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Abstract 

Background: Long coronavirus disease 2019 (LC) is a chronic sequel of acute COVID-19. The 

exact pathophysiology of the affective, chronic fatigue and physiosomatic symptoms (labeled as 

“physio-affective phenome”) of LC has remained elusive. 

Objective: The current study aims to delineate the effects of oxygen saturation (SpO2) and body 

temperature during the acute phase on the physio-affective phenome of LC. 

Method: We recruited 120 LC patients and 36 controls. For all participants, we assessed the lowest 

SpO2 and peak body temperature during acute COVID-19, and the Hamilton Depression and 

Anxiety Rating Scale (HAMD/HAMA) and Fibro Fatigue (FF) scales 3 to 4 months later. 

Results: Lowered SpO2 and increased body temperature during the acute phase and female sex 

predict 60.7% of the variance in the physio-affective phenome of LC. Using unsupervised learning 

techniques we were able to delineate a new endophenotype class, which comprises around 26.7% 

of the LC patients and is characterized by very low SpO2 and very high body temperature, and 

depression, anxiety, chronic fatigue, and autonomic and gastro-intestinal symptoms scores. Single 

latent vectors could be extracted from both biomarkers, depression, anxiety and FF symptoms or 

from both biomarkers, insomnia, chronic fatigue, gastro-intestinal and autonomic symptoms.  

Conclusion: The newly constructed endophenotype class and pathway phenotypes indicate that 

the physio-affective phenome of LC is at least in part the consequence of the pathophysiology of 

acute COVID-19, namely the combined effects of lowered SpO2, increased body temperature and 

the associated immune-inflammatory processes and lung lesions. 

 

Keywords: Long COVID-19, Hypoxia, Depression, Chronic fatigue syndrome, Inflammation, 

Psychiatry, Neuro-immune  
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Introduction  

Long coronavirus disease 2019 or post-corona virus disease 2019 (post-COVID-19 or Long 

COVID) is a sequel of prior infection with severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) (Nalbandian, Sehgal et al. 2021, World Health Organization 2022). This syndrome 

is manifested as a cluster of symptoms mainly but not limited to fatigue, shortening of breath, 

persistent cough, chest pain, cognitive impairments, and affective symptoms (Renaud-Charest, Lui 

et al. 2021, Sandler, Wyller et al. 2021, Titze-de-Almeida, da Cunha et al. 2022). Similar 

consequences were also reported in previous epidemics, for example SARS-2003 and the Middle 

East respiratory syndrome (MERS-2012) (Lam, Wing et al. 2009, Moldofsky and Patcai 2011, 

Lee, Shin et al. 2019, Ahmed, Patel et al. 2020). 

There is a growing concern that Long COVID is becoming a serious health issue (Phillips 

and Williams 2021). Six months after the acute infection, 33% of COVID-19 patients may 

experience serious neuropsychiatric symptoms, while 13% of them even received a first diagnosis 

months after the acute phase (Taquet, Geddes et al. 2021). Regardless of whether COVID-19 

patients were symptomatic or asymptomatic during the acute phase of illness, 10-20% of them will 

experience Long COVID symptoms within weeks to months after recovery (Huang, Pinto et al. 

2021, World Health Organization 2022). Other results show that 80% of the recovered COVID-

19 patients suffer from at least one of the Long COVID symptoms, including fatigue, memory 

impairment, anxiety and depression (Lopez-Leon, Wegman-Ostrosky et al. 2021, Badenoch, 

Rengasamy et al. 2022). Interestingly, the prevalence of Long COVID is not affected by 

hospitalization status, disease severity, or length of follow-up (Davido, Seang et al. 2020, 

Badenoch, Rengasamy et al. 2022). 
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Acute SARS-CoV-2 infection is characterized by an exaggerated immune-inflammatory 

response and infiltration of the inflammatory mediators including pro-inflammatory cytokines into 

the lung tissues (Mehta, McAuley et al. 2020, Pelaia, Tinello et al. 2020, Al-Jassas, Al-Hakeim et 

al. 2022). The consequent lung injuries, which may be identified by chest computerized 

tomography abnormalities (CCTAs), are accompanied by lowered oxygen saturation (SpO2) which 

may aggravate the inflammatory responses and may persist even after full recovery (Solomon, 

Heyman et al. 2021, Vijayakumar, Tonkin et al. 2021, Al-Jassas, Al-Hakeim et al. 2022). Increased 

body temperature in the acute phase of illness is one of the most common signs of infection and 

inflammation and this marker is widely used to detect febrile SARS-CoV-2 individuals (Lippi et 

al., 2021). The degree of increments in body temperature reflect the severity of inflammation and 

the peak body temperature during the acute phase is associated with an increased mortality risk 

(Tharakan, Nomoto et al. 2020). 

The onset of Long COVID is attributed to precipitating factors associated with SARS-

CoV-2 infection including abnormal immune responses, inflammatory damage, alterations in 

microbiome/virome in response to viral interactions, hypercoagulability, abnormal signaling of the 

brainstem and vagus nerve, and even physical adaptations to inactivity or psychological factors 

(Calabrese 2020, Deng, Zhou et al. 2021, Nalbandian, Sehgal et al. 2021, Proal and VanElzakker 

2021). Furthermore, the onset of Long COVID fatigue was attributed to predisposing genetic and 

psychosocial vulnerabilities, and its socio-economic consequences, and perpetuating factors such 

as sleep disturbances, autonomic dysfunctions, and aberrations in endocrine functions (Theorell, 

Blomkvist et al. 1999, Papadopoulos and Cleare 2011, Jackson and Bruck 2012, Piraino, Vollmer-

Conna et al. 2012, Cvejic, Li et al. 2019, Nelson, Bahl et al. 2019, Sandler, Wyller et al. 2021). 

