
Monitoring real-time transmission heterogeneity from
Incidence data

Yunjun Zhang1*, Tom Britton2, and Xiaohua Zhou 1*,3,4,5

1 Department of Biostatistics, School of Public Health, Peking University, Beijing,
China
2 Department of Mathematics, Stockholm University, Stockholm, Sweden
3 Beijing International Center for Mathematical Research, Peking University
4 School of Mathematical Sciences, Peking University
5 Center for Statistical Science, Peking University,Beijing, China

* yunjun.zhang@pku.edu.cn, azhou@math.pku.edu.cn

Abstract

The transmission heterogeneity of an epidemic is associated with a complex mixture of
host, pathogen and environmental factors. And it may indicate superspreading events
to reduce the efficiency of population-level control measures and to sustain the epidemic
over a larger scale and a longer duration. Methods have been proposed to identify
significant transmission heterogeneity in historic epidemics based on several data
sources, such as contact history, viral genomes and spatial information, which is
sophisticated and may not be available, and more importantly ignore the temporal trend
of transmission heterogeneity. Here we attempted to establish a convenient method to
estimate real-time heterogeneity over an epidemic. Within the branching process
framework, we introduced an instant-individualheterogenous infectiousness model to
jointly characterized the variation in infectiousness both between individuals and among
different times. With this model, we could simultaneously estimate the transmission
heterogeneity and the reproduction number from incidence time series. We validated
the model with both simulated data and five historic epidemics. Our estimates of the
overall and real-time heterogeneities of the five epidemics were consistent with those
presented in the literature. Additionally, our model is robust to the ubiquitous bias of
under-reporting and misspecification of serial interval. By analyzing the recent data
from South Africa, we found evidences that the Omicron might be of more significant
transmission heterogeneity than the Delta. Our model based on incidence data was
proved to be reliable in estimating the real-time transmission heterogeneity.

Author summary

The transmission of many infectious diseases is usually heterogeneous in time and space.
Such transmission heterogeneity may indicate superspreading events (where some
infected individuals transmit to disproportionately more susceptible than others), reduce
the efficiency of the population-level control measures, and sustain the epidemic over a
larger scale and a longer duration. Classical methods of monitoring epidemic spread
centered on the reproduction number which represent the average transmission potential
of the epidemic at the population level, but failed to reflect the systematic variation in
transmission. Several recent methods have been proposed to identify significant
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transmission heterogeneity in the epidemics such as Ebola, MERS, COVID-19. However,
these methods are developed based on some sophisticated information such as contact
history, viral genome and spatial information, of the confirmed cases, which are typically
field-specific and not easy to generalize. In this study, we proposed a simple and generic
method of estimating transmission heterogeneity from incidence time series, which
provided consistent estimation of heterogeneity with those records with sophisticated
data. It also helps in exploring the transmission heterogeneity of the newly emerging
variant of Omicron. Our model enhances current understanding of epidemic dynamics,
and highlight the potential importance of targeted control measures.

Introduction 1

The transmission of infectious disease is typically uneven or heterogeneous in terms of 2

time and space due to a complex mixture of host, pathogen and environmental 3

factors [1–6]. High level of transmission heterogeneity may indicate superspreading 4

events (SSEs) in which certain individuals infect a greater large number of secondary 5

cases than average [1], invoking the so-called 20-80 rule. It has been documented that 6

the SSEs considerably reduced the efficiency of population-level control measures [1] 7

and played a key role in dramatically driving the spread of many pathogens in scale and 8

duration, including severe acute respiratory syndrome (SARS) [7], Middle East 9

Respiratory Syndrome (MERS) [8], Ebola [3, 4] and COVID-19 [6, 9, 10]. Therefore, 10

monitoring the degree of transmission heterogeneity and its change could be vital for 11

epidemic forecasting and efficient intervention in infectious disease epidemiology. 12

Mathematically, the transmission heterogeneity is represented by the variation in 13

offspring distribution, namely, the distribution of secondary cases that may be 14

generated by a given infectious case . Classical methods of estimating heterogeneity rely 15

heavily on reconstructing the offspring distribution. As the epidemiological links among 16

reported cases are complex, this reconstruction poses considerable challenges in both 17

data collection and model building. According to different types of data used in the 18

reconstruction, the existing methods of inferring heterogeneity can be grouped into 19

three categories. The first category are methods based on contact-tracing-data. By 20

interviewing patients to document their contacts with other infected patients, all or 21

most of the cases could be positioned in the network of transmission, and the resulting 22

empirical offspring distribution could be directly used to estimate the transmission 23

heterogeneity [1, 4, 10,11]. 24

The second category is based on virus-sequence-data. For many pathogens, in 25

particular RNA viruses, evolutionary processes occur on the same timescale as 26

epidemiological processes, which makes it possible to extract epidemiological 27

information from genetic analysis [12,13]. Many studies showed that the virus 28

phylogeny reconstructed from the virus sequence sampled from the infected individuals 29

reflected the underlying transmission history of the epidemic, with the branching events 30

in a phylogeny corresponding to transmission events in the past. By incorporating the 31

level of heterogeneity into the likelihood function of the virus phylogeny, it is possible to 32

estimate the heterogeneity as well as other epidemiological parameters from the sampled 33

sequence data [2, 14,15]. 34

For the third category, individual-level spatial information has been integrated to 35

reconstruct the transmission history in recent years. By developing a continuous-time 36

spatiotemporal transmission model with a distance-based kernel to characterized the 37

infectiousness between individuals as a function of the mutual distance, it is possible to 38

infer explicitly the mean offspring distribution of each case and hence to infer the 39

transmission heterogeneity and other epidemiological parameters [3, 9, 16]. 40

Although considerable progress has been made for analyzing heterogeneity, these 41
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methods also showed some theoretical and practical limitations. Firstly, all these 42

methods required context-specific information which could be hard to obtain and/or 43

could be erroneous. For example, the contact tracing in epidemiological investigation 44

may be time-consuming and subjective [17] and has to be limited to a certain number of 45

infected cases. In viral genetic analysis, the commonly used correspondence between the 46

reconstructed viral phylogeny and the transmission history may be biased if there are 47

within-host evolution and recombination in viral genomes [18]. When incorporating the 48

spatial information, the model simply assumes that transmission occurred mostly within 49

close residence because of the lack of detailed individual movement data, which is only 50

appropriate under certain control measures [3, 9]. 51

In addition, most of existing studies assumed a constant level of heterogeneity for an 52

epidemic under study, which may in fact grow and/or decline through the epidemic. 53

