MR 

analyses135,136, which found a non-significant directionally-consistent relationship. 

Discussion 

Our study highlighted that sparsity of data in the electronic databases seriously hampers the 

ability to automatically parse and compare results of MR and RCT studies. Released for the 

first time in 2000, ClinicalTrials.Gov is the most comprehensive resource for modern RCT 

(only <1,000 studies, out of ~167,000 analysed RCTs were started before 2000).  

Nonetheless, we found that only 11% of all completed RCTs submitted their results to 

ClinicalTrials.Gov, with median trial start date in 2012. Despite 2007 legislation requiring 

submission of RCT results to ClinicalTrials.gov within 1 year of completion (with 

exceptions)137, only 38% of eligible trials for 2008-2012 submitted their results at any 

time138 which rose to 64% for 2018-2019139. Furthermore, 60% of studies for failed agents 

are reported not to be published in peer reviewed journals140, and in the work presented 

here we found MeSH annotations were missing from the majority of complex, behavioural 

and dietary interventions. These factors significantly hamper efforts to systematically 

triangulate RCT evidence with other studies. 

Next, semantic triples describing conclusions of MR and RCT studies automatically extracted 

from literature abstracts using rule-based methods also had low coverage, with only 25% of 

MR and 12% of RCT studies associated with >=1 triples. Consequently, we instead decided to 

focus on a detailed qualitative investigation of a series of case studies to identify the issues 

associated with triangulating MR and RCT studies 

Combining RCT and MR results can offer complimentary evidence on the effectiveness of 

interventions. Powerful examples include congruence of positive effect of high BMI on 

hypertension across MR100–103 and RCT92,93 studies, high BMI on T2D risk in MR82–86,104 and 

RCTs87–89, and the null effect of vitamin D on various glycemic markers in diverse 

populations in MR105, RCTs106,107 and RCT systematic review108. We also found cases, where 

the majority of studies pointed to one direction of effect, with one MR or RCT identified as 

an outlier study. In these cases, having a wide array of MR and RCT studies (ideally meta-

analysed) can be helpful in establishing the likely true causal direction of effect.  
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Our analysis of genetically predicted effects of perturbation of drug target protein 

expression on a number of conditions with trials submitted to ClinicalTrials.Gov revealed 

good concordance with established therapeutics for pQTLs. However, due to the limited 

number of proteins (n=1,002) and phenotypes (n=225, many non-diseases per se) in Zheng 

et al. (2020)141, the comparison is necessarily very preliminary. We identify only true 

positive cases, as false positives and true negatives are difficult to evaluate due to sparsity 

of drug clinical trial results in ClinicalTrials.Gov/literature140 and inclusion of non-disease 

phenotypes in MR analysis. Anecdotally, we found no MR evidence that decreased 

expression of PLA2G2A leads to reduced cardiovascular disease, which agrees with lack of 

efficacy of PLA2G2A inhibitor in clinical trials142–144. 

The mixed reliability of eQTL instruments in predicting direction of effect on the outcome 

could be due to a number of factors such as: less than perfect correlation between mRNA 

and protein levels145, hidden pleiotropy in single instruments used in the MR analysis 

(directly observed for IL2RA)146, presence of negative feedback loop involved in the drug 

mechanism147, translation into protein isoforms with distinct biological effects148 and 

differential cell-type specific drug effect149.  

The duration of intervention varies between RCTs and MR studies, with the former spanning 

no more than the duration of the trial, whilst the latter can represent durations as long as 

the entire lifetime (although many exposures, such as alcohol intake, will be over a shorter 

time period)7. Moreover, intervention in RCTs with long follow-up is not necessarily similarly 

intensive throughout its duration, or may cease altogether after some time67,92, i.e. duration 

of follow-up is longer than duration of intervention in order to allow accumulation of 

enough events and/or confirm durability of intervention effect. Examples include lifestyle 

interventions, such as exercise67 or weight loss programmes87 like the Look AHEAD trial, 

with median follow-up of 9.6 years, where group and individual counselling sessions took 

place weekly in the first 6 months and tapered off over time66. That is why our analysis 

focussed on comparing direction of effect, while ignoring magnitude of effect150. However, 

in certain cases when enough reference data is available, it is feasible to compare MR and 

RCT effects on the same exposure difference scale151.  

Further impediments to direct comparison between MR and RCTs include differences in 

outcome definition (composite58 versus single conditions63). Access to rare subpopulations 

with existing conditions, such as cancer patients receiving specific therapy152 which are 

routinely exclusively enrolled into RCTs can be difficult in MR due to the size of GWAS 

biobanks relative to N required for good power.  