Moreover, SARS-CoV-2 infected people may show long-term effects on brain structure and 
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functions (Boldrini, Canoll et al. 2021), which may be due to neuroinflammation or the direct 

effect of hypoxia (Solomon 2021, Song, Zhang et al. 2021). 

Nonetheless, no studies examined the effects of acute COVID-19 biomarkers, such as 

lowered SpO2 and increased body temperature, on the mental and chronic fatigue symptoms 

during Long COVID. Hence, the aim of this study is to delineate the effects of SpO2 and body 

temperature during the acute phase on chronic fatigue syndrome and affective symptoms in Long 

COVID. In the current study, we use the precision nomothetic approach (Maes 2022) to delineate 

new pathway phenotypes and endophenotype classes which combine those two infection 

biomarkers with Long COVID mental and chronic fatigue symptoms. Such data are needed to 

understand the pathophysiology of Long COVID and post-viral symptoms in general and may help 

to predict who will develop chronic fatigue syndrome and affective symptoms due to COVID-19 

and viral infections in general. 

 

Participants and Methods  

Participants 

In the present study, we used a case-control study design (to examine differences between 

controls and Long COVID subtypes) as well as a retrospective cohort study design (to examine 

the effects of acute phase biomarkers on Long COVID symptoms). During the last three months 

of 2021, we recruited 120 participants who suffered from at least 2 symptoms of Long COVID 

and who were previously diagnosed and treated for acute COVID-19 infection. During their acute 

phase, the Long COVID participants had been admitted to various hospitals and centers in Al-

Najaf city for treatment of acute COVID-19, namely Al-Sader Medical City of Najaf, Al-Hakeem 

General Hospital, Al-Zahraa Teaching Hospital for Maternity and Pediatrics, Imam Sajjad 
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Hospital, Hassan Halos Al-Hatmy Hospital for Transmitted Diseases, Middle Euphrates Center 

Cancer, Al-Najaf Center for Cardiac Surgery and Trans Catheter Therapy. All patients had been 

diagnosed as moderate to severe acute COVID-19 based on their clinical symptoms and the WHO 

criteria (World Health Organization 2022) and positive results of reverse transcription real-time 

polymerase chain reaction (rRT-PCR). Upon recovery all patients showed a negative rRT-PCR 

test. Three to four months after admission for acute COVID-19 they showed at least two symptoms 

that were present for at least two months including fatigue, memory or concentration disorders, 

shortness of breath or difficulty breathing, chest pain, persistant cough, trouble speaking, muscle 

aches, loss of smell or taste, affective symptoms or fever (World Health Organization 2022). 

Additionally, we recruited 36 controls from the same catchment area, who were either employees 

or family or friends of staff members. We also included controls who demonstrated distress or 

adjustment symptoms because of lockdowns and social isolation to account for their confounding 

effects that are also evident in Long COVID patients. As such, 1/3 of the controls show HAMD 

levels between 7 and 12. All controls showed a negative rRT-PCR test and no clinical signs of 

acute infection including dry cough, sore throat, shortness of breath, loss of appetite, flu-like 

symptoms, fever, night sweats, and chills. Patients and controls were excluded if they had a 

lifetime history of psychiatric disorders, including major depression, bipolar disorder, anxiety 

disorders, schizophrenia, and substance use disorders, except tobacco use disorder (TUD), 

neuroinflammatory or neurodegenerative disorders including multiple sclerosis, chronic fatigue 

syndrome (Morris and Maes 2013), Parkinson’s and Alzheimer’s disease, and stroke, and systemic 

(auto)immune diseases such as diabetes mellitus, COPD, rheumatoid arthritis and psoriasis, and 

liver and renal diseases. We also excluded pregnant and lactating women. 
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Before participating in the study, all controls and patients or their parents/legal guardians 

provided written signed consent. The approval of the study was obtained from the institutional 

ethics board of the University of Kufa (617/2020). The study was accomplished under Iraqi and 

foreign ethics and privacy rules according to the guidelines of the World Medical Association 

Declaration of Helsinki, The Belmont Report, CIOMS Guideline, and International Conference on 

Harmonization of Good Clinical Practice; our IRB adheres to the International Guideline for 

Human Research Safety (ICH-GCP). 

 

Clinical assessments  

A well-trained paramedical professional recorded spO2 with an electronic oximeter 

provided by Shenzhen Jumper Medical Equipment Co. Ltd. and body temperature as assessed 

using a digital oral thermometer (sublingual until the beep). In the present study, we extracted both 

biomarkers from the patient records and used the lowest SpO2 and peak body temperature data 

that were measured during the acute phase of illness in the analyses. Based on those two 

assessments we computed a new index which reflects lowered SpO2 and higher temperature as z 

transformation of body temperature (z T) - z SpO2 (named the “TO2 index”). In all participants 

we registered the vaccinations they had received, namely AstraZeneca, Pfizer or Sinopharm. A 

semi-structured interview, conducted by a senior psychiatrist, assessed sociodemographic and 

clinical data in controls and Long COVID patients three to four months after recovery (mean ±SD: 

14.68 ±5.31 weeks) from acute COVID-19. We assessed the following rating scales: a) depressive 

symptoms were examined utilizing the 21-item Hamilton Depression Rating Scale (HDRS) score 

(Hamilton 1960); b) anxiety symptoms were assessed using the Hamilton Anxiety Rating Scale 
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(HAM-A) (Hamilton 1959); and c) and chronic fatigue and fibromyalgia symptoms using the 

Fibro-Fatigue (FF) 12-item scale (Zachrisson, Regland et al. 2002). 