This simplification would bring some computational benefit but failed to characterize 54

the temporal change of heterogeneity over the epidemic. Although Lau et al [3, 9] 55

compared the degree of heterogeneity in different periods of an outbreak (i.e., before 56

and after deploying the control measures), it could still be hard to reflect the real-time 57

development of the epidemic and consequently lead to inadequacy in epidemic control to 58

a certain extent. , 59

Monitoring real-time transmission dynamics from incidence data has drawn a lot of 60

research efforts. Several tools for the estimating of real-time reproduction number based 61

on incidence data had been developed with successful applications [19–21], but the 62

study on real-time transmission heterogeneity is so far rather limited. In some recent 63

studies, researchers suggested the relationship between the transmission heterogeneity 64

and the incidence over an epidemic [22–25], but none have attempted to accurately 65

delineate the heterogeneity with incidence data and to compare with those records in 66

literatures. In this study, we attempted to develop a simple method to estimate the 67

transmission heterogeneity on the basis of incidence data. Specifically, we extended the 68

homogeneous transmission model in [19,20] to allow for the variation of infectiousness at 69

different times and among different people, and consequently generated real-time 70

estimates of transmission heterogeneity and reproduction number simultaneously. 71

Moreover, we evaluated this model with both simulated data and historic epidemic data, 72

which turned out to be consistent with that of those involving contact-tracing or spatial 73

data. Our model performed robust even in the presence of measurement errors such as 74

under-reporting or misspecification of serial interval. We further explored the 75

transmission heterogeneity of the new SARS-CoV-2 variant Omicron based on the 76

incidence time series from South Africa. 77

Materials and methods 78

Renewal process model of transmission 79

We considered an outbreak observed regularly (in days, weeks or months) over the time 80

period 1 ≤ t ≤ T . Let It be the incidence or number of newly infected cases at time t, 81

and the epidemic curve till time t is denoted as Īt1 = {I1, I2, · · · , It}. For simplicity, we 82

excluded the possibility of imported case during the study period. However, this 83

restriction could be relaxed by discriminating the effect on newly infections of 84

local/imported cases as in [20]. 85

We adopted the renewal process to model the transmission of the infectious disease. 86

Under the standard renewal process model [19], the newly infected at time t (i.e., It) is 87

generated by all the infectious individuals who had been infected before time t 88

according to a Poisson relation as: 89
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It|Īt−1
1 ∼ Pois(RtΛt) (1)

where ”|” stands for conditions and Pois stands for Poisson distribution. The parameter 90

of Rt is the instantaneous reproduction number, representing the average number of 91

secondary cases that caused by a random case at time t if circumstances remained the 92

same after that [19,26]. The quantity Λt =
∑t−1
s=1 Iswt−s, known as the total 93

infectiousness, characterizes how many past effective cases contribute to the newly 94

observed case-count at time t. The weight ws defines the impact of each past case on 95

the newly infection, which could be approximated by the generation time distribution or 96

the serial interval distribution. 97

Instant-individual reproduction number 98

In this study, we aimed to extend the standard model to allow for transmission 99

heterogeneity during the transmission process. To characterize the effect of each 100

infected individual on new infection at a particular time point, we introduce the 101

“instant-individual reproduction number” (IIRN), denoted as vis,t, representing the 102

expected number of secondary cases generated at time t by the i-th individual infected 103

at time s (where s < t). We also use the Poisson distribution to model the stochastic 104

effect in transmission [1], so the number of secondary cases caused by a particular case 105

(i.e., offspring distribution) in the given context is Pois(vis,t). In addition, we adopted 106

the assumption that the offspring distributions of different cases were independent, so 107

the incidence It is the sum of these Poisson-distributed variables. In other words, It is 108

Poisson-distributed with the composite rate of vt =
∑
s<t,i v

i
t,s. 109

The concept of IIRN provides a new tool to explore the variation of infectiousness 110

between different individuals and among different times. Next we study how the 111

standard renewal process model and two recently proposed heterogenous transmission 112

models fit within this framework. The standard renewal process model is a 113

homogeneous transmission model, which assumed a constant IIRN for all the infected 114

cases who had been infected at the same time. In other words, the standard model is 115

identical to assume vis,t = wt−sRt. Hence the composite rate at time t is 116

vt =
∑
s≤t,i v

I
t,s = RtΛt. This model, while useful for monitoring the average 117

transmission potential, fails to account for the variation in infectiousness particular 118

found in the those superspreading events. 119

Another common method of allowing for transmission heterogeneity is an
instant-level heterogeneity model [22, 25]. This model extended the standard model (1)
by replacing the instantaneous reproduction number Rt with an instant-related random
variable for all the infected cases, that is,

vit,s = wt−sηt, where ηt ∼ Γ(kt,
kt
Rt

).

where Γ(·, ·) stands for Gamma distribution in the shape-rate parameterizations.
Therefore, the composite rate under this model is vt =

∑
s≤t,i v

i
t,s = Λtηt ∼ Γ(kt,

kt
ΛtRt

).
And the incidence It is Negative Binomial distribution as (NegB indicating Negative
Binomial distribution):