There are also a number of interventions and outcomes with no single phenotype which 

could be instrumented with GWAS variants, making MR approaches difficult, although 

sometimes possible with innovative MR approaches153. This is especially true of lifestyle 

interventions – such as different forms of psychological therapy, complex diet regimens154 

and fasting. Absent or limited heritability of a number of interventions and conditions, such 

as rehabilitation and traumatic injury makes MR approaches inaccessible.  
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The majority of MR studies track the onset rather than progression of disease due to 

availability of GWAS phenotypes155 which are often a (binary) single measurement, as 

opposed to multiple quantitative outcomes frequently measured in RCTs156. For that reason, 

triangulation of MR of onset with RCTs whose intervention is targeting progression of 

disease, may or may not result in agreement, as seen in our comparison of the effect of 

exercise on schizophrenia onset/progression (discordant) or depression (concordant) and 

vitamin D effect on atopic dermatitis onset/progression (discordant).  

Many MR studies may be underpowered due to large sample required in indirect 

estimation157 as these studies are typically studies of convenience. This bias is less common 

in RCTs due to pre-registration of study design including power analysis1, uncommon in 

MR158. Null effect in MR studies may be therefore spurious and not predictive of RCTs for 

that reason, as seen in two smaller MR studies135,136 out of three133 investigating the effect 

of coffee intake on blood lipids, contrasting with strong clinical trial129–131 and biochemical 

evidence132,133,159.  

Furthermore, the presented literature survey used a simple heuristic of reported statistically 

significant evidence (p-value < 0.05 after multiple testing correction) to compare 

conclusions across MR and RCT studies, which has well-known limitations160,161. Inclusion of 

the full-spectrum of scaled point-estimates along with their confidence intervals will reveal 

a more detailed picture in triangulation of MR and RCT evidence (Supplementary Box). 

Our research highlights the challenges and benefits of triangulation of MR with RCT 

evidence. Future efforts, outside of the scope of this work, will focus on fully quantitative 

approaches towards triangulation, involving magnitude of effect size and not just its 

presence and direction25. Developers of such methods will need to be mindful of 

discrepancies in research hypothesis, duration and intensity of exposure, outcome 

measures, intervention aim, underlying population characteristics, violations of test 

assumptions as well as statistical power of the analysis. Furthermore, automated 

triangulation based on electronic databases requires intensive effort towards structured 

capture of both MR and RCT study results and associated meta-data, as well as annotation 

with shared ontologies, which is still challenging using current natural language processing 

methods, despite constant progress36,162,163.  

Methods 

ClinicalTrials.Gov Data sources 

All ClinicalTrials.Gov study data is available for download as PostgreSQL database from The 

Database for Aggregate Analysis of ClinicalTrials.gov (AACT)164 released by The Clinical Trials 

Transformation Initiative165. We downloaded its static release from 1st August 2021. 

Processing of the database files was carried out using custom Python and R scripts.  

ClinicalTrials.Gov Data filtering 

We filtered the ClinicalTrials.Gov studies using a number of criteria to identify RCTs with 

submitted results allowing direct comparison with MR studies. These are depicted in Figure 

2 and provided in detail in Supplementary Note.  
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EpigraphDB queries 

EpigraphDB28 was used to collect information about confirmed drug-target associations 

which were initially sourced from the Open Targets Platform166 and verified in DrugBank167. 

We also used EpigraphDB28 to source SemMedDB35 semantic triples associated with select 

MR and RCT publications identified by PubMed. SemMedDB triples in EpigraphDB are 

prefiltered for annotation of epidemiological studies as described previously168. 

PubMed Data harvesting 

We searched PubMed for all RCT and MR studies published before 2021 on 1st October 

2021. For RCTs, we searched titles and abstracts for keywords: “randomized controlled trial” 

or “RCT” and we used PubMed’s in-built Randomized Controlled Trial label filter to obtain 

more specific hits, reducing the number of hits from 112,015 to 63,187. In order to retrieve 

potential MR studies, we used the keywords: “mendelian randomization” or “mendelian 

randomisation”.  We also considered using MeSH labels “Randomized Controlled Trial” and 

“Mendelian Randomization Analysis” but both in case of RCT and MR studies they returned 

unrealistically low number of hits (7,999 and 1,926, accordingly), a consequence of manual 

indexing. 