We computed two HAMD subdomain scores: a) pure depressive symptoms (pure HAMD) 

were calculated as the sum of depressed mood + feelings of guilt + suicidal ideation + loss of 

interest; and b) physiosomatic HAMD symptoms (Physiosom HAMD) was computed as: anxiety 

somatic + gastrointestinal + genitourinary + hypochondriasis. Two HAMA subdomain scores were 

computed: a) key anxiety symptoms (Key HAMA) as anxious mood + tension + fears + anxiety 

behavior at interview; and b) physiosomatic HAMA symptoms (Physiosom HAMA) as somatic 

sensory + cardiovascular + gastrointestinal (GIS)+ genitourinary + autonomic symptoms 

(respiratory symptoms were not included in the sum). We computed one pure physiosom FF 

subdomain score as muscle pain + muscle tension + fatigue + autonomous symptoms + 

gastrointestinal symptoms + headache + a flu-like malaise (thus excluding the cognitive and 

affective symptoms). Moreover, using all relevant HAMD, HAMA, and FF items (z transformed) 

we calculated z unit based composite scores reflecting autonomic symptoms, sleep disorders, 

fatigue, gastro-intestinal symptoms, and cognitive symptoms. We calculated the body mass index 

(BMI) based on the equation dividing body weight in kilograms by height in meter 2. We made the 

diagnosis of TUD using DSM-5 criteria. 

 

Data analysis 

Differences in continuous variables between groups were checked using analysis of 

variance (ANOVA). Analysis of contingency tables (the χ2-test) was used to determine the 

association between nominal variables. Correlations between two variables were assessed using 

Pearson’s product moment correlation coefficients. We employed multivariate and univariate 
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general linear model (GLM) analysis to delineate the associations between study groups (controls 

versus patients divided into those with low and high TO2 index scores) and rating scale scores 

while controlling for confounding variables including age, sex, smoking and education. 

Consequently, we computed the estimated marginal mean values (SE) and conducted protected 

(the omnibus test is significant) LSD tests to conduct pairwise comparisons among the group 

means. Multiple comparisons were subjected to false discovery rate (FDR) p-correction 

(Benjamini and Hochberg 1995). Moreover, we used multiple regression analysis to delineate 

significant predictors of the rating scale scores while allowing for the effects of confounders. An 

automated stepwise method was employed with an 0.05 p-value to entry and 0.06 to remove. We 

computed for each significant explanatory variable the standardized beta coefficients with t 

statistics and exact p-value, and for the model F statistics and total variance explained (R2). 

Moreover, we always checked changes in R2 and collinearity issues using the variance inflation 

factor and tolerance. The White and modified Breusch-Pagan tests for homoscedasticity were used 

to check heteroskedasticity and if needed we computed the parameter estimates with robust errors 

using univariate GLM analysis. The significance was determined at p=0.05, and two-tailed tests 

were applied. Power analysis showed that using an effect size of 0.23, p=0.05, power=0.8 and 

three groups with up to 5 covariates in an analysis of variance the sample size should be around 

151 subjects. Therefore, we included 156 subjects, namely 36 controls and 120 Long COVID 

participants. 

In accordance with the precision nomothetic approach (Maes 2022) we aimed to construct 

endophenotype classes of Long COVID patients (using cluster analysis), and new pathway 

phenotypes (using factor analysis) by combining biomarker and clinical data. Exploratory factor 

analysis (unweighted least squares extraction, 25 iterations for convergence) was performed, and 
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the Kaiser-Meier-Olkin (KMO) sample adequacy measure was used to assess factorability 

(sufficient when >0.7). Moreover, when all loadings on the first factor were > 0.6 and the variance 

explained by the first factor was > 50.0%, and Cronbach alpha performed on the variables was > 

0.7, the first PC was regarded as a valid latent construct underpinning the variables. Canonical 

correlation analysis was used to examine the relationships between two sets of variables, whereby 

symptoms three to four months after the acute phase were entered as dependent variables and the 

biomarkers as explanatory variables. We computed the variance explained by the canonical 

variables of both sets and the variance in the canonical dependent variables set explained by the 

independent canonical variable set. The canonical components are accepted when the explained 

variance of both sets is > 0.5 and when all canonical loadings are > 0.5. Two step cluster analysis 

was performed considering categorical and continuous variables. The cluster solution was 

considered adequate when the silhouette measure of cohesion and separation was > 0.5. IBM SPSS 

windows version 28 was used for all statistical analyses. 

 

Results 

Sociodemographic data 

In order to divide the patient sample in two subgroups based on baseline SpO2 and body 

temperature data we performed two-step cluster analysis with being infected or not as categorical 

variable and body temperature and SpO2 as continuous variables. This cluster analysis showed 

three clusters with adequate cluster quality (silhouette measure of cohesion and separation of 0.62) 

comprising the healthy control sample (n=36), and patients with a low (group 1, n=88) versus very 

high (group 2, n=32) TO2 index. As such, patients with Long COVID were divided according to 

measurements during the acute infectious phase. Table 1 shows the sociodemographic data of 
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these three groups. Group 2 patients (high TO2 index) showed a significant increase in body 

temperature and decreased spO2 values as compared to group 1 patients (low TO2 index) and 

controls, while the low TO2 group showed lower SpO2 and higher temperature than controls. No 

significant differences in these groups were found in sex, TUD, residency, vaccination status, and 

BMI. The mean age was somewhat higher and education somewhat lower in the high TO2 group 

as compared with the low TO2 group and controls. 