It|Īt−1
1 ∼ NegB(kt,

kt
ΛtRt + kt

)

This model accounted for the variation in infectiousness at different times, which 120

could be useful in epidemic forecasting in the long term [22,25]. But this model 121

overlooked the variation in infectiousness of different infectious individuals, and hence 122

failed to identify the exact degree of heterogeneity from incidence data (showed in 123

Results). 124
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Recently, Johnson et al [27] proposed an individual-level heterogeneity model to 125

characterize transmission heterogeneity within the renewal process framework. The 126

authors assumed random infectiousness for each infected individual at the time of being 127

infected (e.g. at time s), so its infectiousness in later time steps could be calculated as 128

vit,s = wt−sη
i
s, where ηis ∼ Γ(ks,

ks
Rs

).

With this model, the composite rate of newly infection at time t is
vt =

∑
s≤t,i v

i
t,s =

∑
s wt−sΘs, where Θs =

∑
i η
i
s ∼ Γ(ks ∗ Is, ksRs ). Θs was referred to

as the disease momentum [27], representing the total infectiousness of all the cases
infected at time s. As the weighted summary of Gamma variables is not Gamma
distributed, the incidence It can only be approximated by

It|Īt−1
1 ∼ Pois(

∑
s

wt−sΘs).

Although the individual level transmission heterogeneity has been characterized in 129

this model, it not only overlooked the instant-level heterogeneity but also introduced a 130

large number of nuisance parameters of disease momentums {Θs}. These nuisance 131

parameters destroyed the independence of incidence data among different times, and 132

incurred considerable computational complexity in the analysis of incidence time series, 133

which hinder the accuracy of estimating parameters of interest. Simulation study 134

showed unstable estimation results of transmission dynamics [27]. 135

Instant-individual heterogeneity model 136

For directly transmitted diseases such as SARS-CoV, MERS, Ebola, or COVD-19, the 137

instant individual reproduction number is affected by a complex mixed factors of host, 138

pathogen and environmental factors [1, 28]. Therefore the reproduction number is 139

specific to time and individual. Here we assumed vis,t to be a random variable, and its 140

values are drawn independently, for each individual i and each instant t, from a Gamma 141

distribution with mean of wt−sRt and the rate of kt
Rt

, that is, 142

vit,s ∼ Γ(wt−skt,
kt
Rt

) (2)

Under this random IIRN assumption, heterogeneous transmission stems from the 143

variation in reproduction numbers of different individuals and at different times. And 144

superspreading events were likely triggered by those important realizations from the 145

right-hand tail of the distribution of IIRN, which indicated a random mixture of host, 146

pathogen and environmental factors of assisting the rapid transmission of disease [28]. 147

The parameter kt in (2), referred to as (instantaneous) dispersion number, was
introduced to control the transmission heterogeneity. Similar to the explanation of
instantaneous reproduction number Rt in [26], the instantaneous dispersion number kt
also controls the variation in the offspring distribution of a random infected case.
Suppose the transmission dyanmics remains the same (i.e., the Rt and kt keep constant)
during the infectious time of the i-th case, its individual reproduction number over the
whole infectious period is the sum of independent IIRNs over all infectious instants, that
is vis =

∑
t≥s v

i
t,s ∼ Γ(kt,

kt
Rt

). As a consequence of this Gamma-Poisson mixture, the
offspring distribution of the particular case is Negative Binomial distribution as

Iis ∼ NegB(kt,
kt

Rt + kt
)

with the mean of µ = E(Iis) = Rt and variance σ2 = Rt(1 +Rt/kt). The offspring 148

distribution was identical to the standard model of transmission heterogeneity in [1]. 149
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Obviously, the dispersion number kt is an empirical measure of degree-of-transmission 150

heterogeneity, with smaller kt indicates higher variance in offspring distribution (i.e., 151

higher level of heterogeneity). When kt decreases both the likelihood of super- and that 152

of sub-spreading events increase [22]. Traditionally, it is regarded as significant 153

transmission heterogeneity when kt gets smaller than 1 [1]. 154

Based on the random IIRN assumption, the total effect of all the infected cases on
the newly infection at time t was the sum of their independent IIRNs, that is,
vt =

∑
s≤t,i v

i
t,s ∼ Γ(ktΛt,

kt
Rt

). Furthermore, the incidence It is Negative-Binomial
distributed as

It|Īt−1
1 ∼ NegB(ktΛt,

kt
Rt + kt

),

that is, 155

P (It|Īt−1
1 , w,Rt, kt) =

(
Λtkt + It − 1

Λtkt − 1

)
(

Rt
Rt + kt

)It(
kt

Rt + kt
)Λtkt , (3)

This incidence model is referred to as the Instant-individual heterogeneity model. 156

If assuming that the transmission dynamics (i.e., reproduction number Rt and 157

dispersion number kt) was constant, it is possible to obtained the overall estimate of 158

both transmission heterogeneity and reproduction number simultaneously by fitting the 159

observed incidence time series to this model. Additionally, in real epidemics, the 160

transmission dynamics may vary with time because of changes in host and 161

environmental factors. A common framework for monitoring the temporal trend of 162

transmission dynamics is to assume constant transmissibility potential and 163

heterogeneity over a time period [t− τ + 1, t], measured by Rt,τ and kt,τ [19]. With this 164

assumption, the likelihood of the incidence It−τ+1, · · · , It given the transmission 165

dynamics ({Rt,τ , kt,τ}) and conditioned on the previous incidences I1, · · · , It−τ is 166

P (It−τ+1, · · · , It|Īt−τ1 , Rt,τ , kt,τ )