Literature searches 

We used Semantic Scholar and Google Scholar to survey MR and RCT literature indexed 

before 1st August 2021. We queried the databases with the following search terms: 

“[exposure] [condition] Mendelian Randomization” and “[exposure] [condition] Randomized 

Controlled Trial”. The articles were initially screened by title and abstract. We included 

original research MR, RCT studies as well as meta-analyses.  As exposures, we chose 

common lifestyle risk factors for chronic disease169 – body mass index (BMI), smoking, 

alcohol intake, blood pressure.  Examples of dietary intervention (vitamin D/E, coffee) and 

behavioural intervention (exercise) were also selected. Outcomes included a number of 

cardiovascular disease and risk biomarkers, glycemic traits, neuropsychiatric disease, bone 

mineral density, atopic dermatitis and prostate cancer, amongst others (Supplementary 

Dataset 4). MR and RCT studies were compared across: population characteristics (sex, 

ethnicity, age, health status), comparator group, goal of intervention (prevention or 

treatment/slowing progression), direction of effect, length of follow-up, main test statistic in 

the study and its impact as judged by citation number. 
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Dataset Intervention type Total  
intervention 

MeSH 
missing  

% 
missing 

condition 
MeSH 

missing 

% 
missing 

Main Drug 10,187 1,915 18.8% 936 9.2% 

Literature Drug 9,554 1,526 16.0% 914 9.6% 

Main Behavioral 1,013 872 86.1% 203 20.0% 

Literature Behavioral 2,427 2,248 92.6% 496 20.4% 

Main Dietary Supplement 215 102 47.4% 30 14.0% 

Literature Dietary Supplement 662 449 67.8% 118 17.8% 

Table 1. Completeness of MeSH term annotation amongst the chosen intervention types in the 

Main (RCT results available in ClinicalTrials.Gov) and Literature (RCT results unavailable in 

ClinicalTrials.Gov but study linked to a publication with results) datasets. 
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Table 2. Drug target-disease matches supported by evidence from MR (blood pQTL instruments, Zheng et al. 2020) and RCT studies (Main dataset from 

ClinicalTrials.Gov).  

 

 

 

 

MR 
Exposure 

RCT Drug 
Intervention 

MR Outcomes RCT Conditions 
Matching 

trials 

Concordant 
direction of 

effect? 
xQTL 

PCSK9 
EVOLOCUMAB, 
ALIROCUMAB 

Non-cancer illness code  self-reported: high 
cholesterol || id:UKB-a:108 

Hyperlipidemia, 
Dyslipidemia, 
Hypercholesterolemia, 
Mixed Dyslipidemia 

25 Yes pQTL 

APOB MIPOMERSEN 

LDL cholesterol || id:300, HDL cholesterol || 
id:299, Triglycerides || id:302, Non-cancer illness 
code  self-reported: high cholesterol || id:UKB-
a:108, Total cholesterol || id:301,  

Hyperlipidemia, 
Dyslipidemia, 
Hypercholesterolemia, 
Mixed Dyslipidemia 

6 Yes pQTL 

IL12B USTEKINUMAB 

Non-cancer illness code  self-reported: psoriasis 
|| id:UKB-a:100; Ulcerative colitis || id:970; 
Crohn's disease || id:12; Inflammatory bowel 
disease || id:294 

Psoriasis, Psoriatic Arthritis,  
Crohn's Disease, Colitis, 
Inflammatory Bowel 
Disease 

21 Yes pQTL 
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Table 3. Overview of discussed criteria for assessment of alignment of MR and RCT study features. 

 

  

Match criterion Issues to consider Example 

Exposure (intervention) 
similarity between analyzed exposures different types of exercise 

intervention intensity  vitamin D dosage 

Intervention goal prevention or treatment schizophrenia onset or treatment 

Outcome (condition) 

single or composite outcome single or composite cardiovascular outcomes 

binary versus categorical outcome 
depression or rating on depression 
assesment scale, such as Hamilton 

Depression Rating Scale 

similarity between analyzed outcomes different measures of adiposity 

Source population 
demographics young adults or elderly 

health status diabetic or healthy 

Comparator group 
exposure-naïve or previously exposed ex-smoker or never-smoker 

active intervention or placebo statin as comparator or placebo 

Duration of 
intervention/follow-up 

length of intensive intervention and 
follow-up 

short duration of intervention (< 6 months) 
or long duration and follow-up (>3 years) in 

RCT and MR 

not uniform intervention intensity or 
duration 

weekly counselling during the initial phase of 
the trial or throughout 
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Figure 1. Comparison of Mendelian Randomization and Randomized Controlled Trial design. After: 

Nitsch et al. (2006), Ebrahim & Smith (2008), Ference (2018). 
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Figure 2. Filtering steps applied to ClinicalTrials.Gov database. Filtering was designed to identify 

RCT trials whose final results statistics were uploaded to the database (Main dataset). In addition, 

other RCTs which published their findings in scientific journals were identified (Literature dataset). 
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Figure 3. Popularity of MR and RCT studies over time. We compare counts of MR and RCT papers 

indexed by PubMed (solid lines) with number of semantic triples derived from them using 

SemMedDb (dashed lines). 
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Figure 4. Summary of case series of MR and RCT studies with matching exposures (interventions) 

and outcomes (conditions). The values correspond to the number of analysed studies in a given 

category, while the cell background colour indicates summary direction of effect on the outcome 

when exposure is increased – we report direction of effect found either in all analysed studies or 

their majority (>50%).  
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