 

Differences in psychiatric rating scales between study groups  

The measurements of the total and subdomains scores of the rating scales are displayed in 

Table 2. All total scores, the pure and physiosom HAMD and HAMA and pure FF scores and 

severity of autonomic and gastro-intestinal symptoms were significantly different between the 

three study groups and increased from controls → low TO2 group → high TO2 group. 

Furthermore, there were significant differences in pure HAMA, sleep disorders, fatigue and 

cognitive impairments between Long COVID patients and controls with a trend toward higher 

values in the high TO2 group. The intergroup differences remained significant using an FDR of 

p=0.01. Consequently, we have extracted the first factor from the pure and physiosom HAMD and 

HAMA and pure FF scores (this first factor explained 66.99% of the variance; KMO=0.877, all 

loadings on the first factor > 0.724). This factor therefore underpins the different subdomains and 

was labeled the “physio-affective core” or “physio-affective phenome” of Long COVID. Table 2 

shows that this score was significantly different between the three groups. 

 

Construction of pathway-phenotypes 
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To construct pathway phenotypes, we employed factor analysis to examine whether latent 

vectors could be extracted from the SpO2 and body temperature data and the clinical rating scale 

scores. The results are shown in Table 3. The first FA was performed on SpO2, body temperature, 

TO2 index, and the 5 clinical scale subdomains. This data set showed a sufficient factorability of 

the correlation matrix and the first factor explained 64.19% of the variance and all factor loadings 

were > 0.66 with an adequate Cronbach alpha value. This factor, therefore, was dubbed the “TO2-

physio-affective” or “TO2PA” pathway phenotype”. We could also extract a single latent vector 

from the SpO2, body temperature, TO2 index, chronic fatigue, GIS, sleep and autonomic 

symptoms with adequate KMO, Cronbach alpha, and explained variance data. 

 

Prediction of the clinical rating scales 

We performed different multiple regression analyses using the subdomain scores as 

dependent variables and SpO2, body temperature, vaccination status (entered as dummy 

variables), age, sex, TUD, and education as explanatory variables (Table 4). Regression #1 shows 

that 38.9% of the variance in pure HAMD scores could be explained by SpO2, education, age 

(inversely) and body temperature (positively associated). Regression #2 shows that a large portion 

of the variance (42.7%) in Physiosom HAMD could be explained by SpO2 (inversely) and body 

temperature (positively) and being vaccinated with AstraZeneca or Pfizer. We found that 

(regression #3) 33.9% of the variance in pure HAMA was explained by a model involving SpO2 

(negatively), female sex, and vaccination with AstraZeneca. The physiosom HAMA (regression 

#4) was best predicted by SpO2, body temperature, female sex and vaccination with AstraZeneca 

or Pfizer. Regression #5 shows that 54.9% of the variance in pure FF scores could be explained by 

SpO2 (inversely) and peak body temperature (positively). Regression #6 showed that 60.7% of the 
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variance in the physio-affective phenome score was explained by SpO2 (inversely), peak body 

temperature, female sex and vaccination with AstraZeneca or Pfizer. Figures 1 and 2 show the 

partial regression of the physio-affective phenome score on SpO2 and body temperature, 

respectively. Figure 3 shows the partial regression of the physio-affective phenome on the TO2 

index. Also, in the restricted study sample of patients with Long COVID we found that SpO2 

levels were significantly correlated with Pure HAMD (r=0.258, p=0.005, n=120), Physiosom 

HAMD (r=0420, p<0.001), Pure HAMA (r=0.334, p<0.001), Physiosom HAMA (r=0.559, 

p<0.001), and Pure FF (r=0.463, p<0.001) scores. These effects remained significant using an FDR 

of p=0.01. After FDR p correction, no significant correlations were observed between body 

temperature and the clinical scale scores in the patient sample. In the restricted study sample of 

COVID patients, we found a significant association between the physio-affective phenome score 

and the TO2 index (r=0.519, p<0.001, n=118). Figure 4 shows the partial regression of the physio-

affective phenome on the TO2 index in the restricted study sample of COVID-19 patients only. 

 

Results of canonical correlations 

 To delineate the associations between SpO2 and body temperature and the different 

symptom profiles of Long COVID we used canonical correlation analysis with the Long COVID 

symptom profiles as dependent variables. Table 5 shows that a canonical component extracted 

from SpO2 and body temperature (explaining 76.6% of the variance) was strongly correlated 

(explaining 31.0% of the variance) with a factor extracted from HAMD symptoms (explaining 

55.1% of the variance), namely depressed mood, insomnia early and middle, GIS and genital 

symptoms, and hypochondriasis. The same biomarkers explained 31.9% of the variance in a factor 

extracted from 9 FF symptoms, namely muscle pain and tension, fatigue, irritability, sleep 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.10.22273660doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.10.22273660
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

disorders, autonomic and GIS symptoms, headache and a flu-like malaise. Baseline SpO2 and 

body temperature also explained 34.3% of the variance in a factor extracted from 8 HAMA 

symptoms, namely anxious mood, tension, insomnia, depressed mood, and sensory, respiratory, 

genitourinary and autonomic symptoms. 