=
∏t
s=t−τ+1

(
Λskt,τ+Is−1

Λskt,τ−1

)
(

Rt,τ
Rt,τ+kt,τ

)Is(
kt,τ

Rt,τ+kt,τ
)Λskt,τ ,

(4)
On the basis of this joint likelihood function of both reproduction number and 167

dispersion number, it is possible to infer the real-time transmission heterogeneity from 168

the incidence data, which gives a more complete view of the characteristics of disease 169

spreading. In particular, the maximum likelihood estimation of the reproduction 170

number with this new likelihood function is given by R̂t,τ =
∑t
s=t−τ+1 Is∑t
s=t−τ+1 Λs

, which 171

coincides with that of the homogeneous model [19,36]. This property guarantes that the 172

estimation of reproduction number with our model is robust to the bias of constant 173

under-reporting rate (shown in Results). It is also possible to derive the posterior 174

distribution of Rt and kt by using a Bayesian framework. 175

Simulation of Incidence time series 176

We applied the Instant-individual heterogeneity (IIH) model to simulated datasets to 177

test its accuracy under various levels of transmission heterogeneity and reproduction 178

number. Each simulation began with 10 infected index cases, and stopped after 24 days. 179

We assumed constant reproduction number R and dispersion number k, and simulated 180

the newly infection according to the likelihood of the incidence in (3). 181

Specifically, we set three levels of reproduction number R as 1.1, 1.3 and 1.5; and 182

four levels of dispersion number k as 0.2, 0.5, 2, and 5. We also varied the window size 183

used in the estimation as 7, 14 and 21 days. The serial interval distribution was set as a 184
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gamma distribution with mean of 5.2 days and the standard deviation of 1.72 days as in 185

the COVID-19 [29] 186

We chose the incidence data from the last time window to perform estimation. We 187

assumed non-informative priors of uniform distribution over [10−6,100] and [0.1,10] for 188

the reproduction number and the dispersion number respectively. Both the maximum a 189

posteriori (MAP) estimation and the 95% highest posterior density (HPD) interval of 190

reproduction number and dispersion number were generated. 191

The simulation was repeated 100 times under each condition. Three criteria were
used to evaluate the accuracy of the estimation. Firstly, the relative root mean squared
errors (RMSEs) were calculated for the estimation of R and k respectively. The relative
RMSE was defined as: √∑

i(θ̂i/θ − 1)2

n− 1
,

where θ is the true value of parameter, and θ̂i is the estimation of parameter based on 192

the i-th simulation. n stands for the number of simulations 193

Secondly, the coverage of the 95% HPD of reproduction number R was calculated. 194

Thirdly, the probability of correctly identifying heterogeneity, namely the proportion of 195

simulations where both the true dispersion number k and its estimate were larger or 196

smaller than 1, was calculated for the estimation of k. 197

Analyzing real epidemic data 198

We also applied the instant-individual heterogeneity model to disease incidence time 199

series from five past outbreaks where the levels of heterogeneity were estimated on the 200

basis of contact tracing data or individual level spatial information. The commonly used 201

transmission heterogeneity model in [22] (referred to as the instant-level heterogeneity 202

model) was also used to analyze these incidence time series under the same setting for 203

comparison. 204

We retrieved the epidemic curves, as well as the mean and standard deviation of the 205

serial intervals of these epidemics from the literature (Table 1). These epidemics were 206

classified into two groups according to the way of estimating transmission heterogeneity 207

in previous studies. The first group (static scenario) includes three epidemics, i.e., 208

COVID-19 in Hongkong, China between 2020-01-24 and 2020-04-28 (referred to as 209

COVID-19 in Hongkong), COVID-19 in Tianjing, China between 2020-01-21 and 210

2020-02-15 (referred to as COVID-19 in Tianjing), and MERS in several places in South 211

Korea between 2015-05-11 and 2015-06-26 (referred to MERS in South Korea). For each 212

of these outbreaks, previous study assumed constant transmission parameters over the 213

study period and estimated the overall R and k on the basis of contact-tracing 214

data [10,38,39]. Here we followed this assumption and applied the IIH model and 215

instant-level model to the incidence data over the same period to get the overall 216

estimation of k and R, which were compared with the corresponding records in 217

literatures. 218

The second group (time-varying scenario) includes two outbreaks: one is the Ebola 219

epidemic between Aug 04, 2014 (week 36), and March 29, 2015 (week 13), in the capital 220

Freetown of Sierra Leone (referred to as Ebola, Sierra Leone); the other is the 221

COVID-19 in five counties (i.e., Cobb, DeKalb, Gwinnett, Fulton and Dougherty) in 222

Georgia, United State during the period between March 1, 2020 and May 3, 2020 223

(referred to as COVID-19, Georgia). For each of the epidemics, previous studies 224

analyzed the transmission heterogeneity of several periods on the basis of 225

individual-level spatial information as well as population density data [3,9,16]. To make 226

a comparison with the recorded temporal trends of heterogeneity in literatures, we 227

assumed constant transmission dynamics over a sliding time window to reveal the 228

April 7, 2022 7/20



Table 1. Description of 5 historic epidemic data analyzed.