 

Discussion  

Clinical aspects of Long COVID 

The first major finding of the current study is that increased body temperature and 

especially decreased levels of SpO2 in acute COVID-19 predict the onset of mental symptoms, 

chronic fatigue and physiosomatic (previously named psychosomatic) symptoms that characterize 

Long COVID. Moreover, based on these two baseline markers of acute COVID-19, we were able 

to construct a new endophenotype cluster of Long COVID patients who show very low SpO2, 

high body temperature, and increased levels of depressive, anxiety and physiosomatic symptoms, 

including autonomic and GIS, sleep disorders, fatigue, and cognitive impairments. The estimated 

number of patients in this new TO2PA (TO2-physio-affective) endophenotype class was around 

26.7% of the Long COVID patients. We should stress that the current study did not aim to estimate 

the prevalence of Long COVID mental symptoms but rather to examine whether baseline 

biomarkers of infection and immune activation predict mental symptoms and, using the precision 

nomothetic approach (Maes 2022) to define new endophenotype classes and pathway phenotypes 

to examine the pathophysiology of Long COVID.  

The current results extend those of previous reports, which ubiquitously reported mental 

and physiosomatic symptoms in Long COVID patients (Huang, Huang et al. 2021, Taquet, Geddes 

et al. 2021, Titze-de-Almeida, da Cunha et al. 2022). Moreover, recent meta-analyses revealed that 
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the top symptoms of Long COVID were in descending order of importance: fatigue, brain fog, 

memory disturbances, attention problems, myalgia, anosmia, dysgeusia, and headache (Premraj, 

Kannapadi et al. 2022). Similar findings were reported in another meta-analysis (Badenoch, 

Rengasamy et al. 2022) showing that the top most prevalent symptoms were in descending order 

of importance: sleep disturbances, fatigue, objective cognitive deficits, anxiety and post-traumatic 

stress. Moreover, these meta-analyses showed that the prevalence of mental symptoms including 

depression tends to increase over the time from mid to long-term follow up (Premraj, Kannapadi 

et al. 2022). 

Previously, we observed that the acute infectious phase was characterized by intertwined 

increases in key depression, anxiety and physiosomatic symptoms as assessed with the HAMD, 

HAMA and FF scales (Al-Jassas, Al-Hakeim et al. 2022). As such, both acute COVID-19 and 

Long COVID are accompanied by significant intertwined increases in mental and chronic fatigue 

symptoms. Furthermore, both in the acute infectious phase and Long COVID one single latent trait 

could be extracted from these mental and physiosomatic symptoms indicating that these symptoms 

are manifestations of a common core, namely the “physio-affective phenome” of COVID-19 and 

Long COVID. This indicates that shared pathways may underpin the physio-affective phenome of 

the acute as well as chronic phases of the illness. Previously, we observed intertwined associations 

between increased levels of affective and physiosomatic symptoms not only in acute COVID-19 

but also in, for example, schizophrenia, rheumatoid arthritis, and major depression 

(Kanchanatawan, Sriswasdi et al. 2019, Almulla, Al-Hakeim et al. 2020, Maes, Andrés-Rodríguez 

et al. 2021, Smesam, Qazmooz et al. 2022). Since our previous study (Al-Jassas, Al-Hakeim et al. 

2022) and the current study were performed using different study samples, we were unable to 

examine whether patients with acute physio-affective symptoms present the same symptoms in 
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Long COVID. Nevertheless, since we excluded in both studies patients with primary major 

depression, anxiety disorders and chronic fatigue syndrome, our findings indicate that SARS-CoV-

2 infected patients develop de novo mental symptoms and chronic fatigue during both the acute 

and the chronic phase of the illness.  

 

Biomarkers of acute COVID-19 and Long COVID. 

The second major finding of this study is that a large part of the severity of the physio-

affective core (60.7%) during Long COVID was significantly predicted by SpO2 and body 

temperature values during the acute phase of the disease. In the latter, we observed that the physio-

affective core was strongly associated with a replicable latent vector extracted from SpO2, CCTAs 

(including crazy patterns, consolidation, ground glass opacities), increased levels of pro-

inflammatory and anti-inflammatory cytokines, and SARS-Cov2 infection (Al-Jassas et al., 2022). 

These findings indicate that during the acute phase of illness, lowered SpO2 is a manifestation of 

the infection-immune-inflammatory core which is accompanied by CCTAs. As reviewed in the 

Introduction, the degree of increased body temperature in the acute phase reflects the severity of 

inflammation. Moreover, for every 0.5 oC increase in body temperature there is an increase in 

mortality rate reaching 42.0% in people with a body temperature > 40.0 oC (Tharakan et al., 2020). 

As such, increased body temperature not only predicts increased mortality rates but also increased 

severity of the physio-affective phenome. 

It should be stressed that during the initial phase of COVID-19 infection, a sickness 

behavioral complex (SBC) is present, which includes physiosomatic symptoms such as muscle 

pain and tension, loss of appetite, fatigue, headache and probably also dysgeusia and anosmia 

(Maes, Tedesco Junior et al. 2022). This SBC protects against severe and critical COVID-19 

disease and is partly mediated by NLRP3 (nucleotide-binding domain, leucine-rich repeat and 
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pyrin domain-containing protein 3 inflammasome) gene variants (Maes, Tedesco Junior et al. 

2022). Nevertheless, the SBC is a beneficial short-lasting response confined to the acute phase of 

inflammation and should be discriminated from the affective and chronic fatigue symptoms which 

accompany the chronic inflammatory phase (Maes, Berk et al. 2012, Morris, Anderson et al. 2013). 

Our findings that lowered levels of SpO2 and increased body temperature (and 

consequently also CCTAs and inflammation) are associated with Long COVID physio-affective 

symptoms may be explained by several factors. First, both increased body temperature and lowered 

SpO2 during the acute phase indicate more severe inflammatory responses (Tharakan, Nomoto et 

al. 2020, Al-Jassas, Al-Hakeim et al. 2022), which could further develop into chronic 

inflammatory responses (Maes, Berk et al. 2012). Signs of activated immune-inflammatory 

pathways were observed in Long COVID including increased levels of interleukin (IL)-2, IL-1β, 

IL-6, IL-17A, IL-12p70, interferon (IFN)-γ, tumor necrosis factor (TNF)-α and macrophage 

inflammatory protein1β, and increased levels of acute phase reactants such as C-reactive protein 

and ferritin (Breton, Mendoza et al. 2020, Mazza, De Lorenzo et al. 2020, Santis, Pérez-Camacho 

et al. 2020, García-Abellán, Padilla et al. 2021, Ong, Fong et al. 2021, Sonnweber, Sahanic et al. 

2021, Ceban, Ling et al. 2022). Activation of immune-inflammatory pathways may explain the 

onset of affective and physiosomatic symptoms as well as chronic fatigue syndrome (Maes, Berk 

et al. 2012, Morris, Anderson et al. 2013). 

Second, lowered SpO2 itself may cause fatigue and depressive symptoms (Pan, Zhao et al. 

2015, Zhao, Yang et al. 2017) and is implicated in cognitive impairments (Wang, Cui et al. 2022), 

autonomic symptoms (Chen, Chen et al. 2006) and insomnia (Johansson, Svensson et al. 2015). 

Hypoxia-inducible factors (HIFs) are key regulators of oxygen homeostasis (Yoon, Pastore et al. 

2006) which are induced in response to hypoxia thereby promoting angiogenesis (Carmeliet, Dor 
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et al. 1998) and anaerobic metabolism (Carmeliet, Dor et al. 1998, Vaupel 2004), while lowering 

mitochondrial oxygen via activating pyruvate kinase I enzyme and inhibiting the citric acid cycle 

(Ziello, Jovin et al. 2007, Morris, Maes et al. 2019). Importantly, HIF1A is part of the immune 

protein-protein interaction network of affective disorders (Maes, Rachayon et al. 2022) and 

inflammatory responses in general (Cramer, Yamanishi et al. 2003, Oda, Hirota et al. 2006, 

Imtiyaz and Simon 2010). Hence, hypoxia and inflammation in acute COVID-19 may be 

accompanied by overexpression of HIFs which may further fuel the immune-inflammatory 

disorders leading to Long COVID. Moreover, hypoxia may cause increases in reactive oxygen and 

nitrogen species (Solaini, Baracca et al. 2010), leading to oxidative damage, which is implicated 

in the pathophysiology of depression, fatigue and anxiety (Maes, Kubera et al. 2011, Morris and 

Maes 2014). Furthermore, different areas of the brain, mainly the structures that take part in 

affective disorders, namely the amygdala, hippocampus, anterior cingulate cortex, and prefrontal 

cortex (Aryutova and Stoyanov 2021) were found to be influenced by hypoxia (Shankaranarayana 

Rao, Raju et al. 1999, Alchanatis, Zias et al. 2005). 

Third, decreased SpO2 in acute COVID-19 is attributed to lung inflammation, bronchitis, 

pneumonia and lung fibrosis as indicated by the presence of CCTAs (Sadhukhan, Ugurlu et al. 

2020, Solomon, Heyman et al. 2021, Al-Jassas, Al-Hakeim et al. 2022). Up to fifty percent of the 

post-COVID-19 patients may show some signs of lung fibrosis (Nabahati, Ebrahimpour et al. 

2021) and 2-6% of Long COVID patients who experienced moderate COVID-19 illness develop 

lung fibrosis (Bazdyrev, Rusina et al. 2021). In addition, a significant cohort of recovered patients 

show more persistent lung inflammation which may cause physiological and functional changes 

(Myall, Mukherjee et al. 2021) and even CCTAs were reported in some of Long COVID patients 

(Solomon, Heyman et al. 2021, Vijayakumar, Tonkin et al. 2021). All in all, increased lung 
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inflammation and fibrosis in the post-infectious phase may further contribute to lowered SpO2 and 

immune-inflammatory responses and thus the physio-affective phenome of Long COVID. A 

fourth possibility is that some COVID vaccines contribute to the physio-somatic phenome of Long 

COVID. In this regard we observed that AstraZeneca and Pfizer vaccinations aggravated the 

physiosomatic phenome, whereas Sinopharm had no such effect. 

 

Limitations 

Some limitations and strengths should be considered while interpreting the current results. 

First, the paper would have been more interesting if we had measured HIFs and the tryptophan 

catabolite (TRYCAT) pathway in the acute and chronic phase of the disease. Indeed, a recent meta-

analysis showed that neurotoxic TRYCATs are significantly increased in acute COVID-19, while 

TRYCATs are known to be associated with the onset of affective, physiosomatic and cognitive 

symptoms (Maes, Leonard et al. 2011, Kanchanatawan, Sirivichayakul et al. 2018, Almulla and 

Maes 2022, Almulla, Supasitthumrong et al. 2022). Second, although we conducted a case-control 

study, we also measured body temperature and SpO2 in the acute phase of illness using a 

retrospective cohort study design which allows to examine causal associations. 