Category Disease Location Duration of Mean (SD) Reference for Source of
Outbreak serial interval Mean (SD) Incidence

time series
Static COVID-19 Hongkong, China from 2020-01-24 5.2 (1.72) [29] [30]*
scenario to 2020-04-28

COVID-19 Tianjing, China from 2020-01-21 5.2 (1.72) [29] [10]
to 2020-02-15

MERS South Korea from 2015-05-11 12.6 (2.8) [31] [32]
to 2015-06-26

Time Varying Ebola Freetown, Sierra Leone from 2014-08-04 15.3 (9.3) [33] [33]
scenario to 2015-03-29

COVID-19 Georgia, United States from 2020-03-01 5.2 (1.72) [29] [34]*
to 2020-05-03

COVID-19 South Africa from 2021-05-01 5.2 (1.72) [29] [30]*
to 2022-01-09

*Dataset were accessed on 2022-02-01

real-time estimation of kt and Rt on the basis of the incidence data. We set the window 229

length as 7 time-steps (i.e., days or weeks depending on the frequency of incidence data 230

collection) for all these analyses, which was recommended in [20] when monitoring the 231

temporal trend of reproduction number. 232

In addition, we also explored the transmission heterogeneity of the variant of 233

Omicron by applying the IIH model to the incidence time series from the South Africa 234

between 2021-05-01 and 2022-01-07. The real-time estimation of transmission dynamics 235

was also generated as the same procedure in the time-varying scenario. 236

During these studies, the discrete distribution of the serial interval was then 237

obtained by assuming a gamma distribution truncated by Mean+3*SD of serial interval. 238

We used Bayesian Monte Carlo Markov Chain algorithm to calculated the posterior 239

distribution from the likelihood functions of (3) and (4) by assuming non-informative 240

priors of uniform distribution over [10−6,100] and [0.1,10] for the reproduction number 241

and the dispersion number respectively. The resulting 95% high probability domain 242

(95% HPD) could be directly compared with those 95% confidence intervals in literature. 243

The inference algorithm was implemented via the open-sourced python package of 244

pymc3 [35]. All the codes for this study are available online: 245

https://github.com/yunPKU/infer heterogeneity from incidence 246

Sensitivity Analysis 247

Underreporting and misspecification of serial interval are ubiquitous biases for the 248

analysis of epidemiological data [9, 36]. To explore the effect of these biases on the 249

estimation of real-time dispersion number and reproduction number, we performed 250

sensitivity analysis on the basis of the epidemic data of Ebola, Sierra Leone [33]. Firstly, 251

we explore the effect of underreporting on our analysis by testing 4 reporting rates (i.e., 252

ρ =0.8, 0.6, 0.4, 0.2). With each rate, we generated synthetic incidence time series in 253

the Ebola epidemic by increasing the recorded incidence data proportionally. 254

Secondly, we tested the errors in the serial interval by analyzing the Ebola epidemic 255

data with biased serial interval distribution. We performed estimation with three values 256

of bias for the mean (i.e., -7 days, 7 days, and 14 days) and three biases for std (i.e., -3.5 257

days, 3.5 days and 7 days) respectively. 258
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Results 259

Evaluation on simulated data 260

With the simulated data, our model could accurately estimate the overall dispersion 261

number and the reproduction number providing sufficient data (Figure 1) . As the 262

window length increased, the relative RMSEs of these two estimates k and R showed a 263

decreasing trend under all simulation settings. Also, the probability of identification of 264

k and the coverage of 95% HPD of R increased with the window length. 265

Fig 1. Accuracy of the instant-individual heterogeneity model in
estimating transmission dynamics with simulated data. Incidence data were
generated with the instant-individual heterogeneity model (3) with given reproduction
number and dispersion number. Each simulation began with 10 cases and stopped at 24
days. The relative root mean squared error (RMSE) and the coverage of 95% high
probability density interval were calculated for the estimation of reproduction number
R. The relative RMSE and the probability of identification (defined in the section of
methods) were calculated for the estimation of dispersion number k. A. Estimation
under window size = 7 days; B. Estimation under window size = 14 days; C. Estimation
under window size = 21 days;

It should be noted that the true values of k affected the performance of these 266

estimates in different ways. On the one hand, the relative RMSEs of estimating k under 267

the homogenous conditions (i.e., true k > 1) were larger than those under the 268

heterogeneous conditions (i.e., true k < 1). This observation is consistent with the 269

simulation study of dispersion number based on the methods of moment [1, 37], which 270

found that the dispersion number is likely to be overestimated for small sample size. 271

However, the probabilities of identifying of k under the homogeneous conditions were 272

closer to 0.9, suggesting that our model could correctly identify this homogeneous 273

condition. In addition, as to the estimation of R, the relative RMSE decreases and the 274

coverage of 95% HPD increases when the true k increaseed, suggesting that the estimate 275

of R is more accurate for the homogeneous situation. 276
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Validation with Real epidemics 277

Static scenario 278

When analyzing the incidence data of three epidemics, our estimates of the dispersion 279

number k were 0.30 (95% HPD: 0.20 0.43), 0.54 (95% HPD: 0.16 1.33), and 0.30 (95% 280

HPD: 0.12 0.57) for the epidemics of COVID-19 in Hongkong (2020) and the COVID-19 281

in Tianjin (2020), and the MERS in South Korea (2015), respectively. These suggested 282

significant transmission heterogeneity in these outbreaks. Our estimates were consistent 283

with those revealed by previous studies based on contact tracing data of the three 284

epidemics (Figure 2) [10,38,39] 285

Fig 2. Comparison of estimating transmission dynamics of three epidemics
with the instant-individual heterogeneity (IIH) model and the instant-level
heterogeneity (ILH) model in [22]. During each epidemic, transmission dynamics
(i.e., reproduction number R and dispersion number k) were assumed constant. Colored
areas showed the posteriors of the estimates by analyzing incidence times series. Black
solid lines represented the estimates in literatures obtained by analyzing the contact
tracing data of these epidemics [10,38,39]. A: Estimation of reproduction number (R);
B: Estimation of dispersion number (k).

When analyzing the incidence data with the instant-level heterogeneity model [22], 286

the estimates of k were 2.50 (95% HPD: 1.48 3.30), 2.23 (95% HPD: 0.69 5.39), and 1.60 287

(95% HPD: 0.68 3.14) for these three epidemics respectively, which exceeded the 288

threshold value of 1 and hence failed to recognize significant transmission heterogeneity 289

in these outbreaks. 290

As to the estimation of reproduction number R, both the IIH model and the 291

instant-level model gave consistent estimates with previous studies (Figure 2 B), while 292

the estimates of the IIH model were closer to those estimates from the contact tracing 293

data. 294

Time-varying scenario 295

By assuming that the transmission parameters remanin constant over a time window 7 296

steps (i.e., days or weeks depending on the frequency of incidence data collection), we 297

obtained the real-time estimation of the dispersion number (kt) as well as the 298
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reproduction number (Rt) over an epidemic. Firstly, we analyzed the weekly incidence 299

of probable and confirmed cases of Ebola between August 4th, 2014, and March 29th, 300

2015, in the capital Freetown of Sierra Leone. By setting the reference time of 301

2014-11-01 as in [16], the whole duration was divided into 5 periods (P1 P5, Figure 3). 302

Fig 3. Comparison of estimating real-time transmission dynamics of the
Ebola epidemic between Aug 04, 2014 (week 36), and March 29, 2015
(week 13), in the capital Freetown of Sierra Leone. Transmission dynamics (i.e.,
reproduction number R and dispersion number k) were assumed constant over a window
of 7 weeks, and the estimates were obtained by analyzing the incidence data of the time
window. Solid lines show the mean estimates from two methods, i.e., red curves and
blue curves represent the estimation from the instant-individual heterogeneity model
(IIH) and the instant-level heterogeneity (ILH) model respectively. The shaded areas
show the 95% high probability density (HPD) intervals. As in [16], the reference time
tref was set as 2014-11-01, and the whole time period was divided into five periods as:
from 2014-10-20 to tref (period 1), tref to tref +20 days (period 2), tref +20 days to
tref +50 days (period 3), tref + 50 days to tref + 100 days (period 4), and thereafter
(period 5).A: Incidence data of the confirmed and probable cases; B: Estimation of
reproduction number (Rt); C: Estimation of dispersion number (kt).

The estimated dispersion number (kt) from the instant-individual heterogeneity 303

model remained stable during the first two periods (P1 and P2) and decreased since the 304

third period and then reached the lowest level around 0.1 in the forth period. At last, 305

the kt bounced up to around 0.2 in the last period (Figure 3 C). This temporal trend of 306

kt was consistent with previous study based on individual level spatial information, 307

suggesting the transmission heterogeneity were becoming more significant as the 308

epidemic went on and might be crucial to driving the spreading of Ebola disease in the 309

study area [16]. In contrast, the instant-level model generated much higher estimate of 310

dispersion number kt which remained above 1, suggesting it failed to reveal the 311

significant transmission heterogeneity during this outbreak (Figure 3 C). 312

We also noted that both the IIH model and the instant-level model gave similar 313

estimation of the real-time reproduction number, which showed a declining trend in 314

most part of the period, and was below 1 since the middle of the fourth period (Figure 3 315
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B). 316

Secondly, we validated the IIH model with the COVID-19 incidence data, between 317

March 1, 2020 and May 3, 2020, in five counties of Georgia state, USA (Figure 4). The 318

estimated real-time dispersion number (kt) in all the five counties declined from the 319

level of above or closer to 1 during period 1 (before Apr 03) to the level of closer to 0.1 320

in period 3 after Apr 17 (Figure 4C), suggesting significant transmission heterogeneity 321

of COVID-19 in all these counties [9]. Notably, the transmission heterogeneity became 322

mostly significant in the rural area (Dougherty) with the estimated kt reached the 323

lowest level of around 0.01 in the second period, which was consistent with the 324

documented superspreading event in this county [40]. In contrast, the instant-level 325

model, generated the real-time estimation of kt being above 1, which failed to identify 326

the significant transmission heterogeneity in all these counties. 327

Fig 4. Comparison of estimating real-time transmission dynamics of the
COVID-19 epidemic between March 1, 2020 and May 3, 2020, in five
counties of Georgia state, USA. Transmission dynamics (i.e., reproduction
number R and dispersion number k) were assumed constant over a window of 7 days,
and the estimates were obtained by analyzing the incidence data of the time window.
Solid lines show the mean estimates from two methods, i.e., red curves and blue curves
represent the estimation from the instant-individual heterogeneity model (IIH) and the
instant-level heterogeneity (ILH) model respectively. The shaded areas show the 95%
high probability density (HPD) intervals. As in [9], the reference time was set as April
3rd, 2021 when the shelter-in-place order was announced. The whole study period was
divided into three periods, i.e., before April 3rd, between April 3rd and April 17th, after
April 17th. A: Incidence data of the confirmed and probable cases; B: Estimation of
reproduction number (Rt); C: Estimation of dispersion number (kt).

The IIH model and the instant-level model gave similar estimation of reproduction 328

number Rt (Figure 4B). We found that the reproduction numbers in four countries (i.e., 329

except for Gwinnet) declined below 1 short after Apr-17 (i.e., 2 weeks after the 330

shelter-in-place order), suggesting the order was effective to reduce the transmission of 331

COVID-19. Similar to the findings in [9], our IIH model also indicated that the urban 332

area of Dougherty was the first country where Rt declined below 1. 333
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Sensitivity analysis 334

By analyzing the synthetic data with the IIH model, we found that as the real-time 335

dispersion number (kt) decreased as the reporting rate decreased, suggesting that the 336

estimation of heterogeneity was conservative if there were a lot of missing cases. This 337

finding is consistent with [16]. Fortunately, this effect of reporting rate was not 338

considerable even when the reporting rate decreased to 0.4 (i.e., 60% cases were 339

missing), where the estimation of kt was still covered by the 95% HPD obtained under 340

the 100% reporting rate (Figure 5B). Also, the temporal trends of kt estimated under 341

different reporting rates were similar, suggesting the surveillance of the temporal trend 342

of the heterogeneity with the IIH model was robust to the bias of underreporting. 343

Fig 5. Effects of constant underreporting rates and misspecification of the
serial interval on estimating transmission dynamics with the
instant-individual heterogeneity model. Synthetic data incorporating missing
cases were generated on the basis of the incidence data from the Ebola epidemic
between Aug 04, 2014 (week 36), and March 29, 2015 (week 13), in the capital Freetown
of Sierra Leone. Colored lines show the mean estimates and the shaded areas show the
95% high probability density intervals under the true values. A and B: Estimation
under different reporting rates; C and D: Estimation from different specification of the
serial interval mean; E and F: Estimation from different specification of the serial
interval standard deviation.