 

Conclusions 

In people with Long COVID, low SpO2 and higher peak body temperature during the acute 

phase predict the affective and physiosomatic symptoms, chronic fatigue, sleep disturbances, 

cognitive impairments, and GIS and autonomic symptoms of Long COVID. As such, lowered 

SpO2 and higher body temperature and the associated CCTAs and immune-inflammatory 
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responses during the acute phase are new drug targets to prevent the Long COVID-associated 

physio-affective phenome. 
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Table 1. Socio-demographic data, body temperature (BT) and oxygen saturation (SpO2) in control participants (CP) and Long COVID (LC) 

patients divided according to their TO2 index. 

Results are shown as mean (SD): F: results of analysis of variance; KWT: Kruskal Wallis test; X2: analysis of contingency tables. 

M: Male, F: Female, Ma: Married, S: Single, U: Urban, R: Rural, BMI: Body Mass Index, TO2 index: computed as z BT – z SpO2.  

A: AstraZeneca, Pf: Pfizer, S: Sinopharm 
A,B,C: Results of pairwise comparisons among group means 

 

Variables CP (n=36) A 
LC and lower TO2 

 (n=88) B 

LC and high TO2 

(n=32) C 
F/KWT/X2 df p 

Age (years) 30.9 (8.3) C 29.7 (7.3) C 35.6 (9.6) A,B 6.22 2/153 0.003 

Sex (M/F) 30/6 59/29 26/6 4.67 2 0.096 

Marital state (Ma/S) 14/22 48/40 23/9 7.43 2 0.024 

Smoking (Y/N) 16/20 28/60 9/23 2.43 2 0.297 

Residency (U/R) 29/7 72/16 29/3 1.57 2 0.456 

Vaccination (A/PF/S) 11/14/11 37/34/17 6/17/9 6.86 4 0.145 

BMI (kg/m2) 26.3 (3.6) 26.3 (5.1) 26.1 (5.4) 0.03 2/148 0.975 

Education (years) 15.8 (1.2) C 15.8 (1.7) C 14.9 (1.3) A,B 3.61 2/153 0.029 

Maximal BT (℃) 36.5 (0.1) B,C 38.7 (0.5) A,C 40.1 (0.7) A,B KWT - <0.0001 

Lowest SpO2 (%) 96.58 (1.48) B,C 91.50 (3.06) A,C 85.84 (6.30) A,B KWT - <0.0001 

TO2 index (z scores) -1.338 (0.179) B,C 0.155 (0.398) A,C 1.345 (0.659) A,B KWT - <0.0001 
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Table 2. Clinical rating scales scores in control participants (CP) and Long COVID (LC) patients divided according to their TO2 index. 

Variables 
CP  

(n=36) A 

LC and lower TO2 

(n=88) B 

LC and high TO2 

(n=32) C 
F Df p 

Total HAMD 5.09 (0.86) B,C 16.57 (0.56) A,C 19.53 (0.96) A,B 70.02 2/149 <0.0001 

Total HAMA  7.58 (1.29) B,C 19.00 (0.835) A,C 24.13 (1.43) A,B 42.34 2/149 <0.0001 

Total FF 6.96 (1.72) B,C 25.26 (1.10)A,C 30.34 (1.91) A,B 52.76 2/149 <0.0001 

Pure HAMD 1.64 (0.30) B,C 4.70 (0.20) A,C 5.56 (0.34) A,B 47.22 2/149 <0.0001 

Psysiosom HAMD 1.62 (0.35) B,C 4.68 (0.23) A,C 5.96 (0.39) A,B 39.91 2/149 <0.0001 

Pure HAMA 1.64 (0.33) B,C 3.52 (0.21) A 4.12 (0.36) A 16.03 2/149 <0.0001 

Physiosom HAMA 3.11 (0.63) B,C 8.55 (0.41) A,C 11.85 (0.70) A,B 46.06 2/149 <0.0001 

Pure FF 4.47 (1.06) B,C 16.93 (0.69) A,C 20.23 (1.18)A,B 62.97 2/149 <0.0001 

Physio-affective phenome (z score) -1.175 (0.124) B,C 0.202 (0.080) A,C 0.766 (0.137) A,B 64.07 2/149 <0.001 

Autonomic symptoms (z score) -1.172 (0.120) B,C 0.180 (0.078) A,C 0.824 (0.134) A,B 69.64 2/149 <0.0001 

Sleep disorders (z score) -0.928 (0.144) B,C 0.224 (0.093) A 0.428 (0.160) A 27.45 2/149 <0.0001 

Fatigue (z score) -1.042 (0.136) B,C 0.230 (0.089) A 0.539 (0.152) A 39.25 2/149 <0.0001 

GIS (z score) -0.922 (0.141) B,C 0.136 (0.091) A,C 0.663 (0.157) A,B 31.70 2/149 <0.0001 

Cognitive disorders (z score) -0.530 (0.162) B,C 0.145 (0.105) A 0.197 (0.181) A 6.93 2/149 0.002 
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All results of univariate GLM analysis; data are expressed as mean (SE), i.e. estimated marginal means obtained by GLM analysis after covarying 

for age, sex, education and smoking. 

CP: control participants, FF: Fibro fatigue scale, HAMA: Hamilton Anxiety Rating Scale, HAMD: Hamilton Depression Rating Scale. 