In addition, we found that the estimation of Rt with the IIH model was unaffected 344

by the reporting rate (Figure 5A). The underlying reason is that the maximum 345

likelihood of Rt under our model is identical to that of the homogeneous transmission 346

model [19], the estimation of Rt was robust to missing cases providing the fraction of 347

cases observed is time-independent through the epidemic. 348

It has been reported that the misspecification of the serial interval (or generation 349

interval) is a large potential source of bias when estimating reproduction number from 350

observed incidence data [36]. However, we found that estimation of the dispersion 351

number kt was robust to the biases either in the mean or in the std of the serial interval 352
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(Figure 5 D and F). The effects were small and were covered by the 95% HPDs under 353

the true values. 354

As in [36], the estimation of Rt showed more visible changes than kt because of the 355

biases in serial interval (Figure 5 C and E). Generally, shorter serial interval (either 356

because of change in mean or of change in std) may lead to lower estimate Rt when the 357

true value is high and higher estimate Rt when the true value low. 358

Estimating real-time transmission heterogeneity of Omicron 359

To get a timely estimate of the transmission heterogeneity of Omicron, we applied the 360

IIH model to the incidence data in South Africa between 2021-05-01 and 2022-01-07 [30] 361

(acessed on 2022-02-01). This duration includes the third wave of COVID-19 caused by 362

the Delta variant from May 2021 to September 2021, and the early stage of the 363

potential wave caused by Omicron. With this incidence data, we could not only reveal 364

the transmission heterogeneity of Omicron, but also we made a comparison with that of 365

Delta. 366

During the period of 2021-12-01 to 2022-01-07 (referred to as Omicron wave), we 367

estimated the overall estimation of reproduction number and the dispersion parameter 368

were 0.99 (95% HPD: 0.85, 1.15) and 3.43 ∗ 10−4 (95% HPD: 2.05 ∗ 10−4,5.14 ∗ 10−4) 369

respectively. To make a comparison, we focused on the epidemic wave caused by the 370

Delta variant between 2021-06-01 to 2020-08-01 (referred to as Delta wave) during 371

which the epidemic also experienced growth and declining. The overall estimation of 372

reproduction number and the dispersion parameter were 1.04 (95% HPD: 0.97, 1.13) 373

and 9.27 ∗ 10−4 (95% HPD: 6.03 ∗ 10−4,1.27 ∗ 10−3) respectively. Notably that the 374

overall dispersion number in the Omicron wave was lower than that in the Delta wave. 375

By setting the window size of 7 days, we got the real-time estimation of transmission 376

dynamics during these two periods. During the Omicron wave, the estimated 377

reproduction number Rt reached the peak value of 2.15 on 2021-12-03 and then declined 378

to the level around 0.9 after 2021-12-15. The underlying reason for this decrease in Rt 379

was the deploying of control measures by the South Africa government as indicated by 380

the government stringency index [41]. We also noted that the estimated dispersion 381

number kt declined since 2021-12-01 and reached a stable level about 3 ∗ 10−4 in the 382

middle of Dec 2021. 383

During the Delta wave, however, we estimated reproduction number Rt remained 384

around 1 during this period which was smaller than the amount in the early of Dec 2021. 385

In addition, the estimated dispersion number kt remained close to 10−3, which was 386

higher than the stable level in the end of Dec 2021. Therefore, the overall and real-time 387

estimation of transmission dynamics of these two period hint us that Omicron might 388

not only have higher transmissibility but also a greater potential for superspreading. 389

Discussion 390

In this study, we proposed a reliable, flexible and generic model to estimate real-time 391

heterogeneity using incidence time series. When it was applied to the epidemic of Ebola 392

in Sierra Leone and the epidemic of COVID-19 in the state of Georgia, USA, the series 393

of daily/weekly heterogeneities, according to its estimation, paralleled with the trends 394

reported by previous studies based on individual spatial data [3, 9]. 395

Besides this model successfully estimated the overall heterogeneity of three 396

epidemics. Specifically, the overall heterogeneity (in terms of dispersion number k) were 397

estimated to be 0.30 (95% HPD: 0.20 0.43), 0.54 (95% HPD: 0.16 1.33), and 0.30 (95% 398

HPD: 0.12 0.57) in COVID-19 epidemic in Hongkong [38], COVID-19 epidemic in 399

Tianjing [10], and MERS epidemic in South Korea [39], respectively, which were all 400
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Fig 6. Estimation of real-time transmission dynamics of the COVID-19
epidemic between 2021-05-01 and 2022-01-09 in South Africa. Transmission
dynamics (i.e., reproduction number R and dispersion number k) were assumed
constant over a window of 7 days, and the estimates were obtained by analyzing the
incidence data of the time window. Solid lines show the mean estimates and the shaded
areas show the 95% high probability density (HPD) intervals. A: Incidence data of the
confirmed cases and government stringency data in South Africa; B: Estimation of
reproduction number (Rt); C: Estimation of dispersion number (kt).