Physiosom: physiosomatic, GIS: gastro-intestinal 

Physio-affective core: first factor score extracted from pure and physiosom HAMD/HAMA and pure FF scores 
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Table 3: Results of factor analysis (FA) conducted on body temperature, oxygen saturation (SpO2) and clinical rating scales 

Features FA#1 Features FA#2 

TO2 index 0.898 TO2 index 0.937 

SpO2 -0.821 SpO2 -0.819 

Body temperature 0.721 Body temperature 0.766 

Pure HAMD 0.703 Chronic fatigue 0.750 

Physiosom HAMD 0.809 GIS 0.674 

Pure HAMA 0.662 Sleep 0.693 

Physiosom HAMA 0.882 Autonomic  0.854 

Pure FF 0.877   

    

KMO 0.772 KMO 0.712 

%Variance  64.19% %Variance  62.29% 

Cronbach alpha 0.784 Cronbach alpha 0.704 

 

KMO: Keiser-Meier-Olkin test, SpO2: Oxygen saturation, FF: Fibro-fatigue scale, HAMD: Hamilton Depression Rating Scale, HAMA: Hamilton 

Anxiety Rating Scale. TO2 index: computed as z body temperature – z SpO2. 
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Table 4: Results of multiple regression analyses with psychiatric rating scales and subdomain scores as dependent variables. 

Dependent 

Variables 
Explanatory Variables 

Coefficients of input variables  Model statistics 

β t p R2 F df p 

#1. Pure HAMD Model 

Body temperature 

SpO2 

Education 

Age 

 

0.387 

-0.268 

-0.146 

-0.135 

 

4.86 

-3.36 

-2.25 

-2.10 

 

<0.001 

<0.001 

0.026 

0.038 

0.389 23.67 4/149 <0.001 

#2. Physiosom 

HAMD 

Model  

spO2 

Body temperature 

AstraZeneca or Pfizer  

 

-0.468 

0.220 

0.155 

 

-6.02 

2.85 

2.47 

 

<0.001 

0.005 

0.015 

0.427 37.20 3/150 <0.001 

#3. Pure HAMA Model  

spO2 

Female sex  

AstraZeneca 

 

-0.511 

0.217 

0.134 

 

-7.58 

3.26 

1.98 

 

<0.001 

0.001 

0.049 

0.339 25.68 3/150 <0.001 

#4. Physiosom 

HAMA 

Model 

spO2 

Body temperature 

AstraZeneca or Pfizer 

Female Sex  

 

-0.565 

0.228 

0.134 

0.120 

 

-8.31 

3.38 

2.45 

2.22 

 

<0.001 

<0.001 

0.015 

0.028 

0.566 48.51 4/149 <0.001 

#5. Pure FF Model  

SpO2 

Body temperature 

 

-0.515 

0.309 

 

-7.60 

4.57 

 

<0.001 

<0.001 

0.549 91.91 2/151 <0.001 

#6. Physio-affective 

phenome score 

Model 

SpO2 

Body temperature 

Female sex 

 

-0.565 

0.273 

0.115 

 

-8.72 

4.25 

2.23 

 

<0.001 

<0.001 

0.027 

0.607 57.64 4/149 <0.001 
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AstraZeneca or Pfizer 0.112 2.15 0.033 

 

SPO2: Oxygen saturation, FF: Fibro-Fatigue scale, HAMA: Hamilton Anxiety Rating Scale, HAMD: Hamilton Depression Rating Scale; Physio-

affective phenome score: first factor score extracted from pure and physiosom HAMD/HAMA and pure FF scores 
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Table 5. Results of canonical correlation analyses examining the effects of body temperature and oxygen saturation (SpO2) on the mental and 

physiological symptoms of Long COVID 

 

                       HAMD 
                          FF 

                        HAMA 

Feature sets Variables C Loadings 
variables 

C Loadings variable C Loadings 

Set 1 

Clinical 

Depressed mood 0.672 
Muscle pain 

0.882 Anxious mood 0.583 

Insomnia early 0.674 
Muscle tension 

0.744 Tension 0.759 

Insomnia middle 0.818 
Fatigue 

0.835 Insomnia 0.684 

Somatic GIS 0.681 
Irritability 

0.653 Depressed mood 0.635 

Genital symptoms 0.858 
Sleep 

0.652 Sensory 0.627 

Hypochondriasis 0.729 
Autonomic 

0.802 Respiratory 0.878 

  

GIS 
0.577 Genitourinary 0.723 

Headache 
0.747 Autonomic 0.858 

Malaise 
0.613  

Set 2 

Biomarkers 

Body temperature 0.7675 
Body temperature 

0.787 Body temperature 0.749 

SpO2 -0.971 
SpO2 

-0.963 SpO2 -0.977 

Statistics F (df) 14.07 (12/292)  11.06 (18/286)  15.59 (16/288) 
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p <0.001 <0.001 <0.001 

 

Correlation 0.750 0.771 0.807 

Set 1 by set 2 0.310 0.319 0.343 

Set 1 by self 0.551 0.537 0.526 

Set 2 by self 0.766 0.773 0.758 

 

C Loadings: Canonical Loadings, GIS: gastro-intestinal symptoms, HAMD: Hamilton Depression Rating Scale; FF: Fibro-fatigue scale; HAMA: 

Hamilton Anxiety Rating Scale 
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Figure 1. Partial regression of the physio-affective phenome score in controls and patients with Long COVID 

(LC) on oxygen saturation levels
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Figure 2. Partial regression of the physio-affective phenome score in controls and patients with Long 

COVID (LC) on peak body temperature
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Figure 3. Partial regression of the physio-affective phenome score in controls and patients with

Long COVID (LC) on the TO2 index, which combines higher body temperature and lower oxygen saturation 
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Figure 4. Partial regression of the physio-affective phenome score in patients with Long COVID (LC) 

on the TO2 index during acute COVID-19, which combines higher body temperature and lower oxygen saturation 
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