consistent with the heterogeneities revealed by previous studies based on contact-tracing 401

data. 402

Transmission heterogeneity is a ubiquitous feature in the spread of infectious disease 403

due to a mixture of factors involving host, pathogen and environment. Accurate 404

estimating real-time heterogeneity is vital for prediction of future epidemics and 405

exploring targeted interventions. Existing methods of inferring transmission 406

heterogeneity rely heavily on sophisticated data to reconstruct the offspring distribution 407

and largely ignore the temporal change in heterogeneity. One existing model, which 408

involves instant-level heterogeneity [22,25], could only allow for part of the variation 409

and hence failed to reveal accurate real-time heterogeneity. As evidenced in our analysis 410

of the instant-level heterogeneity model, its estimation of transmission heterogeneity (in 411

terms of dispersion number k) of all the real epidemics remained above the threshold of 412

1, indicating no significant heterogeneity in these epidemics, which completely deviated 413

from the records in literature. Our model, however, addressed the heterogeneity with a 414

flexible and generic way to estimate the real-time heterogeneity on the basis of incidence 415

data, which is easy to implement and was proved reliable. 416

The benefits of our model stem from the two theoretical advantages. Firstly, we 417

introduced the assumption of random instant-individual reproduction number to 418

characterize the variation of infectiousness between different people and at different 419

times. Both these variations were important source of the heterogeneity in transmission 420

and therefore should be characterized in the model. This assumption is applicable for 421

directly transmitted disease such as SARS-CoV, MERS, Ebola, and COVD-19, where 422

the infectiousness of a particular individual at a particular instant was determined by 423

the properties of the host and pathogen and environmental circumstances [1, 28]. 424
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Secondly, our model is easy to implement as it employs only incidence data. We 425

deduced the joint likelihood function of incidence data on both the reproduction number 426

(Rt) and transmission heterogeneity (kt), which enabled us easily to monitor these 427

epidemiological parameters simultaneously. 428

When comparing the precision of different methods, we found that our estimation 429

was less precise with broader credible intervals than the results based on contact-tracing 430

data for the two outbreaks (i.e., MERS in South Korea 2015 and COVID-19 in Tianjin 431

China, 2020) with smaller size (i.e., 100 200 cases). For the outbreak of COVID-19 in 432

HongKong with more than 1,000 cases, our estimation had better precision than the 433

result from contact-tracing data in terms of narrower credible interval. This might be 434

related with the sample size of the outbreak, and our model might be more applicable 435

to larger size epidemics. 436

This merit of our model could allow for fast and timely epidemiological surveillance, 437

possibly even for the new SARS-CoV-2 variant of Omicron, which has been spreading 438

wildly across the world since its first detection in November 2021 in Gauteng Province, 439

South Africa. We estimated the heterogeneity (in terms of dispersion number k) was 440

k ≈ 3.43 ∗ 10−4 in December 2021 in South Africa, which was more significant than that 441

of the Delta wave (i.e., k ≈ 10−3) [42]. The more significant heterogeneity of Omicron, 442

together with its higher reproduction number, might be able to explain its 443

unprecedentedly fast spreading. So far, little is known about the transmission 444

heterogeneity of Omicron, and the traditionally used data for heterogeneity analysis 445

including contact tracing data, viral sequence data and individual spatial-information 446

have not been fully available for the analysis of its transmission heterogeneity. Our 447

results also highlighted the need of taking more efficient measure of to reduce people 448

gathering and the possible superspreading events [28,43]. 449

During the implementation of our model, the serial interval distribution is required 450

to approximate the infectiousness profile ws. This distribution information may not be 451

correctly obtained at the early stage of newly emerging infectious disease or may be 452

biased for some pathogens where infectiousness occurs before symptoms. Fortunately, 453

our model performed robust to the misspecification of serial interval (showed in results). 454

Additionally, we could also relieve this dependence by integrating detailed 455

epidemiological linkage data to estimate the serial interval separately [20] or extending 456

the inference framework to incorporating estimation of serial interval distribution and 457

transmission dynamics simultaneously as in [44]. 458

When interpreting the results, we regarded the transmission heterogeneity estimated 459

based on the incidence of confirmed cases accumulating over a time window till time t 460

as the result at that time. Since the confirmation of a case occur after the time of its 461

infection, together with the delay due to the accumulation of data, our estimation of 462

transmission heterogeneity definitely fell behind the reality. This delay might make our 463

estimation misleading if the underlying transmission dynamics change rapidly during the 464

period. We could reduce the delay by applying our model to the transformed infection 465

data which was generated by accounting for the possible delay between infection and 466

diagnosis [21,45]. In addition, we could also optimize the time length of data 467

accumulation size based on certain performance constrain such as short-term predictive 468

accuracy [46] to get a timely and accurate estimation of transmission dynamics. 469

The analysis with our model could be biased by the fact that we assumed all cases 470

be detected when analyzing the incidence data. We also showed with synthetic data 471

that our model performed robust as long as the reporting rate (e.g., being 40% ) was 472

constant through the epidemic. However, the reporting rate could vary with time in 473

reality because of improved case ascertainment or case definition, or testing capacity. 474

In this study, we utilize the Gamma distribution to characterize the transmission 475

heterogeneity, which has been widely used in other studies. It also should be noted that 476

April 7, 2022 16/20



the Gamma distribution is not suitable for all types of heterogeneity in the transmission. 477

For example, the ongoing vaccination could incur heterogeneity as some people are 478

vaccinated and others are not. This type of heterogeneity should play an important role 479

especially when modelling the transmission heterogeneity in the pandemic of COVID-19, 480

which should probably be Bimodal-distributed instead of Gamma distributed. 481

In summary, we proposed a simple and generic model to estimate the real-time 482

transmission heterogeneity based on incidence data. This model could help 483

epidemiologists better understand the complex mechanism in disease spreading, 484

especially for those that are lack of more detailed data. 485
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